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A simple model of deconvolution can be described as observing {x(t)} which is a convo­

lution of a signal {s(t)} with a filter {f(j)},x = s*f. More specifically, we have 

oo 

x(t)= £ fUHt-j). 
j=-oo 

The problem of deconvolution is to recover {s(t)} based on the output process {x(t)}. If 

the filter {f(j)} is known then the problem is fairly straightforward. The blind deconvo­

lution, in signal processing terminology, is to recover {s(t)} based solely on {x(t)} without 

knowing {/(j)}. Statisticians may be more interested in the estimation of {f(j)} under 

certain conditions on {s(t)} and {/(j)}- This problem and its many variations have very 

broad applications in signal processing, image restoration, geo-exploration, seismology, radio 

astronomy among others [11, 33, 38, 39]. 

Assume that the signal random variables {s(t)} are independent and identically dis­

tributed with mean 0 and variance 1. Let the filter {f(j)} be a sequence of real constants 

such that 
oo 

£ f(j) < °° 
j=-oo 

and f(z) = J2j f(j)zj be the z-transform corresponding to the process {x(t)}. Then 

f(e~iX) = £ / 0 > " y A = \f(e-*x)\exp{th(X)} 
j 

is the frequency response function or the transfer function where h(X) is the phase function 

of the transfer function. If we know f(e~tX) for all A G [0,27r], then we can obtain {f(j)} 

for all j . The modulus / ( j ) , | / ( j ) | , of the frequency response function can be obtained from 
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the spectral density of {x(t)} which is 

5(A) = ^ | / ( e - * A ) | 2 . 

It is clear that if the {x(t)} process or the random signal process {s(t)} is Gaussian then 

the full probability structure of {x(t)} is determined by g(X) or equivalently by | /(e_ z A) | 

which is determined by the second order covariance property of the process. The phase 

information h(X) of f(e~lX) is not identifiable in the Gaussian case. Any hope of getting 

information on the phase function will require the process to be nonGaussian. 

Murray Rosenblatt's interest and insight in this problem may have stemmed from his 

interest in the higher order spectra, especially higher-order cumulant spectra which is funda­

mental in dealing with nonGaussian processes [34, 4, 5, 19]. The kth-order cumulant spectral 

density of {x(t)} is given by 

6fc(Ai, A2) • • -, Afc_0 = j^-J{e-lM)f{e-^) • • • / ( e - ^ - i ) / ( e < ( ^ + " + * * - i > ) , 

where 7^ is the kth order cumulant of {s(t)}. Therefore the phase of the kth order spectrum 

&fc(Ai, A2, • • •, Afc-i) is related to the phase h(X) of the the transfer function f{elX). 

In the paper [35], Murray laid out the basic idea on how the phase function h(X) can 

be identified up to a linear shift of cX using the phase of the bispectra of the process. It 

was noted that the same result holds by using any kth-order spectra with k > 2. A similar 

but different idea of using bispectra to obtain phase information of the transfer function is 

outlined in Brillinger [6]. Of course for different c's we will get different transfer functions 

and the deconvolution can not be realized. 

The problem of indeterminancy of the linear shift of the phase was solved in [20], where 

it was shown that the phase function can be identified up to an integer shift rX with r an 

integer. The basic idea is that the transfer function f(e~tX) has to be real when A = TT and 
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hence its phase at TT has to be TTT with r an integer. Since this integer phase shift corresponds 

to reindexing the noise sequence {s(t)}, the deconvolution problem is essentially solved in 

this case. If the linear process {x(t)} is a finite parameter ARMA(p,q) process then there 

are other methods available to identify the phase function. In [20] a few other ideas were 

laid out to identify the correct ARMA model in terms of the location of the roots of the 

characteristic functions of the ARMA model. Again, the basic idea here is to match various 

higher order moments or cumulants of the process with the correct coeffients or roots. 

The paper [20] seemed to have generated quite a bit interest in the signal proceesing 

community. The importance of the phase in signals has been noted in signal and image 

processing and geoexploration problems [31, 33, 38, 39]. Many papers were published using 

higher-order statistics and higher-order spectral analysis to analyze signals, images and sys­

tems. These activities resulted in the first 'Workshop on Higher-Order Spectral Analysis' 

held at Vail, Colorado in 1989 with a Proceedings of the Workshop and a 'Special Section 

on Higher Order Spectral' that appeared in the July 1990 issue of the IEEE Transactions on 

Acoustics, Speech and Signal Processing. Following the first workshop, four more 'workshops 

on higher-order statistics' were held in odd years with the location alternating betwwen Eu­

rope and North America until the last one in 1997. The last two Proceedings published in 

the 1995 and 1997 Workshops have more than 450 pages of articles each. The 1995 work­

shop resulted in IEEE Signal Processing September 1996 issue being the 'special issue on 

higher-order statistics'. A book [32] was published in 1993 on these topics. 

If the output process {x(t)} is observed with an independent Gaussian noise rj(t) it is 

shown in [21] that we can still estimate the filter {f(j)} up to an unknown scale factor c. If 

the additive Gaussian noise rj(t) is white then we can estimate the filter consistently up to a 

time shift. A detailed discussion on the use of fourth-order cumulants to estimate the filter 

function for deconvolution is given in [22], where a discussion on the sample size relative 

to various orders of cumulants of {s(t)} is given. In [23] it is demonstrated with a well-log 
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data and water-gun signature that the deconvolution can be more effective using the Fourier 

transform of the tapered sample higher-order cumulants to obtain higher-order spectrum 

instead of using the smoothed higher-order periodogram. For this reason, theoretical prop­

erties of such higher-order spectral estimates are given in [25, 26]. The particular formula 

using the phase of a higher-order spectrum to obtain the phase of the transfer function in 

[20] utilized only a subset of the full higher-order spectral phase function. Another method 

which utilized the whole effective higher-order spectral phase function is given in [28] with 

better asymptotic convergence properties as a function of sample size. Generlization of the 

previous results to the deconvolution problem in autoregressive random fields is given in 

[30,37]. 

In the deconvolution problem described above it is generally assumed that the spectral 

density of the process is strictly positive. In [24] our attention turned to the blind de-

convolution problem when the transfer function has zeros, which do occur in geophysical 

investigations [31]. In [24] it is shown that if the zeros are finitely many and are of finite 

order then the transfer function can still be consistently estimated without the minimum 

phase assumption when the process is nonGaussian. A procedure is given so that the de-

convolution can be effectively carried out. If the transfer function is zero in an interval for 

A G (a, b) with 0 < a < b < ir, then the smallest mean square error in deconvolution that 

can be achieved is (6 — a)/2n even if we assume that the phase can be estimated. It was 

also shown that the phase is not identifiable if the transfer function is zero in an interval 

around TV with positive length i.e., the process is band-limited. However if all higher order 

cumulants of {x(t)} are available then the phase is identifiable up to a linear phase shit SX 

with 5 a real number. 

In the previous discussion the process is a general linear process and the approach to the 

identification of the phase information is the use of higher-order cumulant spectra which in 

general, is monparametric' in the sense that the probability distribution of the signal process 

17 



{s(t)} is not used explicitly other than that it is nonGaussian and that a certain kth order 

cumulant exists and is non-zero. Now if the process {x(t)} can be represented by a finite 

parameter ARMA(p,q) process, then as noted before certain methods based on moments 

can be used to identify the phase information and in this case it is equivalent to finding the 

locations of the roots of the charateristic functions associated with the AR and MA parts 

of the process or eqivalently the coefficients of the ARMA model without the usual causal 

or invertible conditions under the Gaussian assumption. Maximum likelihood estimation 

of the parameters of an ARMA model under the Gaussian assumption has been discussed 

widely in the literature [9, 36]. Of course in this case the phase information is not available 

and the ARMA model is assumed to be causal and invertible. In [7] it is shown that given 

a nonGaussian probability density for the independent and identically distributed process 

{s(£)}, the stationary AR(p) process 

x(t) = (j>ix(t — 1) + . . . + (f)px(t — p) + s(t) 

is identifiable through a maximum likelihood procedure whether the process is causal or not. 

The idea is to reparametrize the model by decomposing the autoregressive polynomial into its 

causal and purely non-causal components and then analyzing the corresponding AR processes 

that resulted from this decomposition. The likelihood function can be approximated using 

these processes and the estimates of the parameters of the possibly non-causal AR process are 

the solutions to the likelihood equations. Similar results for possibly non-invertible MA(q) 

process are given in [27] and for general ARMA process in [29]. These results give possibly 

'efficient' methods for blind deconvolution. If the nonGaussian probability distribution of 

the {s(t)} process is unknown then it is demonstrated in the previous papers that a quasi-

likelihood method can be used to estimate the parameters of the ARMA process by assuming 

that the unknown probability density is Laplace (two-sided exponentail) which leads to a 

least absolute deviation criterion. A modified least absolute deviation method is shown to 

be consistent when the input process in the AR(p) model has a stable law distribution with 

index a G (1,2) [13]. 
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Without the causal and invertible conditions for nonGaussian ARMA processes one is 

naturally led to an interesting subclass of processes called all-pass ARMA models. An ARMA 

model is all-pass if every root of the AR polynomial (f)(z) is a reciprocal of a root of the MA 

polynomial 9(z) matched with multiplicity and vice versa. In such a case the corresponding 

filter is f(e~lX) = (f)(e~tX)/6(e~tX) and \f(e~tX)\ is a constant. This means that whatever 

the spectum of the input process {s(t)}, it will pass the ARMA filter unchanged except for 

a multiplicative constant, hence the name all-pass. So the spectral density of the process 

is a constant. This means that the process {x(t)} is uncorrelated or white but not inde­

pendent if the input independent process is nonGaussian. Processes which are second order 

uncorrelated or white but with higher order dependence occur often in financial data. The 

estimation of parameters of such all-pass ARMA models using least absolute deviations is 

given in [8], using maximum likelihood in [1] and using rank based procedures in [2]. The 

rank based method can have the same asymtotic efficiency as maximum likelihood estima­

tors and are robust to some distributional assumptions. There are deconvolution problems 

in signal processsing when the probability distribution of the signal process {s(t)} is dis­

crete with finitely many points of support such as in the finite alphabet transmission. These 

deconvolution problems were treated in [17, 12]. The finite tone image deconvolution or 

debluriing problems were treated in [18] where the distribution of the pixels is two-tone (or 

finite-tone) without the stationarity assumption. Methods using the maximization of the 

standardized cumulant of the deconvolved process to estimate the filter are given in [10]. 

Murray's interest in higher-order spectra began more than four decades ago [34], which 

ultimately led to the deconvolution problem [35]. Murray's fundamental contributions in 

both areas have had a long lasting impact on many aspects of statistical probems and 

applications as described in this brief article. His influence in the area of blind or noncausal 
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deconvolution is still ongoing [3], and has expanded to many related problems in economics 

[15], in medicine [14], and in signal processing [16,40], among others. 
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