
J. Appl Prob. 17,265-270 (1980) 
Printed in Israel 

0021-9002/80/010265-06 $00.85 
© Applied Probability Trust 1980 

LINEAR PROCESSES AND BISPECTRA 

M. ROSENBLATT,* University of California, San Diego 

Abstract 

A linear process is generated by applying a linear filter to independent, 
identically distributed random variables. Only the modulus of the frequency 
response function can be estimated if only the linear process is observed and if 
the independent identically distributed random variables are Gaussian. In this 
case a number of distinct but related problems coalesce and the usual discussion 
of these problems assumes, for example, in the case of a moving average that 
the zeros of the polynomial given by the filter have modulus greater than one. 
However, if the independent identically distributed random variables are 
non-Gaussian, these problems become distinct and one can estimate the 
transfer function under appropriate conditions except for a possible linear phase 
shift by using higher-order spectral estimates. 
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Let vty t = • •* , -1 ,0 ,1 , •• •, be independent identically distributed random 
variables with mean zero, Evt=0, and variance one, Et?f = l. Consider a 
sequence of real constants {a,} with 

The process 

(1) xf = 2 aiv*-i 
i—°° 

is the linear process generated by {a,} and {vt}. The frequency response function 
is 

(2) «(e-iA) = 2«,e"iM 
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266 M. ROSENBLATT 

and the spectral density of {xt} is 

(3) f(\) = ±\a(e-*)\2. 

We shall actually assume that 2 |a j |<oo (and often more) so that a(e lA) and 
/(A) are continuous. Of course, if both xt and t>„ t - 1, • • •, T, are observed 
a(e~lA) can be estimated by estimating the cross-spectral density of {xt} and {vt}. 

However, if only {*,} is observed a number of distinct but related problems 
arise. If {vt} (and hence {*,}) is Gaussian, then only /(A) or equivalently the 
modulus of \a(e~lk)\ can be estimated. It is then usual to assume that if {xt} is an 
autoregressive moving average process 

p <? 

(4) 2 fat-i = 2 <*kVt-k9 (b0, q0 ^ 0) 
j=0 k = 0 

that the roots of the polynomials 

k = 0 

(5) 
B{z) = ^biz' 

are distinct and all have modulus greater than one (see [1] and [4]). It is clear that 

(6) „(«-" )~$Py 
In the Gaussian case any zero Zj can be replaced by zjl without changing /(A) so 
that there are generally 2p+q possible specifications of the zeros without changing 
the structure of {*,}. However, the specification in which the roots all have 
modulus greater than one corresponds to the prediction problem in the following 
sense. Then {xt} can be represented as a one-sided moving average in terms of 

V) *t = 2)Af>f-/, 2 lA l<°° -
/ = 0 

vt can be represented as a one-sided moving average in terms of xt 

(8) i>r = 2 ?/*'-/> E l r ; l < 0 ° -
/-o 

Thus vt is independent of the past of {*,}, that is, xt-uxt-2, • • •, and the best 
one-step predictor of xt in terms of *,_,, JC,_2, - i s 

(9) x!=-££x,_; + i^,-k 
j = \ Do k = l Do 

with prediction error 
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(10) xt-x*t=^vh E\xt-x*\2 = Oo 
b0 b0 

It is also true that if one regards an autoregressive scheme 
p 

2 bjXt-j = vt 
; - 0 

as a system characterized by xt being driven by vh then the condition on roots of 
B(z) having modulus greater than one is equivalent to 'stability' of the system 
(see [2], [5]). Of course, if one is just interested in estimating the spectral density 

(ID / ( A ) - £ B(e~ix) 

of an autoregressive moving average scheme, the roots taken with modulus 
greater than one may be as convenient a set of parameters for such a finite 
parameter scheme as any others. 

The prediction problem for a Gaussian sequence has the same character for 
forward prediction as for backward prediction. This is decidedly not the case for 
linear processes with non-Gaussian vt. The simplest case is that of the stationary 
autoregressive sequence 

(12) X, = 2 * r - l + t > r 

with 

vt = 

1 1 
r - with probability -z 

0 with probability ;r 

and vt independent of the past of the xt process. Here the best predictor of xt in 
terms of the past (in the sense of minimizing mean square error of prediction) is 

* , - 2 * , - i + 4 . 

The fact that vh xt do not have mean zero here should not trouble one. It just 
accounts for the constant 1 in the expression for the best predictor. Notice that 
the marginal distribution of xt is uniform [0,1]. The best predictor of xt given the 
future is 

x * = 2xt+1 modulo one = xt. 

Thus the backward predictor is non-linear and has variance of prediction error 
zero (perfect prediction) while the forward predictor is linear and has positive 
variance of prediction error. The process (12) is purely non-deterministic going 
forwards in time and purely deterministic going backwards in time. Of course, 
this simple example is a bit extreme. If one has an autoregressive moving 
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average process {JC,} with the u,'s non-Gaussian and by chance the zeros of A (z), 
B(z) of modulus greater than one, then it is still true that the best predictor of JC, 
in terms of the past is given by (9) with prediction error (10). But if the zeros of 
A(z), B(z) do not all have modulus greater than one, then the best predictor of 
xt given the past will no longer have the form (9) and will generally be 
non-linear. Also, as we shall see, the function (6) and hence the zeros (as 
contrasted with the Gaussian case) will generally be identifiable. 

A simple example is now given of a situation in which there is interest in 
estimating a(e~lA) or as much of it as one can manage. Suppose {vt} is 
independent, identically distributed non-Gaussian. It is passed through the 
linear filter with coefficients {a,} by (1) to get {*,}. The experimenter observes 
only {xt} (not {vt}) and wishes to estimate a(e~lX). A particular case is that of the 
moving average 

(13) xt = 6vt - 5i?r_i + v,-2 

where the roots of A{z) are 2 and 3. The moving average 

(14) xt = 3v, - lVt-\ + 2vt~2 

has a polynomial A{z) with roots at \ and 3. Both schemes (13) and (14) have the 
same spectral density but if the independent, identically distributed u,'s are 
exponential, the marginal distributions of xt for these schemes are different. 

Assume that one has a linear process where the independent, identically 
distributed non-Gaussian variables vt have finite moment mk = Ev*(k >2) and 
corresponding cumulant yk. The fcth-order cumulant spectral density is then 

(15) 

1 / k_I \ 
^r~i 2 cum(x„ xt+h9 • • •, xt+ik Jexp I - 2 *MJ (2TT) 

= 1 
{2rrf 

We shall now indicate circumstances under which a(e ,A) can be identified 
except for a linear phase shift. 

Theorem. Let {xt} be a linear process generated by independent, identically 
distributed random variables {vt} with finite third cumulant y = y (v) ^ 0. Further 
let the coefficients a, be such that 

(16) 2 I / I I « / I < ° ° 
i 

and a(e~lX)^0 for any A. Then a(e~lX) is identifiable except for a linear phase 
shift if one observes the process {x,}. The conclusion of the theorem is still valid if 
the {vt} have finite kth (k >2 ) cumulant yk = yk(v)^Q. 
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Obviously |a(e~ iA)| is identifiable since |a(e~ iA)| = (2TT)'[/(A)]'. We thus have 
only to deal with arg{a(e~iA)}. Let 

ft(A) = arg{a(e- iA)}-arg{a(l)}. 

Since the ay's are real, h(- A) = - h(A). The bispectrum of the x process is 

HK M) = ( d o 1 «(«"I>(«"*><«I<A+M))y-
(a( l ) / |a( l ) | )y can be determined since 

| ^ j Y = (2^)Hfc(0,0)}/{/(0)}i. 

Also 
h(A)+h(n)-h(A + fi) 

can be determined since 

fc(A)+/t(/i)-/t(A + AO 

= | log[(2W)*y-,6(A,M)V(A)/(/*)/(A + M»"*] " arg{a(l)}. 

Notice that 

li'(0)-fc'(A) = Hm^{fc(A)+li(A)-li(A+A)}. 

Set c = h'(0). Then 

fc(A) = fA {h'(u)-h\0)}du + cA. 

Thus 
a(e" ,A)=w(A)e icA 

and by the simple argument given above a(e~ix) is identifiable except for sign 
and for the linear phase shift cA. The shift cA is clearly not identifiable under our 
assumptions unless one makes additional specifications. Notice that if c = n 
(integer), this just corresponds to a time shift of n units. 

The argument given can be immediately elaborated to take care of finite fcth 
cumulant yk ^ 0 (k > 3) if y3 = 0. 

The fcth cumulant spectrum of the process is given by (15) and a simple 
adaptation of the proof of the theorem yields the result. 

Given that xux2, - - •, xN is observed one can easily suggest a consistent 
estimate of a(e~ix) up to the unidentifiable phase shift cA. The estimate is 
suggested by the approximation 
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270 M. ROSENBLATT 

/>W-»W*-|>'(;£)-*w}i 

as m —> oo. Let fN (A), feN (A, \i) be estimates of the spectral density and bispectral 
density with symmetric weight functions (see [3] for a discussion of such 
estimates). Let /3N be the linear bandwidth of the estimates so that fiN j 0, 
JVJSN-*00. NOW fN(k)^Trf is a consistent estimate of |a(e~iA)|. Further 

(2TT^6N(0,0)}{/N(0)}-3 / 2 

is a consistent estimate of (a(l)/ |a(l)|)y. This implies that 

( 2 . ) ^ ( A ) i ! f ( [ 1 , . ( i , ^ ) { f r ( ^ ) / » ( f ) / . ( ^ ) } " ! ] ^ K ( 0 , 0 ) / N ( 0 ) H ) 

will be a consistent estimate of a(e~iX) up to sign and the linear phase shift cA if 
mp2

N^0, m(N/3N)-1—►() as m,N^^>, /3N->0. Of course, this is a complicated 
and unwieldy estimate. 

Notice that when dealing with the autoregressive moving average scheme (4), 
the specification ao,bo^0 implies that the phase shift cA =0. 
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