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DENSITY E S T I M A T E S AND 
MARKOV SEQUENCESf 

M. R O S E N B L A T T 

1 I N T R O D U C T I O N 

Estimates of the density function of a population based on a 
sample of independent observations have been considered in a num­
ber of papers [1, 6-7]. Questions of bias, variance and asymptotic 
distribution of the estimates have been dealt with at greatest length. 
Our object is to look at such estimates of the density function when 
the observations are dependent. The results will not be dealt with 
in the most general context or under very general conditions. To obtain 
results in a simple and readily understandable form, the observations 
are assumed to be sampled from a stationary Markov sequence with 
a fairly strong condition on the Markov transition operator. However, 
the extent to which some of the conditions can be obviously relaxed 
will be indicated. 

I t should be noted that the asymptotic results we obtain in the case 
of dependent observations are essentially the same as those in the case 
of independent observations. This initially is surprising because it is 
certainly not true when estimating the distribution function by means 
of the sample distribution function. The more complicated nature 
of asymptotic results for this problem in the case of dependence can 
be seen in Billingsley [2]. However, the happy fact that the results we 
obtain in estimating the density have the same character as in the case 
of independence is due to the local character of the estimates. 

2 R E M A R K S O N THE CASE OF I N D E P E N D E N T 
S A M P L I N G 

We just briefly make a few remarks on estimation of the density function 
of a population with a sample of independent observations. More detailed 
and precise results can be found [1, 6-7]. Consider a population with 
continuous positive density function f(x). Let the sample of independent 
observations be Xl9X2i ...9Xn. Let the estimate off(x) be 

n 
fn(x) = w-i&fa)"1 S Hb{n)-Hx-Xt))> (!) 

3 = 1 

f This research was supported by the Office of Kaval Research. 
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r e h(x) is a given bounded continuous density function and b(n) 
fro-8, a,3:icl"WridLl3h parameter such, that b{n) -> 0 and nb(n) -> co as n-+ oo. 
T h e b i a s of t h e estimate is 

&»0») = Efn{x)-f[x) = jh(a,){f(x-b(n)<x)-f(x)}da. (2) 

i t J i s cont inuous ly differentiable up to second order and the moments 
mi == / « * A ( a ) da, > = 1,2, exist then 

bn(x) ^f'(x)mlb(n)+f"(x)mib(n)ij2 + o(b{n)2). (3) 
T h u s 6^(ic) = o(6(»)2) if % = 0. The variance 

^(LW) = n~1b{n)-'i-f{x)\hz{a)da as w-^oo. (4) 

I t is c l e a r t h a t the estimates are asymptotically normally distributed. 
S p e c i f i c a l l y +J{nb(n))[fn(x)-Efn(x)] is asymptotically normally dis­
t r i b u t e d , -with mean zero and variance f(x) j h2(a) da. I t is also interesting 
t o loolc a t t h e covariance of estimates at different points x, y. 

T h e covar iance 
G°v(?n{x)Jn(y)) = n-ib(n)-*cov{li{b{n)^{x-X)),h{b{n)-i{y-X)) 

= n-^b^-n \h{b{n-x{x-oi))'h{b{n)-1{y-<x))f{a)doc 

-[hibin)-1 (x - a)) f(a) da [h{b{n)-1 (y-a))f(a) da) 

= n^bin)-1! !h{j3)h{b{n)-1(y-x)+/3)f(x-/3b(n))dj3 

-Hn)JMfi)f(x-b(n)fi)dfijh^)f(y-b{n)jS)d/^. 

(5) 

T h i s c e r t a i n l y implies that for fixed x, y with x^y 

^J(nb(n))[fn(x)-Efn(x)] and J (nb(n))[fn(y) - Efn(y)] 

a r e a sympto t i ca l l y independent. 

3 T H E M A R K O V A S S U M P T I O N 

L e t *us n o w assume that Xv X2,..., Xn is a sequence of observations on a 
s t a t i o n a r y Markov process with stationary continuous density function 
f(x) > O a n d continuous transition probability density function f{y\x). 
L e t f?c(2/\%) &ndfk(y,x) denote the conditional probability density of 
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■X/s+i given Xx and the joint probability density of Xh+1 and Xt respec­
tively, k = 1,2,..,. Clearly 

fh{y>x)=fk(y\x)f{v) (6) 

ttnd A+i(y|«)=J/*(y|«)/(«l«)^ (*«i,2,...). (?) 

Wo UBO the Bamo sort of estimate fn(x) of the density function f(x) as 
in the ease of independent observations, The bias of the estimate in the 
case of a Markov sequence is the same as in the case of independent ob­
servations. Lot us now look at the covariance of the estimate when one 
ban dependence. Clearly 

xfo-X,))]. (8) 
In §5 we will determine the asymptotic behavior of the covariance 
and of the distribution of the estimates fn{x) themselves, given certain 
asymptotic eonditions on the character of the dependence of the Markov 
sequence. Some of these conditions will be introduced and discussed in 
§4, 

4 REMARKS ON THE TRANSITION PROBABILITY 
OPERATOR 

In order to determine the asymptotic behaviour of covariance of density 
estimates at different points as well as the asymptotic distribution of 
estimates we shall have to impose certain conditions on the transition 
probability function of the Markov sequence. The conditions discussed 
here are undoubtedly too strong. Certainly weaker conditions that ensure 
the desired results can be determined. However, these conditions have a 
certain interest even outside the problem of density estimation and the 
discussion will be given in a broader context. Let T be the transition 
probability operator of a stationary Markov sequence. In our problem 

(Th)te)=jh(x)f{x\y)dx9 (9) 

where h can be thought of as a bounded function. The condition to be 
imposed on T corresponds roughly to what has been called 'geometric 
ergodieity' (see Kendall [5]) in some of the probability literature. 
Let ||74„ 1 < # < oo, be the D} norm of the function h with respect to 
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the invariant measure fi (d[i — f(x) dx in our case of density estimation) 
so that / r » -,yp x 

\h(x)\p/i(dx)\ if 1 <p < oo, 
W H , lni -f (10) 

essstip \h(x)\ it p = co, 
where ess sup is understood as referring to the measure JLC. The Lv norm 
of the operator T77*, n= 1, 2, ,.,, 

i** - E H C -J (11) 

for 1 ^ p ^ oo since 5PH = 1. However, since we are interested in the 
rate at which Tnh -> Eh — jh(x)fo{dx) as n -> co, the modified norm 

is introduced where by hx 1 one means tha t J h{x)fi{dx) = 0. 
The transition probability operator T is said to satisfy the condition 

Gp (1 < p ^ oo) if there is some positive integer n such that 
\T»\P < a < 1. (13) 

The reason for 'geometric ergodicity? is apparent since if (13) holds, it 
followsthat H m \Tmyamln < L ( 1 4 ) 

Lemma, If T is a transition probability operator of a stationary Markov 
sequence satisfying condition Gp for some p, 1 < p < oo, then T satisfies 
the condition Oqfor allq,l < q < GO. 

Let U be such that Uh = Th-Eh. Notice tha t 

\\h^Eh\\q^\\hl+\Eh\^2\\hl (15) 

and that U»h = U*-\TK - Eh) = T«^{TK - Eh). (16) 

This implies that \Un\Q ^ %\Tn\q ^ 2, 1 ^ £ ^ oo. (17) 

However \Tn\q ^ \\U"\\Q. (18) 

Since ||f/n||i, l&^IU < 2 the Riesz convexity theorem [4] can be applied 
to this situation. Suppose that for some p, 1 < p < oo (for example 
p = 2), there is a positive integer n such that 

1 2 ^ = a < 1. (19) 
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I t then follows that [I7*1*^ ^ ak. Consider any other q with 1 < q < oo. 
For q > p we have ljq = (pjq) (1/p) + (1 —pjq), while if g < p then 

The Riesz convexity theorem tells us that if q > p 

l og | | ^ ^ l o g M ^ (l-IJlogl^lU (20) 
and if q < p 

Since \\Unk\\p ^ 2afc and |I?7m||w, (1*7% < 2 it is clear that for large 

enough k \\U^%<fi<l (22) 

and therefore \Tnk\Q < / ? < ! . (23) 
I t is of some interest to consider the well known Doeblin condition 

and see how it relates to the conditions Gp. Let P(x> A) be the transition 
probability function of the stationary Markov sequence defined for each 
real x and each Borel set A, Then 

(Th)(x)=jP(x,ay)h(y) (24) 

for bounded h and the n step transition probability function Pn(x,A) 
is defined recursively via 

Pn+1(x,A)=jp(xydy)Pn(y,A) ( » = i , 2 , . . . ) . (25) 

The Doeblin condition D is said to be satisfied if there is a finite measure 
<f> on the Borel sets with positive mass, an integer n > 1, and e > 0 such 
t h a t Pn(z,A)<l-e (26) 
for all x if <f>{A) ^ e. Doob (see [3]) considers the more stringent condition 
D0 where one assumes that D is satisfied, there is only one ergodic set, 
and there are no cyclically moving sets. Under condition D0, in Lemma 
7.2 on p, 224 of Doob's book on stochastic processes, it is shown that 
there are constants y and p9 with 0 < p < 1, such that if h is bounded 

(|A| ^ M < oo) 
then \(TVi)(x)-Eh\<2ypK (27) 

However, it is easily seen that (27) is just the condition G^. By the Riesz 
convexity theorem, it follows that if G* is satisfied then 0p holds for 
1 < p < oo. Similarly, if Ox is satisfied then Gp holds for 1 ^ p < oo. 
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204 M.ROSENBLATT 

Notice that the condition JD0 is satisfied if we have an ergodic aperiodic 
stationary Markov sequence with continuous stationary probability 
density/(a) and transition probability density p(y\ x) satisfying 

p{y\x)*kK{l+y*Y* (28) 

for some constant K and a > 1/2. 
However, it is easy to give a simple example which doesn't satisfy 

D or (?co but for which Gpy 1 < p < oo, holds. This example is provided 
by the aperiodic Gaussian stationary Markov sequences. For convenience, 
assume that the random variables of the sequence have mean zero 
and variance one, The invariant probability density is then 

and the transition probability density is 

^-^£=?)M-w^ (29) 

with p a constant such that \p\ < 1. Mehler's formula indicates that (29) 
can be written m _y*l% 

P(y\x) =^fK(y)hix)^y (30) 

where the hu are the Hermite polynomials orthonormal with respect to 
the standard Gaussian density f{x). By using (3) one can see that 

\T% = \p\^ (31) 

so that condition G% is certainly satisfied. By the Lemma of this section 
it follows that Gp is satisfied for 1 < p < oo. 

5 ASYMPTOTIC BEHAVIOR OF THE COVARIANCE AND 
DISTRIBUTION OF ESTIMATES 

The asymptotic behavior of the covariance of a density estimate at two 
points x, y will first be determined before the asymptotic distribution is 
considered. Assume that h is a continuous density function with 

h(u) = od^) -1) as \u\ -> oo. 

The densi ty/ is taken to be bounded and continuous. Consider the term 
corresponding to j — 0 in the sum (8). 
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Then cov {h{b{n)^ {x - X))9 h^n)"1 {y - X))} 

= b[n) h(u)h(b{n)"1(y-x) + u)f(x-b(n)u)du 

— b{n)% h(u)f(x — b(n) u) clu h(u)f(y — b(n) u) du 

„Mn)f(x)\h*{u)du if x = y\ 

[0{b(nf) if x =h*/l 

wlienf(x) > 0 as n -> oo. The terms with j 4= 0 have the following asymp­
totic behavior 

oov{A(6(w)-M«-i0)).M6(w)-My-^))} 

= fc(^2) h(u) h{v)fj(x — b(n) usy — b(n) v) dudv 

— b(n)2 h(u)f{x~b(n)u)du h(u)f(y — b(n)u)du 

s6(n)»{/,(a;,y)-/(»)/(y)} (33) 
as % -> oo if the joint density functions /,,(•, •) are bounded continuous 
functions. We shall now get a bound on (33) under the assumption that 
the Markov sequence satisfies condition 02. Let 

gx(a) = Win)-1 (»-«)) - jh(b(n)^(x-a))f(a)da. (34) 

Then |cov{A(&(%)-^-^)),7*(&(w)-%-X0))}| 

= \E(gy(X)(T%)(X))\ 

^{E\gv(X)\*E\(Tigx)(X)\*}i 

*Mpfi{E\gv(X)\*E\gx{X)\y 

^ b(n)M'pH h*(u)duj(f(x)f(y)) (35) 
J 

for sufficiently large n with M, Mf and p constants, 0 < p < 1, i£f(x) and 
/(y) are positive. The estimates (32), (33) and (35) indicate that 

limnb{n)coY[fn(x)Jn(y)] 

_ j/wj h2(u)du if x = y\ . 

if x 4= y\ 
under the conditions assumed. 
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We now consider the asymptotic distribution of 

V(^(^))ll?n(^)-^(^)] U « !,...>«), 
for any finite ra-tuple of points xj9 These random variables are asymptoti­
cally jointly normal and independent with means zero and variances 
given by (36) as n -> oo under the assumptions made. So as to limit the. 
notation the argument on asymptotic normality will be given for a single 
point, that is, m = 1. However, exactly the same argument and estimates 
can be used to obtain the multivariate result by applying them to any 
given linear combination 

V(«6(n))S«^CfJ^)-%(^)) 

of the random variables. This is the standard reduction of a multivariate 
limit theorem to a univariate limit theorem. Consider 

4(nh(n))[fjx)-Efn{x)l 

The argument for asymptotic normality will proceed by the classic 
device of proving such a limit theorem for dependent random variables, 
that is, by writing the sum as asum of big blocks separated by small blocks. 
The contribution due to the small blocks is shown to be negligible and 
the big blocks approximately independent. A standard central limit 
theorem for independent random variables (the Liapounov theorem) is 
then used to get asymptotic normality. Now, 

<j(nb(n)U?n(x)-Efn(x)] 

= £ 7 P R ) [h{b{n)~1 {x ~Xj))~ Eh{h{n)~x {x ~ z>-))] 

= S ( 4 + *,) + ff (37) 
2=1 

lm+(.l-l)r Um+r) 
with 4 , = £ , 5 , = S (38) 

and H= £ (39) 
j—lc{m+r)+l 

Here m = m(n) and r = r(n) are the summation ranges of the big and 
small blocks Al and Bx respectively. They will be taken so that 

m(n)>r{n) —> co as n -> oo but m(n) — o(n) and r(n) = o(m(n)). 

Further k = Jc(n) = [nj(m + r)] is the greatest integer less than or equal 
to n\{m + r). The term II accounts for the additional few terms at the 
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end not included in the big blocks or small blocks. Notice that 7c(n) -> co 
as ?^->oo since m,r = o(n). Estimates like those used in (32), (33) 
and (35) imply that 

E Y>BX + H 2 ^2(kj:E\Bl\^ + E\Bk + H\^j 
U = i 

< 0 (Twin) m\ /1X 

\ n nf (*0) 

with G a constant, 
k 

Thus 2 Bi + H can be neglected. Consider the characteristic function 
*«1 

of 2 J.j. We use the 6r2 property of the Markov sequence to compare this 
i=i 

characteristic function with the product of the characteristic functions of 
the individual AXB and find that 

E Jexp ( « S A \ } - fi ^{exp(ftA,)} 

-Sfexp ft* 21 4,)} - ${exp ( ^ ) } # fexp u / s ^z)l 
j = Z 

^ {k~l)Mpr^\ (41) 

where i f is a constant and 0 < p < 1. The sequences ra(w>), r(w) will be 
chosen so that k(n)pr^ -> 0. However this means that we have asymp-

ft 
totic normality if we can show that 2 Ax is asymptotically normal when 

the A/s are treated as independent random variables with the same 
marginal distributions. This will be shown to be true by using the Lia-
pounov theorem. For this we require an estimate of the fourth moment 
of the A{&> Given that the joint density functions up to fourth order are 
continuous and bounded, estimates like those obtained in (32) and (33) 
show that h 

E\At\^ %mmb(n))i, (42) 
j=l 

where the M/s are constants. But then 

JcE\A\' £ ^ + l f a ^ + J f 8 —B(n)+J^—&(n)« no{n) n d n n (43) (^|2A|2)2 

If rib(n) ->oo, b(n) -> 0, bu t m(n) = o(n$) the expression (43) tends to 
zero as n -> co and the Liapounov theorem is applicable. We can still 
choose r(n) = o{m(n)) so that (41) tends to zero as n -^ co. 
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Theorem 1, Let Xnin — ..., — 1,0,1,.. . , be a stationary Markov sequence 
with bounded continuous density function f(x) and bounded transition 
probability density p(y\x) continuous in the variables {y>x). Consider the 
estimate fn{x) of the density f(x) given by 

fax) = *-i&(»)-i S A(6(n)-i ( a - * , ) ) , 

where h is a given uniformly continuous density function. If f is continu­
ously differentiable up to second order and the moments mi = J a%(a) da, 
i =3 1, 2, o/ /& exist then the bias 

Efn{x)-f{x) - m x f (a:)&(^) + m2r(a;)6(^)2 + o(&(n))2
3 

w&ere £7&e bandwidth b(n) ~> 0 as n-> GO. 1/ ifte sequence {Xn} satisfies 
condition G2 and nb(n) -^coasn^oo (b(n) -> 0) am/ m-tuple {m finite) of 
the normalized deviations 

(ity distinct) are asymptotically normal and independent with mean zero 
and variances * 

ffa) \W(a)da {i =* l , . . . ,m) . 

O n e could equally well consider estimation of the joint density func­
tion of a fixed number of random variables. Under conditions correspond­
ing t o those assumed in Theorem 1, one again finds that the asymptotic 
results are the same as those in the case of independent observations. 
Actually we shall explicitly note one such result under somewhat 
broader conditions of dependence. Now Xn, n = ... 3 — 1, 0,1, ♦.., is 
assumed to be a stationary sequence of random variables. Assume that 
all joint distributions of a finite number of distinct X/s are absolutely con­
tinuous with uniformly bounded continuous density functions, Let f{x,xf) 
be t h e joint density function of Xp X,-+1. A natural estimate of f(x9 xf) is 
given by 

fjx, x') = n~lb{n)-* 2 MHn)-1 (x-Xt), bin)-1 (x' -Xj+1)), (44) 

where hfaaf) is a bounded continuous density function. Let 3Bn be 
the Borel field generated by Xk, h^n, and J*"n be the Borel generated 
by Xjc, h > n. We shall say that {Xm} satisfies the condition S if for every 
random variable g with Eg2 < oo, Eg = 0, that is S^n+k measurable it follows 
that E\E(g\mn)\*<a(k)E\g\\ (45) 
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where a(k) = 0(7c~4""e) for some e > 0 as /c-^co. By making estimates 
quite similar to those in the proof of the Theorem one can prove the 
following result. 

Theorem 2. Let {Xm,m = ..., -1 ,0 ,1 , . . .} be stationary with uniformly 
bounded continuous joint density functions. Consider the estimate fn(x,x') 
of the joint density f(x,x') of Xp Xj+1 given by (44). Iff is continuously 
differentiable up to second order and the moments, 

m^ = L^h(a, fi) da dfi (i,j = 0,1,2), 

when i + j ^ 2 exist then the bias 

Efn{x,x')-f{x,x') = K0/fls(a;,a:')+w0tl/a,(aj,»,)]6(n) 

+ ! K o / ^ + 2%,i/^'+mo,W6Wa+o(6W2) (46) 
as b(n) -»- 0. If {ZOT} satisfies the condition 8 and rib(n)2 -> oo as 

n-^-oo {b(n) -» 0) 

then any finite m-tuple of the normalized deviations 

VM")') &(*»x') ~ Eh& x'^ <47) 

corresponding to distinct points (x, x') are independent with mean zero and 
variances * 

/(s,»')Ua(a,/?)&*dA (̂ 8) 

Regression estimates have heen considered in [8] and [10]. Without 
going into details, one can show that under conditions similar to those 
specified in [8], the asymptotic behavior of these in the case of depen­
dent observations is the same as the asymptotio behavior in the case of 
independent observations. In [9] estimation of the transition probability 
density for Markov sequences is discussed under condition DQ. 
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DISCUSSION ON ROSENBLATT'S PAPER 

MICHAEL W O 0 D R 0 0 F E 

I believe that Professor Rosenblatt's paper constitutes a significant 
contribution to the nonparametric literature and therefore feel quite 
honored to be a discussant of it. The paper not only contributes a 
major result by giving sufficient conditions for the asymptotic normality 
of density estimates from stationary Markov processes, but should also 
stimulate more research on the problem of density estimation from such 
processes. Indeed, it is to be hoped tha t Professor Rosenblatt's present 
paper on density estimation from dependent observations will stimulate 
as much research as did his first paper on density estimation from in­
dependent observations [4]. Among other things, I will indicate some 
directions in which I feel this research might profitably proceed. 

In considering the asymptotic normality of the estimates, Professor 
Rosenblatt has solved a rather difficult problem and has left some less 
difficult results unstated. Since I feel these results to be important, I will 
take the liberty of stating some of them together with an indication of 
their proofs. Let Xn be a stationary process satisfying condition S with 
a(h) summable, (This includes the case of a stationary Markov Process 
which satisfies <?2.) The argument of [3] then extends without difficulty 
to show that Mn = s^\Ux)-m-»0 (1) 

in probability as ?i->oo, provided that / is uniformly continuous, 
*][nb(n)] -* co, and the Fourier Transform of h is integrable. Thereafter, 
it follows, again as in [3], that the sample mode is a consistent estimate 
of the true mode, provided that the latter is unique. I t would also be of 
interest to know the rate of convergence to zero o£Mn and such related 
random variables as were studied in [6] and to determine conditions for 
and the exact rate of convergence to zero of the integrated mean square 
error. _ 

J —00 

To the best of my knowledge, the only other work which seriously 
considers density estimation from Markov processes is the unpublished 
report [5], in which consistency and asymptotic normality of kernel-
type density estimates are obtained under the condition DQ. I t is there­
fore of interest to consider Professor Rosenblatt 's condition # 2 with some 

[ 2 1 1 ] 
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care. I t is quite intuitively appealing in tha t it requires the dependence 
between segments of the process to decrease as the distance between them 
increases, I was therefore intrigued by the G% condition and hoped that 
it might be satisfied by a large enough class of stationary Markov pro­
cesses to provide a reasonable setting for asymptotic inference from such 
processes. I still have this hope, but in the course of attempting to verify 
Cr2 for linear processes of the form 

X * « 2 j f l T w (£ = 0,1,2, . . . ) , (2) 

where the Yi are independent and identically distributed and |/?| < 1, 
I discovered an example which has shaken that hope slightly. If the Yi 

have the distribution function 

Ftte) = l-Qogy)-*:x>e, (3) 

then (2) does not satisfy (?2. Indeed, by considering LaPlace transforms 
and applying the Tauberian theorems of [1], one may show that F, 
the stationary distribution function, has a slowly varying tail. Letting 

gn(x) = (l-F(n))-i for x > n and gn{x) = 0 for x ^ n, 

it is then easily verified that 

\T*gn\l=\\TKgn\\l-o(l)> 

for each fixed k. Since \gn\% ^ |flrj|| = 1 for all n9 G2 cannot be satisfied. 
The distribution function in (3) is, of course, sufficiently pathological 

to be of little practical interest but I still find this example disturbing. 
Since Xk = fikX0 + Z, where Z is independent of XQs the process defined 
by (2) has the property that the dependence of Xk on XQ decreases geo­
metrically as k -*> oo, which property led me to believe that any process 
of the form (2) should be geometrically ergodic, tha t i t should satisfy G2> 
I believe the generality of the Gz condition to be a question on which 
research could profitably be done. If i t should turn out to be reasonably 
general, it might well simplify subsequent work on asymptotic inference 
from Markov processes. 

Another area in which I feel research could profitably be done is that of 
density estimation from general linear processes of the form 

Xk=^ojYk^ (ft = 0,1,2, . . . ) , 

l-F{nfi-*) 
I-Fin) ! --0(1) -» 1 as n ■GO, 
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where the Yi are as in (2). What conditions on the coefficients cj and/or 
the distribution of Yi are sufficient to insure the consistency and asymp­
totic normality of density estimates from such processes ? These questions 
could be attacked either by verifying an appropriate version of condition 
S or from scratch, perhaps by using the techniques of [2], Part II . The 
former approach would be more desirable since conditions similar to S 
appear throughout the probability literature (e.g. in [2]), but the latter 
approach would probably be the easier. 
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