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FRACTIONAL INTEGRALS OF STATIONARY PROCESSES 
AND THE CENTRAL LIMIT THEOREM 

M. ROSENBLATT, University of California, San Diego 

Abstract 

A class of limit theorems involving asymptotic normality is derived for 
stationary processes whose spectral density has a singular behavior near 
frequency zero. Generally these processes have long-range dependence' but 
are generated from strongly mixing processes by a fractional integral or 
derivative transformation. Some related remarks are made about random 
solutions of the Burgers equation. 
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1. Introduction 

Let X(t), - x < f <°°, be a strictly stationary real-valued separable random 
process with EX(t) = 0 and EX(t)4<*>. Our interest is in limit theorems for 

(1) A(T) = j X(t)g(t/T)dt 

as T—>3c, where g is a real-valued integrable function. The standard central 
limit theorem is for 

(2) ,(,)-{i ", 0<f < 1 , 
otherwise, 

and is often proved under a number of possible strong mixing conditions (see [4] 
and [5]). Suppose that the process X(t) has an absolutely continuous spectral 
distribution function F with spectral density /. The usual assumption on the 
variance of (1) for g given by (2) is that it is proportional toTasT-^oc . In order 
to arrive at this rate of growth it is usual to assume that 

(3) ilim |/(A) = c > 0 . 

However, there are a number of special results in which asymptotic normality 
has been obtained where the spectral density has a behavior like 
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724 M. ROSENBLATT 

/ (A)HA| - , « < I 
as | A | —> 0 (see [1], [3] and [7]). If a is not an even integer, such processes are not 
strongly mixing (see [2]). Our object is to obtain a broader class of such limit 
theorems in which the basic behavior is laid out in a way that may be more 
apparent. The argument is based on the assumption that X(t) can be identified 
as a fractional integral of a strongly mixing process and g as a fractional 
derivative of a function. 

We shall want to specify conditions on the process X(t) in terms of an 
auxiliary stationary process Y(f). The conditions on Y(t) will be those used in 
the theorem of [5]. Let 3b,(Y) be the Borel field generated by the random 
variables V(r), r ^ t, and &t(Y) the Borel field generated by the random 
variables Y(T), r ^ t We shall say that the process Y is strongly mixing if 

(4) sup | P(B n F ) - P(B)P(F)\ = g(r - I) i 0 
Bern, 
Fe&T 

as r - t —> ». The process Y will be said to satisfy Assumption A if the following 
conditions are fulfilled. 

Assumption A. 
(a) Y is a stationary separable process with EY(t) = 0, £Y(f)4<°°, and 

E\Y(t)- Y(T)\4->0 as f - r - > 0 . 
(b) Y is strongly mixing. 
(c) The covariance function R(t) of Y, R(t2- U)= E[ Y(f2)Y(f,)], is abso

lutely integrable with the spectral density /(A) of Y, 

f(\) = j^j e^R(t)dt, 

positive everywhere. 
(d) The fourth-order cumulant function of Y, 

Q(t2- tuh- tuU- t>)= EiY^YitJYitJYiu)] 

-R(t2- tJR (tA -h)-R (h ~ U)R (U - t2) 

-RiU-t^Rih-h), 

is absolutely integrable. 

Notice that under Assumption A the spectral density / is continuous as is the 
fourth-order cumulant spectral density, 

4(A„ A2, A,) = III exp(- i{r,A, + t2k2 + h\,})Q(tu t2y h)dtidt2dt3. 
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Fractional integrals of stationary processes and the central limit theorem 725 

The notion of a fractional integral (or derivative), when meaningful, will be of 
some interest. Because of the concern with stationarity and time translation, the 
Weyl definition of a fractional integral seems to be most appropriate (see [8], 
Vol. 2, p. 133). Let us call 

(5) a V ) ( 0 = F 7 ^ I (t-r)a lY(r)dr r ( a ) J - . 

= l.i.m. - 1 - P ( r - r r ' y ( T ) d T 
L-~ I ( a ) ) / 

the a th fractional integral, 0 < a < 1, of Y if it is well-defined. Our definition is 
understood to be given by the limit in mean square on the right of Equation (5). 
One can define 

(/1y)(r) = l.i.m.(/oy)(r). 
a t 1 

An alternative equivalent definition is given by 

( J , Y ) ( 0 - l . i . m . f P P Y(r)drds. 
!.-»» L Jo J-s 

Then, recursively, one can define IpY for all /3 > 0 for which it exists by 

(6) U^Y = Ix{hY), j 3>0 . 

The fractional derivative DaY, 0 < a < 1, is given by 

(7) DaY = D\IX aY) 

where by D 1 one understands the derivative in mean square. The derivative Da 

for all a > 0 would then be given recursively when it exists by 

D^aY = D\DaY), <*>0. 

It is then clear that one could just as well make the identification 

h = Da 

for all a. These definitions could be extended slightly to that of fractional 
integrals (derivatives) centred at frequency /x. Thus the a th fractional integral 
Infl centred at frequency ji would be given by 

(8) (L*Y)(t) = | ^ j l (t - TrV"V(T)dT 

for 0 < a < 1 with the obvious modification given for other values of a as in the 
case of an ordinary fractional integral (or derivative). 

Lemma 1. Let Y be a separable weakly stationary process (EY(t) = 0) 
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726 M. ROSENBLATT 

(9) y ( ' ) = / l e'"dZYW 
EdZy (\)dZY(fi)=8(\ + n )dFY (A) 

with corresponding process ZY of orthogonal increments and spectral distribution 
function FY. The ath (O ia ) fractional integral (derivative) Ia.»Y (D"*Y) 
centred at fi exists as a weakly stationary process if and only if 

(10) [ |A-/i|-2<»(iFv(A)<oo 

(j\\-fi\2°dFY(\)<cc} 

and is given by 

(7aMy)(0 = | (i(A - jt))-e*w-*>dZy(A) 

(ID , r v 
((D*-y)(r) = J (i(A -/i))«eft<*-">dZv(A)) . 

It will be enough to go through the argument for Ia^Y with 0 < a < 1. Then 

(7o,My)(0 = li .m. f^T f (f-TrV""Y(T)<iT 

But 
f e"<A-M)(r - ry-'dr = r(a)e"<A-")(«(A -/*))" 

The following result is a useful formal analogue of integration by parts. 

Lemma 2. Let Y(t) be a separable weakly stationary process, EY(t) = 0, and 
g(t) a bounded integrable function. Then if (IaY)(t) exists, 0< a < 1, and if 

gT(t) = g(t/T) 
it follows that 

(12) j (IaY)(t)gr(t)dt = j Y(t)(Lgr)(t)dt 

where 

(13) 
(/.gr)(0 = £ (t + T)-'g (y) dTr(a)-

= r f (f + T«)°-,g(M)d«r(a)-
J-«/T) 
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Fractional integrals of stationary processes and the central limit theorem 727 

Further, if a <{ 

(14) j \Lgr(t)\2dt = ^ J |g(A)|2|Ar<*A 

where g is the Fourier transform of g. Also 

(15) \Lgr(t)\^KT° 

for all t with K an absolute constant. 

The equality (12) follows straightforwardly on using the Parseval relation 
twice. One also notes that (IagT)(t) is what one obtains on applying the operator 
Ia to g ( - tjT). The inequality (15) is obtained by using the inequality 

j (,/T) r (a) j-(„T)+i r(«) 

^ K' f (" ' ' T(f + 7u)a 'dw + T* f |g(u)| 
J-UIT) J 

du 

^ KTa. 

A corresponding result can be given for fractional derivatives. 

Lemma 3. Let Y(t) be a separable weakly stationary process, EY(t) = 0, and 
g(t) a bounded integrable function that satisfies a Lipschitz condition of fixed order 
ft 0 < j3 < 1, uniformly over ( - «, *>). Then if (DQY)(t) exists, 0 < a < ft and if 
gr(t)= g(t/T) it follows that 

(16) j (D°Y)(t)gT(t)dt = | Y(t)(D°gT)(t)dt 

where 

(17) (D'gT)(t)= j _ * O + T r g ^ d T r O - a ) - . 

Moreover, if g(\)\\\a E L2 

(18) J | J 5 - g T ( 0 | 2 * = - ^ J | $ ( A ) N A r < f A . 

Fwrf/ier, 

09) \DagT(t)\^KTa 

for all t with K an absolute constant. 
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728 M. ROSENBLATT 

Relation (16) follows by the Parseval relation as in Lemma 2. Now 

r(\-a)D"gT(t)=j(jm (t + T)-°gr(T)dT 

-jK"«-£W«-0-Gr<-0>*. 
where GT is the indefinite integral of gT. On integrating by parts we obtain 

r(l - a)D°gT(t) = j t £° au-x-°{GT{u - t)-GT{- t))du 

= I aU-la{gT(u - t)~ gr(~ t)}du. 
Jo 

The expression 

(20) JJV'-'tgTOi-o-gTC-O}^ 

Notice that the integral on the right-hand side of (20) is bounded in absolute 
value by 

* r • - ' - - * + / > < » > I * + ± I « ( - T ) I -
The assumption that g ELip(/3) has been used. K is a constant. 

The range within which the result of Lemma 3 holds can be broadened 
somewhat. Let us say that g£A^, /3>0, if it is [/3] times continuously 
differentiable ([/3] is the greatest integer less than or equal to j3) and its 
derivative Dl0]g satisfies a Lipschitz condition of order j3 - [j3] uniformly over 
( - oo, oo). The result of Lemma 3 then holds for g a bounded integrable function 
in Aft /3>0, and [ / 3 ] ^ a < 0 . 

It is clear that results corresponding to Lemmas 2 and 3 for the more general 
context of fractional integrals (derivatives) centred at \i hold and can be derived 
by the same type of argument. 

2. A central limit theorem 

We can now obtain a central limit theorem for the sequence A(T) as T—►<» 
under appropriate conditions by applying the main theorem of [5]. 

Theorem. Let X(t) be a separable strictly stationary process that is the ath 
fractional integral for some a,\a\<\of a process Y(t) satisfying Assumption A. 
Then the spectral density h(k) of the process X(t) is such that 

(21) limfc(A)|A|2*=/(0)>0 
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Fractional integrals of stationary processes and the central limit theorem 729 

where /(O) is the value of the spectral density of the process Y(t) at zero. Consider 
the sequence of random variables 

(22) A(T) = $ X(t)g(-£}dt 

as T —► oo, where g is a bounded integrable function. Ifa<Owe also assume that 
g satisfies a Lipschitz condition of order /3, 0 < | a | < / 3 S l , uniformly over 
( -00 ,0c ) . Then 

(23) A(T)/a(T) 

is asymptotically normally distributed with mean zero and variance 27r/(0) as 
T^oc, where 

(24) <T2(T) = ^j\g(\)\2\\\-2°d\. 

The remark on the spectral density h(A) of X{t) near zero follows im
mediately from the fact that X(t) is the ath fractional integral of the process 
Y(t). By Lemmas 2 and 3 A(T) can be written in the form 

j Y(t)coT(t)dt 

with 

<Or(t)=(Lgr)(t) 

if 0 ^ a <\ and 

<oT(t)=D-QgT(t) 

if - -2 < a ^ 0. Then 

a2(T)= W(T) = | cor(tfdt = ^ j \g(\)\2\\\-2ad\. 

Further, 

lim W(T)1 I a)T(t + h)(DT(t)dt = l 

for all h. The bounds obtained on IagT(t), D~agT(t) in Lemmas 2 and 3 together 
with Assumption A imply that the conditions for the validity of the basic 
theorem of [5] are satisfied. Here M(A) is a jump function with total mass one at 
A =0. 

Notice that if Y(t) satisfies Assumption A then the two derived processes 
(with | a | < 5) 
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730 M. ROSENBLATT 

( C . y x o = f^jjl (r-T)-'cosMTy(T)dT 

(25) ,, 
(S...V)(0 = ffcj J_ (< " T)"- sin fir Y(r)dr 

are jointly stationary. Of course, these processes are just the real and imaginary 
parts of (7O(iy)(0. One can also remark that the processes (Ca,»Y)(t) and 
(S„,^y)(0 have spectral densities which behave like 

K | A ± M | - 2 -

in the neighborhood of ± n respectively with K a constant. The following result 
can be regarded as a corollary of the theorem since it is obtained by essentially 
the same type of argument. 

Corollary. Consider the processes 

(26) (C.>mY)(t), (Sa,.yy)(/) 

I a, | < i 0 < /i, < n2 < • • • < Mm, / = 1, • • •, m derived from a process Y(t) satisfy -
ing Assumption A. Let g,(f), / = 1, • • •, m, be bounded integrable functions. If 
a ,<0 we also assume that g,(f) satisfies a Lipschitz condition of order /3„ 
0 < | a , | < / 3 y ^ l . Let 

(27) 

MT) = \(Cai.»lY){t)gl(±)dt 

Bi(T) = j(Sa,,„Y)(t)gl(±)dt. 

Then 

(28) MTya^T), B/(T)/oi(T) 

j = 1, • • •, m are asymptotically normal and independent with mean zero and 
variance 7r/(/Lt;), where 

(29) ^(r) = ^J |g / (A) | 2 |Ar^A. 

In the context of the theorem, one could consider 

A(aT)/a(T), a >0, 

as a random process and it is clear that on heuristic grounds one would expect to 
have weak convergence as T-> oo to a Gaussian random process Z(a) with mean 
zero and covariance function 

Cov(Z(n),Z(*)) = 2ir/(0){|a|1+2- + |*|1+2- - |a - 6|I+2-}, 
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Fractional integrals of stationary processes and the central limit theorem 731 

a, b > 0. This type of result has been obtained by Taqqu in [7] for partial sums of 
instantaneous functions of Gaussian stationary sequences under appropriate 
conditions. His result corresponds to g(t) given by (2). 

3. Random solutions of Burgers equation 

In Section 6 of [6], a class of random solutions to the Burgers equation was 
considered. Some doubt was expressed as to the asymptotic normality of the 
solutions in the one-dimensional case. The question is related to some of the 
issues brought up in this paper. We shall remark again about the reasons for the 
doubt in [6], but shall show that under appropriate conditions one does in fact 
get asymptotic normality. 

The Burgers equation for u - u(t,x) is 

(30) U( + UUX = fJLUxx, fJL > 0 . 

Consider a random solution of (30), u = 2/x^x(c - ¥)_1, with c a positive 
constant and V(t,x) a solution of the heat equation <f>t = fi<t>xx, strictly stationary 
in x with 

(31) max |^ 0(x) |<c, E^o(x) = 0 
X 

where ^0(x) = ^(JC, 0). Let the spectral distribution function of ^ 0 be F(A). Since 
u()(x)= w(0,jc) = 2/i¥0*(c -V0)~\ we require that J\2dF(\)<*. Notice that 
(31) implies that max* |^(x, t)\< c for all t. We also assume that ^o satisfies 
Assumption A and so is in particular strongly mixing. These conditions could be 
weakened somewhat but they are kept so as to be consistent with [6]. We are 
interested in the asymptotic distribution of u(x, t) for fixed x as t —>*> when it is 
appropriately centred and normalized. Since 

*(x, t) = | * (47rM0-*exp { " ^ ^ 4 ^ } *o(y)dy 

it follows that maxx |^(JC, r)) —> 0 as f—►» and u(x, t)^ 2/xc_1^x. But 

(32) ¥,(x, 0 = - 1 (47rMf) *exp { - ^ 4 ^ } *oy(y)dy. 

Notice that ^oy(y) is a strongly mixing process with spectral density A2/(A), 
/(A)= F'(A). In looking at (32) one is narrow band-pass filtering the process 
^oy(y) and this is a strongly mixing process whose spectral density has a high 
order zero at A = 0. Under such circumstances the usual form of central limit 
theorem need not hold, and this led to possible doubts about the asymptotic 
normality of (32). We give the following simple example. Consider a homogene
ous process £(f), - x < f <x ? with independent increments. In particular, one 
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732 M. ROSENBLATT 

could take £(t) to be a Poisson process. Set X(t) = £(f)-2£(f - 1)+ £(t - 2 ) . 
The process X(t) is then a strongly mixing stationary process with covariance 
function 

R(t) = 
2 - 31 r | if | i | ^ l , 
- 2 + | r | if i s | r | ^ 2 , 
0 otherwise. 

Notice that 

(33) fTX(u)du=fT {^u)-^u-l)}du-l1{au-l)-au-2)}du, 
Jo J T - I JO 

so that the sequence (33) has a non-normal limiting distribution as T—►<» if one 
does not normalize at all. 

Returning to (32), it is clear that one can write it as 

* , (* , 0 = / *o(y)(47r/x0-^ exp { - ^ = ^ j dy. 

Without loss of generality set x = 0. In this form one can see that the theorem of 
[5] is applicable and so one does have asymptotic normality. The key is that we 
are dealing with an expression of the form 

(34) \&{l)jt X(t)dt> 
with X(t) a process satisfying Assumption A. If g is absolutely continuous 
with lim|,Hoog'(0 = 0 and g,g' absolutely integrable, (34) can be rewritten as 
-(1/T)/g'(t/T)X(t)dt and the expression is asymptotically normal as T->°°. 
In the case of (33), the function g is not differentiable. 

The global asymptotic behavior of the whole process (32) can be determined 
as T—►<». However, that would be better pursued elsewhere. 
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