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DENSITY ESTIMATES AND
MARKOV SEQUENCESY

M. ROSENBLATT

1 INTRODUCTION

Estimates of the density function of a population based on a
sample of independent observations have been considered in a num-
ber of papers [1,6~7]. Questions of bias, variance and asymptotic
distribution of the estimates have been dealt with at greatest length.
Our object is to look at such estimates of the density function when
the observations are dependent. The results will not be dealt with
in the most general context or under very general conditions. To obtain
results in a simple and readily understandable form, the observations
are assumed to be sampled from a stationary Markov sequence with
a fairly strong condition on the Markov transition operator. However,
the extent to which some of the conditions can be obviously relaxed
will be indicated.

Tt should be noted that the asymptotic results we obtain in the case
of dependent observations are essentially the same as those in the case
of independent observations. This initially is surprising because it is
certainly not true when estimating the distribution function by means
of the sample distribution function. The more complicated nature
of asymptotic results for this problem in the case of dependence can
be seen in Billingsley [2]. However, the happy fact that the results we
obtain in estimating the density have the same character as in the case
of independence is due to the local character of the estimates.

2 REMARKS ON THE CASE OF INDEPENDENT

SAMPLING
We just briefly make a few remarks on estimation of the density function
of a population with a sample of independent observations. More detailed
and precise results can be found [1,6~7]. Consider a population with
continuous positive density function f(z). Let the sample of independent
observations be X, X,, ..., X,,. Let the estimate of f(x) be

fule) = w7 1b(n) 3 W) (2= X)), (1)

t This research was supported by the Office of Naval Research.
[199]
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200 M. ROSENBLATT

Where h(x) is g given bounded continuous density function and b(n)
'8 & bandwidth parameter such that b(n) > 0 and nb(n) - o as 1 - co.
The bias of the estimate is

bo(e) = Bf,(x)—f(z) = f W) {flo—bm)a)— @) da.  (2)

If fis continuously differentiable up to second order and the moments
My = fOCih(rx) da,i = 1,2, exist then

bn(®) = f'(z) m b(n) +f" (@) mab(n)?/2 + 0(b(n)?). (3)
Thus b, () = 0(b(n)?) if m, = 0. The variance
o?(f.(x)) = n—lb(n)‘lf(x)fhz(a) do ag n-—>oo. (4)

It is clear that the estimates are asymptotically normally distributed.
Specifically (b)) [f.(x)— Ef ()] is asymptotically normally dis-
tributed with mean zero and variance fl@) f h%(ee) dee. It is also interesting
to loolk at the covariance of estimates at different points z, v.

The covariance

oV (f (@), Fo®)) = n-1b(n) 2 cov (h(b(n)~ (z — X)), A(b(n)~ (y — X))
= wetb(n)2 | [ Mo (@~ ) Ho() =ty — ) o) o
- [ 1) =) f1@) b [ 1oty (- o) e
= w3 [HB) b(n) (y—2) + ) (o~ b))

~b(0) [0 ~bim) )8 [0ty ~ b)) i)
(5)
This certainly implies that for fixed z, ¥ with x + y
N (b)) [fo(@) = Bf ()] and  (nb(n))[Fu(4) — Bfu®)]

are asymptotically independent.

3 THE MARKOV ASSUMPTION

Let us now assume that X, X,,..., X,, is a sequence of observations on a
stationary Markov process with stationary continuous density function
f{z) > O and continuous transition probability density function flylz).
Let fr(y|z) and f,(y,2) denote the conditional probability density of
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DENSITY ESTIMATES AND MARKOV SEQUENCES 201

X4 given X, and the joint probability density of X, and X, respec-
tively, & = 1,2, .... Clearly

Ju(y, %) = fily|®) flz) (6)
and Feayle) = f Ly fEe) de (b= 1,2,..). (7)

Wo use the same sort of estimate [ (x) of the density function f(x) as
in the case of independent observations. The bias of the estimate in the
case of o Markov sequence is the same ag in the case of independent ob-
servations. Tet us now look at the covariance of the estimate when one
has dependence. Clearly

cov [ F )] = n-tbin) 2 S (n=17]) cov [Abm) (0~ X)), o)
‘7';4.. e 1
x (y—XN]. (8)

In §5 we will dotermine the asymptotic behavior of the covariance
and of the distribution of the cstimates f,(z) themselves, given certain
asymptotic conditions on the character of the dependence of the Markov
sequence. Some of these conditions will be introduced and discussed in
§4.

4 REMARKS ON THE TRANSITION PROBABILITY
OPERATOR

In order to determine the asymptotic behaviour of covariance of density
estimates at different points as well as the asymptotic distribution of
estimates we shall have to impose certain conditions on the transition
probability function of the Markov sequence. The conditions discussed
here are undoubtedly too strong. Certainly weaker conditions that ensure
the desired results can be determined. However, these conditions have a
certain interest even outside the problem of density estimation and the
discussion will be given in a broader context. Let T be the transition
probability operator of a stationary Markov sequence. In our problem

(ThY (y) = f Wz) flely) de, (9)

where % can be thought of as a bounded function. The condition to be
imposed on 7' corresponds roughly to what has been called ‘geometric
ergodicity’ (see Kendall [6]) in some of the probability literature.
Lot ||, 1 € p < o, be the L? norm of the function A with respect to
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202 M. ROSENBLATT

the invariant measure y (dy = f(x)dz in our case of density estimation)
so that Up
[f|h(x)]f’,u,(dm)] if 1<p<oo,

ess sup | h(x)] if p=co,

%], = (10)

where ess sup is understood as referring to the measure x. The L? norm
of the operator ™, n. =1, 2, ...,

7= s = t

for 1 < p < co since 71 = 1. However, since we are interested in the
rate at which 7%k — Eh = fh(x (da) as m — 00, the modified norm

- HT"h — L’hup
WL [h— IR,
[T,
= ———rr—
i el

is introduced where by 4 1 1 one means that f h(z) p(dz) = 0.
The transition probability operator T' is said to satisfy the condition
G, (1 < o) if there is some positive integer n such that

T, < o < 1. (13)

lTn|p =

(12)

l» <

The reason for ‘geometric ergodicity’ is apparent since if (13) holds, it

follows that lim | T7], jemin < 1. (14)
M—>
Lemma. If T is a transition probability operator of a stationary Markov
sequence satisfying condition G, for some p,1 < p < oo, then T satisfies
the condition G for all q,1 < g < co.
Let U be such that Uh = Th— Eh. Notice that

|b— Ehlly < 0]+ | R < 2|2, (15)
and that Unh = UnY(Th— Eh) = Tv-YTh— Eh). (16)
This implies that  |U”[, < 2|7"|, <2, 1<¢<co. (17)
However |72, < U], (18)

Sinee | U7y, | U™ < 2 the Riesz convexity theorem [4] can be applied
to this situation. Suppose that for some p, 1 < p < co (for example
p = 2), there is a positive integer n such that

|7, =a < 1. (19)
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DENSITY ESTIMATES AND MARKOV SEQUENCES 203

It then follows that |77, < «®. Consider any other ¢ with 1 < ¢ < co.
For ¢ > p we have 1/g = p/q 1/p)+ (1 ~p/q), while if ¢ < p then

_(1=1]q 1-1/q
e = (1-1/10) He (1— 1—1/20)'
The Riesz convexity theorem tells us that if ¢ > p

tog |7, < Z10g177], + (1-Z) og |77, 20)
andifqg < p
1-1 1-1
tog |07, < (12370 tog 10+ (1- 1=/ oo, (a)
Since [[Ut|, < 20 and ||U™|,, U™, < 2 it is clear that for large
enough k |, < B < 1 (22)
and therefore | 7|, < B < L. (23)

It is of some interest to consider the well known Doeblin condition
and see how it relates to the conditions &,. Let P(x, 4) be the transition
probability function of the stationary Markov sequence defined for each
real x and each Borel set 4. Then

(Th) (z fP (z, dy) h(y) (24)

for bounded % and the n step transition probability function P,(z,4)
is defined recursively via

Poale,d) = [Py Py, d) (0= 1.2,.) (25)

The Doeblin condition D is said to be satisfied if there is a finite measure
¢ on the Borel sets with positive mass, an integer # > 1, and € > 0 such

that Pz, A) < 1—6 (26)

for all zif ¢(4) < ¢. Doob (see [3]) considers the more stringent condition
D, where one assumes that D is satisfied, there is only one ergodic set,
and there are no cyclically moving sets. Under condition Dy, in Lemma
7.2 on p. 224 of Doob’s book on stochastic processes, it is shown that
there are constants y and p, with 0 < p < 1, such that if & is bounded

(|h] € M < o)
then |(T"h) (x) — Eh| < 2yp". 2m

However, it is easily seen that (27) is just the condition G,. By the Riesz
convexity theorem, it follows that if G, is satisfied then @, holds for
1 < p < oo. Similarly, if &, is satisfied then G, holds for 1 < p < 0.
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204 M. ROSENBLATT

Notice that the condition D, is satisfied if we have an ergodic aperiodic
stationary Markov sequence with continuous stationary probability
density f(x) and transition probability density p(y|z) satisfying

p(ylz) < K(1+y2)™ (28)

for some constant K and o > 1/2.

However, it is easy to give a simple example which doesn’t satisfy
D or G, but for which @, 1 < p < oo, holds. This example is provided
by the aperiodic Gaussian stationary Markovsequences. For convenience,
assume that the random variables of the sequence have mean zero
and variance one. The invariant probability density is then

f@) = ﬁexp (—a%2)

and the transition probability density is

1 (y — p)?
2l01%) = =57 (5 sh) 29

with p a constant such that |p] < 1. Mehler’s formula indicates that (29)
can be written P

plyl2) = T b)) s, (30

where the k, are the Hermite polynomials orthonormal with respect to
the standard Gaussian density f(z). By using (3) one can see that

|7y = |p[®" (31)

so that condition @, is certainly satisfied. By the Lemma of this section
it follows that G, is satisfied for 1 < p < co.

S5 ASYMPTOTIC BEHAVIOR OF THE COVARIANCE AND
DISTRIBUTION OF ESTIMATES

The asymptotic behavior of the covariance of a density estimate at two
points x, ¢ will first be determined before the asymptotic distribution is
considered. Assume that % is a continuous density function with

h(u) = o(|u|™t) as |u|—> co.

The density f is taken to be bounded and continuous. Consider the term
corresponding to j = 0in the sum (8).
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DENSITY ESTIMATES AND MARKOV SEQUENCES 205
Then cov {(b(n) (x— X)), h(b(n) (y — X))}

= b(n)fh(u) h(b(n)™ (y—z)+u) fle—b(n)u)du
fh fle—b(n clufh fly—b(n)u)du

{ Sl flﬁ (w)ydu if z= y} (32)
0(b(n)?) if z+y

when f(z) > 0as n—c0. The terms with j + 0 have the following asymp-
totic behavior

cov {h(b(n) (x— X)), bb(n)™ (y — X,))}

= b(n?) J‘ h{u) h(v) f(x —b(n) u,y —b(n) v) dudv

—b n)th(u)f(x —b(n)u) dufh(u)f(y —b(n)u)du
= b(n)P{fy(, y) —f2) f ()} (33)

as n —> o0 if the joint density functions f(-, -) are bounded continuous

functions. We shall now get a bound on (33) under the assumption that
the Markov sequence satisfies condition ¢,. Let

(@) = Bp() " (0=a) - [HO) L@ f@ s (34)
Then |oov {(b(n) 2 (5~ X)), h{b(n) (y — X}
= |Blg,(X) (Tg,) (X))
< {Bg,(X)|2 B|(Tig,) (X)|2}
< Mpi{E|g,(X)|? B|g,(X)|%

b(a) M9 [ () du () 1) (35)

for sufficiently large » with M, M’ and p constants, 0 < p < 1,if f(z) and
f(y) are positive. The estimates (32), (33) and (35) indicate that

lim nb(n) cov| f fn(y)]

_ {f(:v) fhﬁ('u,)du if x=y} ' (36)
0 if z+y

under the conditions assumed.
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206 M. ROSENBLATT

We now consider the asymptotic distribution of

JEbm) [Fole)) — Bf@)] (5= 1,...,m),

for any finite m-tuple of points 2. These random variables are asymptoti-

cally jointly normal and independent with means zero and variances

given by (36) as » —> oo under the assumptions made. So as to limit the .
notation the argument on asymptotic normality will be given for a single

point, that is, m = 1. However, exactly the same argument and estimates

can be used to obtain the multivariate result by applying them to any

given linear combination

Vb)) 3, t(Foley) = B o)

of the random variables. This is the standard reduction of a multivariate
limit theorem to a univariate limit theorem. Consider

b () [Ffe0) = B )],

The argument for asymptotic normality will proceed by the classic
device of proving such a limit theorem for dependent random variables,
thatis, by writing the sum as asumof big blocks separated by small blocks.
The contribution due to the small blocks is shown to be negligible and
the big blocks approximately independent. A standard central limit
theorem for independent random variables (the Liapounov theorem) is
then used to get asymptotic normality. Now,

(b)) [F () — Bf ()]

n 1
__ - -1 — - -1 — X.
k
= ZZI(Az'*'Bz) +H (37)
- Im4-(Q1—=L)r Um-1)
with A4, = > , B = 2 (38)
F=@=1) (m++1 j=lm+{I-1)r+1
and H = f; (39)

j=kim+r+1

Here m = m(n) and r = r(n) are the summation ranges of the big and
small blocks 4; and B, respectively. They will be taken so that

m(n),r(n) > as n->o0 but m(n)=o(n) and 7rn)=o(mn)).

Further k = k(n) = [n/(m + )] is the greatest integer less than or equal
to n/(m~+7). The term H accounts for the additional few terms at the
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DENSITY ESTIMATES AND MARKOV SEQUENCES 207

end not included in the big blocks or small blocks. Notice that k(n) — oo
as n-—>o0 since m,r = o(n). Estimates like those used in (32), (33)
and (35) imply that

k 2 t—1
8| 3B+ <o S BBJ+ BB+ HP)
=1 =1
<C (?“»—(”—’ +2) = o), (40)
v V)

with (' a constant.

k :
Thus ¥ Bj+ H can be neglected. Consider the characteristic function
=1

I
of ¥} 4;. We use the G, property of the Markov sequence to compare this
1=1

characteristic function with the product of the characteristic functions of
the individual 4,’s and find that

E {exp (’étZ:ElA,)} - lfll Bf{exp (it 4,;)} ’

I
<X
i=2

) j—1
B {exp (u 3 A,)} _ Blexp (it A} I {exp (u 5 Al)}l
=1 =1
< (b~ 1) Mpr™, (41)

where M is a constant and 0 < p < 1. The sequences m(n), #(n) will be

chosen so that k(n)p"™ — 0. However this means that we have asymp-
k

totic normality if we can show that 3 4, is asymptotically normal when
1

. =1
the A4,s are treated as independent random variables with the same

marginal distributions. This will be shown to be true by using the Lia-
pounov theorem. For this we require an estimate of the fourth moment
of the 4;’s. Given that the joint density functions up to fourth order are
continuous and bounded, estimates like those obtained in (32) and (33)
show that i
B4 < 3 My(mb(w)), (42)
i=

where the M;’s are constants. But then
kB[4, M,

(B]Z4,[%)? ~ nb(n)

If nb(n) - o0, b(n) = 0, but m(n) = o(n#) the expression (43) tends to

zero as n — co and the Liapounov theorem is applicable. We can still
choose 7(n) = o{m(n)) so that (41) tends to zero as n — 0.

m me m3
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208 M. ROSENBLATT

Theorem 1. Let X,,n = ..., —1,0,1,..., be a stationary Markov sequence
with bounded continuous density function f(x) and bounded transition
probability density p(y|x) continuous in the variables (y,x). Consider the
estimate f, (@) of the density f(z) given by

Fulw) = 1 (m) 5 W () (5~ X)),

where § is a given uniformly continuous density function. If fis continu-
ously differentiable up to second order and the moments m; = f oth(a) de,
t =1, 2,0f h exist then the bias

B} (@) —f(x) = myf'(x) b(n) +mof" (@) b(n)? +0(b(n))?,

where the bandwidih b(n) - 0 as n—>co. If the sequence {X,} satisfies
condition Gy and nb(n) ~ o as n—>00 (b(n) - 0) any m-tuple (m finite) of
the normalized deviations

@b [Fulas) = Bfplz)] (=1, ...,m)

(2, distinct) are asympiotically normal and independent with mean zero
and variances

f(w,i)fhg(a) dee {i=1,...,m).

One could equally well consider estimation of the joint density func-
tion of a fixed number of random variables. Under conditions correspond-
ing to those assumed in Theorem 1, one again finds that the asymptotic
restilts are the same as those in the case of independent observations.
Actually we shall explicitly note one such result under somewhat
broader conditions of dependence. Now X, ,n=...,—1,0,1,...,is
assumed to be a stationary sequence of random variables. Assume that
all joint distributions of a finite number of distinct X;’s are absolutely con-
tinuwowus with uniformly bounded continuous density functions. Let f(x, 2')
be the joint density function of X;, X;,,. A natural estimate of f(z, z') is
given by

w—

Jolo,2) =7 b(”)’zj 1h(b(n)‘l (x—X;),b(n)7t (@' — Xyq)),  (44)

=1

where h(z,z’) is a bounded continuous density function. Let %, be
the Borel field generated by X, k < %, and &, be the Borel generated
by X 1.k = n. We shall say that {X,,} satisfies the condition S if for every
random variable g with Bg? < oo, By = 0, that is F,_;, measurable it follows

tha E|B(g|%,)* < (k) Blg% (£9)
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DENSITY ESTIMATES AND MARKOV SEQUENCES 209

wh.ere a(k) = O(k=*¢) for some € > 0 as k—co. By making estimates
quite similar to those in the proof of the Theorem one can prove the
following result.

Theorem 2. Let {X,,,m = ...,—1,0,1,...} be stationary with uniformly
bounded continuous joint density functions. Consider the estimate Folz, )
of the joint density f(x,2') of X;, X,y given by (44). If f is continuously
differentiable up to second order and the moments,

myg = [aiphe p)dadp (= 0.1,2)
when i +5§ < 2 exist then the bias
Efn(x= x,) ——f(il?, (Z)’) = [ml,Ofm(w, LE’) +m0, 1fx’(xa xl)] b(‘)’b)
+ %[’mz, Ofa:,m + 2m’l, Ifm, x' + mo, 2fm’,m'] b(n)2 + O(b (n)Z) (46)
as b(n) - 0. If {X,,} satisfies the condition S and nb(n)? — o as
n->o00 (b(n)—> 0)

then any finite m-tuple of the normalized deviations

J@b(n))[Fu(,2") — Bf (2, 27)] (47)

corresponding to distinct poinis (z,2') are independent with mean zero and
variances

e, [, )t dp. (48)

Regression estimates have been considered in [8] and [10]. Without
going into details, one can show that under conditions similar to those
specified in [8], the asymptotic behavior of these in the case of depen-
dent observations is the same as the asymptotic behavior in the case of
independent observations. In [9] estimation of the transition probability
density for Markov sequences is discussed under condition D,
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DISCUSSION ON ROSENBLATT’S PAPER

MICHAEL WOODROOFE

I believe that Professor Rosenblatt’s paper constitutes a significant
contribution to the nonparametric literature and therefore feel quite
honored to be a discussant of it. The paper not only contributes a
major result by giving sufficient conditions for the asymptotic normality
of density estimates from stationary Markov processes, but should also
stimulate more research on the problem of density estimation from such
processes. Indeed, it is to be hoped that Professor Rosenblatt’s present
paper on density estimation from dependent observations will stimulate
as much research as did his first paper on density estimation from in-
dependent observations {4]. Among other things, I will indicate some
directions in which I feel this research might profitably proceed.

In considering the asymptotic normality of the estimates, Professor
Rosenblatt has solved a rather difficult problem and has left some less
difficult results unstated. Since I feel these results to be important, I will
take the liberty of stating some of them together with an indication of
their proofs. Let X, be a stationary process satisfying condition S with
a(k) summable. (This includes the case of a stationary Markov Process
which satisfies (,.) The argument of [3] then extends without difficulty

to show that M, = Slip |fn(x) —f(z)| -0 (1)

in probability as n - oo, provided that f is uniformly continuous,
AJ[nb(n)] = oo, and the Fourier Transform of  is integrable. Thereafter,
it follows, again as in [3], that the sample mode is a consistent estimate
of the true mode, provided that the latter is unique. It would also be of
interest to know the rate of convergence to zero of 3, and such related
random variables as were studied in [6] and to determine conditions for
and the exact rate of convergence to zero of the integrated mean square
error.

1= " Bt S

To the best of my knowledge, the only other work which seriously
considers density estimation from Markov processes is the unpublished
report [5], in which consistency and asymptotic normality of kernel-
type density estimates are obtained under the condition D,. It is there-
fore of interest to consider Professor Rosenblatt’s condition &, with some

[ 211 ]
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care. It is quite intuitively appealing in that it requires the dependence
between segments of the process to decrease as the distance between them
increases. I was therefore intrigued by the @, condition and hoped that
it might be satisfied by a large enough class of stationary Markov pro-
cesses to provide a reasonable setting for asymptotic inference from such
processes, I still have this hope, but in the course of attempting to verify
@, for linear processes of the form

Xyp= %y (b=0,12..), @)

where the ¥, are independent and identically distributed and |£| < 1,
T discovered an example which has shaken that hope slightly. If the ¥,
have the distribution function

Fi(y) =1-(logy)™:z > e, (3)

then (2) does not satisfy (5. Indeed, by considering LaPlace transforms
and applying the Tauberian theorems of [1], one may show that F,
the stationary distribution function, has a slowly varying tail. Letting

gol@) = (1=Fm))~2 for 2>x and g¢,lx)=0 for z<n,

it is then easily verified that

WV

— —I
[Z5guf3 = T35l - o)) > [T

T—F(n) ]—0(1)—>1 as 1 -> o0,

for each fixed k. Since |g, |, < ¢,/ = 1 for all #, G; cannot be satisfied.

The distribution function in (3) is, of course, sufficiently pathological
to be of little practical interest, but I still find this example disturbing.
Since X, = f*X,+ Z, where Z is independent of X, the process defined
by (2) has the property that the dependence of X, on X, decreases geo-
metrically as k — co, which property led me to believe that any process
of the form (2) should be geometrically ergodic, that it should satisfy G,.
I believe the generality of the G, condition to be a question on which
research could profitably be done. If it should turn out to be reasonably
general, it might well simplify subsequent work on asymptotic inference
from Markov processes.

Another area in which I feel research could profitably be done is that of
density estimation from general linear processes of the form

X,=>¢Y,; (£=0,1,2,..),
i=0
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DISCUSSION ON ROSENBLATT'S PAPER 213

where the Y are as in (2). What conditions on the coefficients ¢; and/or
the distribution of ¥, are sufficient to insure the consistency and asymp-
totic normality of density estimates from such processes? These questions
could be attacked either by verifying an appropriate version of condition
S or from scratch, perhaps by using the techniques of [2], Part IT. The
former approach would be more desirable since conditions similar to §
appear throughout the probability literature (e.g. in [2]), but the latter
approach would probably be the easier.
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