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1. Introduction. The linear prediction problem as it arises in the case of 
stationary processes has attracted much attention. The problem has been studied 
most intensively when the prediction error is known to be positive. I t is of some 
interest to consider a few simple situations in which the prediction error is zero, 
especially as a situation of this sort arises in NEUMANN'S theoretical model of 
storm-generated ocean waves [3]. I shall, unfortunately, not be able to discuss 
the problem that arises in the context of NEUMANN'S model in any detail. 

Let xt , Ext = 0, be a weakly stationary process, that is, 

T t f r :=: xLXtXT
 = = Tt—T 

depends only on the time difference t — r. Our process is assumed to be real-
valued. The time parameter t may either range over the real numbers or it may 
range over the integers. The first case is the continuous parameter case and the 
second is that of a discrete parameter. Examples of both continuous parameter 
and discrete parameter processes will be discussed. The discrete parameter 
processes discussed will be of much greater interest than the continuous param
eter processes. 

2. Preliminary Remarks. If xt, Ext = 0, is a weakly stationary process, 
it has a random Fourier representation of the form 

(1) xt = [ eitXdZ{\), EdZ(\)dZ(fij = 8x,dF(X) 
J — 00 

in the continuous parameter case — °° < t < °°, and a random Fourier repre
sentation 

(2) xt = / eia dZ(\), E dZ(\) dZ(fi) = 5XM dF(X) 

in the discrete parameter case t = • • • , — 1, 0, 1, • • • . Here 8Xfi is the Kronecker 
delta 

(l if X = ix 
K = \ 

[0 if X 4= A*-
801 
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802 M. ROSENBLATT 

Note that dZ(\) is the random amplitude of the harmonic e,x. The covariances 

(3) rt = [ eiadF(X), - « < t < „>, 
J — oo 

in the continuous parameter case. In the discrete parameter case 

(4) rt = f\iadF(\), t= •■• , - 1 , 0 , 1 , ••• . 

F(\) is a bounded nondecreasing function and is called the spectral distribution 
function of the process x, . Note that dF(\) is the variance of the random ampli
tude dZ(\), 

dF(\) = E \dZ(X)\2. 
The case of greatest interest is that in which F(X) is absolutely continuous, 
that is, 

TO) = f /GO dn 
J •— 00 

in the continuous parameter case, and 

TO) = fX /GO <*M 
J —T 

in the discrete parameter case. The function /(X) ^ 0 is called the spectral 
density of the process xt . 

In the linear prediction problem, the parameter t is thought of as time. The 
process xt has been observed over the time t S r and one wishes to predict s time 
units into the future (t = r is thought of as the present) by a predictor that is 
linear in the observations. Thus, one wishes to predict xT+a, s > 0 by a predictor 
pxT+a which is linear in the observations xt , t ^ r. The desired predictor is the 
one that minimizes the mean square error of prediction 

E \xT+8 — px 2 
T + Sl • 

Note that this prediction problem is somewhat unrealistic as it assumes knowl
edge of the entire past of the process. Nonetheless, in certain situations the 
solution to this problem will lead to reasonable procedures in the more realistic 
problem in which only a finite amount of the past of the process is known. A 
process xt is called "purely deterministic'' if the mean square error of prediction 
is zero in this idealized problem, that is, if one can predict perfectly by linear 
techniques when the entire past of the process is known. 

Some specific discrete parameter purely deterministic processes will be dis
cussed. A finite amount of the past of the process xt, r — m S t S r, is assumed 
known. The prediction error in these cases is positive since only a finite amount 
of the past is known. The rate at which the prediction error decreases to zero as 
m —» oo is obtained. The discussion of these discrete parameter processes is 
based on the helpful comments of G. SZEGO and some computations he made. 
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3, Continuous Parameter Processes. Let xt, — oo < t < <», be a continuous 
parameter process. Assume that its spectral distribution function F(X) satisfies 
the condition 

(5) f et]h] dF(\) < oo 

for some t > 0. It is then clear that the process xt is purely deterministic (see 
J. L. DOOB [1] p. 584). Let the fcth derivative of xt , if it exists, be denoted by 
x\k\ The derivative x\l) is the limit in the mean square of (xt+h — xt)/h as 
h —> 0, that is, the random variable x such that 

E Xt+h 0 

as h —> 0. Condition (5) implies that 

x J1) 

exists. The derivative x\2) is defined similarly in terms of x™. By proceeding 
recursively in this manner one can define x(k) in terms of x\k~1). Condition (5) 
implies that all the derivatives xik) exist and are given by 

Let 

(6) 

Ak) 

r m 

f (tX)V'kdZ(\). 

dF(X) < oo T > 0. 

This implies that 

E x?\t - T)' 

if | * - T | < 42", or that 

(7) a;. z 

fc! 

^r (< — r) 
fc! 

if I * — -r I < f I7. In particular, if x(
Q

k\ k = 0, 1, 2, • • • , is known, 

_ ^X(
0
k)tk 

fc = 0 A'i 

if | f | < I?7. Given that we now know xt , | t \ < fl7, by applying (7) to £ values 
in the range \t\ < f T we see that x« is determined in the range \ t\ < T. By 
applying formula (7) repeatedly xt is determined for all t Thus, knowledge of 
Xok), k = 0,1, 2, • • • , w/ien condition (5) £s satisfied, determines the past and future 
of xt completely. This means that knowledge of the process xt over any small 
interval \t\ < €, e > 0, determines the full history of the process. This is unreal-
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istic as in practice there is always some noise perturbing the process of interest so 
that condition (5) is not satisfied. Nonetheless, the study of this idealized situa
tion implies that in practical work one might be able to use a truncated power 
series expansion with approximations of the derivatives inserted in the expansion. 
The point at which the power series is truncated and the type of approximation 
of the derivatives to be used (one might use difference quotients) would be 
dictated by some a priori knowledge available about the form of the spectrum 
of the process and the perturbing noise. 

4. Prediction Error for Discrete Parameter Processes when the Spectral 
Density is Zero on an Interval. Let xt , t = • • • , — 1, 0, 1, • • - , be a discrete 
parameter weakly stationary process with mean value Ext s= 0. The process is 
assumed to have an absolutely continuous spectral distribution function with 
spectral density /(X). I t will be convenient for us to let X vary from zero to 2w 
instead of •— w to x. Further let /(X) be continuous and positive on the closed 
interval [Jx — a, §?r + a] and zero elsewhere. Thus /(X) is zero on a set of length 
2w — 2a. This may disturb the reader a little as such a spectral density corresponds 
in general to a complex-valued process since it is not symmetric about T, and 
real-valued processes are of interest. However, this can easily be remedied by 
adding \-K to X. This convention is held to because of the convenience in the 
later discussion. The prediction error for such a spectral density is the same as 
in the corresponding problem with X shifted by \>K units. 

We would like to consider /(X) as a function on the unit circle | z | = 1 in the 
complex plane. This can be accomplished by setting 

/(A) = / ( ! log (eiX)) = W(eiX). 

W(ea) is now a positive continuous function on the arc z = e*x, ^w — a ^ X ^ 
f x + a, of the unit circle. The error in predicting x0, given that X—\ , X-—2 y * * * f 
X-n are known, is 

o-» = min E \xo — X) cix~i 
j - i 

min f \einX - i > / ( " - , ) X 

h 7T + a /»f 7r-r< 

min I 
5 l » ' ' * ,Cn " § 7 r ~ a 

>*wX - 2 > i e ' ( n ~ ' - j ) X 

2 - 1 

/(X) d\ 

Tf(eiX) dX. 

This means that the prediction error a\ is equal to 

min f ^ | r f ' x ) | 2 W{eiX) 

where pn{z) is a polynomial of degree n in z with the coefficient of zn one. In 
our problem the process xt is purely deterministic since 
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f log f(\)d\ 
But we want to study the rate at which the prediction error a2

n approaches zero 
as n —> oo. In evaluating the rate at which <J\ —* 0 as n —» oo we will lean heavily 
on some results of G. SZEGO that are given in Chapter 16 of his monograph 
Orthogonal Polynomials. The crucial results will be given in our discussion. 

SZEGO considers the following problem. W(z) is a positive continuous function 
defined on a Jordan curve C in the complex plane. C is the boundary of a simply 
connected region T in the complex z-plane containing z = °o as an interior point. 
Let L be the length of the curve C. Now let pn(z) be a polynomial of degree n 
in z with the coefficient of zn one. One wishes to obtain 

min ~fc\pn(z)\2W(z)\dz\ 

over the class of such polynomials. In our problem the curve C is the arc of the 
unit circle e*x, JTT - a ^ X ^ \ir + a, and PF(ea) = /((I /O log (etX)) on this 
curve. T consists of all the points of the plane off the arc. 

Define the inner product of two functions h(z), g{z) where z is on C by 

(Kg) =±foh(z)j®W®\(k\. 
If the system 1, z} z2

} • • • is orthogonalized by the Gramm-Schmidt orthogonali-
zation procedure, one obtains an orthonormal set of polynomials 0»(s), 

jr J <t>n(z)(j>m(z)W(z) \<k\ = 8nm , n, m = 0 , 1 ? 2 , • • • , 

where <j>n(z) is a polynomial of degree n with the coefficient of zn real and positive. 
Let kn be the coefficient of zn in 0»(s). Then 

1 _ L __ 2a 
2 - j 2 - 7,2 

<Jn /Vn / € n 

in our case since L = 2a. 
Let 

2 = 17G-O = aix + a0 + ai/T1 + a2/x""2 + • • • 

be the analytic function, regular and one-valued for | /x | > 1, which maps | ju | > 1 
conf ormally onto the region T, preserving the point at infinity and the direction 
there. The function r] (M) is uniquely determined and a is called the capacity of 
the curve C. Let JJL — N(z) be the inverse function of z = rj(jx). Now let W(z) be 
the positive continuous function on C. Then W{r)(e~%e)} is positive and contin
uous on the unit circle ju = e%\ 0 ^ 6 ^ 2T. Let 

D(TFn; M) - exp { ^ £ ' log [ rT{i>(OH } * %-« * } • 
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On substituting into the analytic function D(Wrj; ju) the function fx = {N(z) } ~ l 

we obtain the analytic function A(z). A(z) is regular in T including z = <». 
Moreover A(z) 4= 0, A( » ) is real and positive, and 

lim \A(z)\2 - W(z0) 

where z0 is a point on C and 2! approaches £0 from within the region T. SZEGO 
reduces the minimum problem on the curve C to the problem on the full unit 
circle by the mapping given above (see pages 355-356, 270 of SZEGO [4]). 

We now cite two interesting results of SZEGO (see pages 365-367 [4]). If A(z) 
is regular in the closed exterior of C (the closure of T) 

(8) 

when z is in the closure of T. Moreover 

Now let us see what we can derive from these general results in our problem. 
In our problem 

*?(M) 

2 a . a 
cos r sin s: . a , . 2 « . 2 2 

/A sm - + i cos - ~1 2 2 . . . a fi + i sin -

maps the region | ju | > 1 onto the complex 2-plane cut by the circular arc z = e,x, 
§7r — a ^ X ^ T̂T + a, 0 < a < IT. The function 

/i = TO = 
-(£ — z) — */(£ — z)2 + 4d sin2 ~ 

2 s m -

Here 

A(oo) = D(TT^; {iV(co)}"1) = D ( T ^ ; 0) 

= exp{^Jo" log [FM<f")}]<» 

exp \ 
i r27r 

- | x l o g T f 
2it sm ~ + le 

sm a te 

I <i£ 

where 

W X ) = /(X), <* ^= X ^ §7T + GJ. 
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Note that the capacity of the arc in our problem is a = sin fa. Thus 

( \ 2 n + l 

sinf) . 2 

By using (8) we can also obtain information about the orthogonal polynomials 
<f>n(z) as n —> oo (or equivalently the predictors). However, we shall not pursue 
this topic any further. We have already evaluated the asymptotic behavior of 
the prediction error and we see that it approaches zero as fast as the (2n + l ) t h 

power of a positive number less than one. 
Note that the result obtained can be used to obtain upper and lower bounds 

for the rate at which the prediction error approaches zero when the spectral 
density is a continuous function that is zero on a set of positive measure and 
positive on a set of positive measure. It is clear that in such a case the prediction 
error approaches zero as fast as the (2n + l ) t h power of a positive number less 
than one. 

5. Prediction Error for Some Discrete Parameter Processes Having Spectra 
with a High Order Contact with Zero. The spectral density that NEUMANN (3) 
suggests as the theoretical spectrum of a storm-generated ocean surface is 
positive except for one point. However, the order of contact of the spectral 
density with zero at this one point is so high that the corresponding stationary 
process is purely deterministic. Thus far, no one has been able to discuss the 
prediction problem with such a spectral density in any detail. 

G. SZEGO has suggested looking at a discrete parameter weakly stationary 
process xt, Ex% ss 0, t = • • • , — 1, 0,1, • • • , that has a spectral density positive 
everywhere except for one point. At this one point it has a very high contact 
with zero that is not exactly of the same character as that shown by NEUMANN'S 
spectral density. Nonetheless, it is close enough to give some small insight into 
the asymptotic behavior of the prediction error. 

The computations of this section were carried out by G. SZEGO. Throughout 
this discussion we shall refer to SZEGO'S book Orthogonal Polynomials and a 
paper of his on POLLACZEK'S polynomials 

Let the spectral density of the process xt be 
(2X~ir)<p(X) 

/(X; a) = W (cos X; a) |sin Xj = 

where 

cos X(7np(X)) 
jf(-X;a) = /(X;a), 0 £ X S r, 

/A N actn X <p{\) = — r — 

Here a is a fixed parameter. Note that 

/(X; a) ~ 2 exp <j - -.--rf |sin X 
7T 
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as X —> 0 so that /(X) has a very high order contact with zero at X = 0. Let 
<f>n(z) — k„zn -f- • • • + ln be the orthogonal polynomial of degree n with respect 
to /(X), z = e*'\ that is 

J — r 

We know that the prediction error one step ahead, given observations at n 
successive time points, is 

2 _ i 
w 

The evaluation of the asymptotic behavior of k~x as n —> °o is required. 
The asymptotic behavior of &n is evaluated by studying a closely related family 

of orthogonal polynomials on the interval ( — 1 , 1). Let 

(9) g(x, z) = #(cos X, z) = X) ^»<>; a>n 

- (1 - se fy*+<* (X)(l - aT**)-*-"™, x - cos X, 

be the generating function of the polynomials Pn{x) of degree n. Let 

Pn(x) = pnXU + n + Pn(x). 

The polynomials pn(#) are orthonormal with respect to the weight function 

W(x; a) = IPX cos X; a) 
( 2 X - r ) ^ ( X ) 

cosh (TT<P(\)) 

on the interval — 1 S % ^ 1. Replace z by Z/E in formula (9) and let x •—> «> 
(see [5] p. 731-732). One then obtains 

E p . ^ -rzn = (1 - 22)-* exp ^a X) ~ 2m~7 = (1 2s) -<o + l > / 2 

But then 

( • 

P» 

+ 
^ — - > = ( - 1)-
a -f- 1 i 

a + 1 
2 2n = 

r i n + a + 1 

a + A T(n + 1) 

2n 

a + 1 » ( a - l > / 2 

so that 

Vn 
2" la 

nl . a + 1 
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Also p„(l) ~ nl exp {2 Van] (see [5] p. 733). Now let 

g» = qX + • • • 
be the orthonormal family of polynomials with weight function (1 — x*)W(x; a) 
on the interval — 1 2* x ^ 1. Then it is known that 

q„(x) = cQn(x) 

where 

Qn(x) = 1 -x-

(see [4] pp. 28-30). Now 

Pn(x) pa+3(x) 

pJX) P.+a(l) 
= p„+2pn(l)x" + ••• = ^ f p „ ( x ) + ••• 

J 1 (1 - x%)Wix){Qn{x)f dx = f Pn(x) Pn+2(X) 

Pw(l) P»+a(l) 
Tr(x)^pw(l)pw(a!)dx 

= ^ p»(l)p-«(l) 

so that 

and 

C = J ^ bn(l)Pn + 2(l)]^ 

The orthonormal polynomials pn(x), qn(x) can be expressed in terms of the ortho-
normal polynomials <f>n(z), x = \{z + z"1), z - e ' \ 

Pn(x) = (2*r*{ l + ^ } " l { 2 " 0 a . ( « ) + ^ n ^ " 1 ) } 

(see [4] p. 287). Thus 

pn = (2ir)-*(l + ~2^) V(fc2n + l2n) = (2T)-i2"/bL(&2„ - W1 

=ss \ I " «^2n+2V^2n+2 *2n+2/ • 

and 
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By (11.3.6) on p. 283 [4] we know that \ln\ < kn . But 
i 

n 2 = <yw 

Thus fc2n ~ Y». Now &2n~i ~ T» • Therefore 

h ^ — r n *« 

and 
al ~ n 

6. Conclusion. It is worthwhile contrasting the asymptotic behavior of the 
prediction error al for the processes dealt with in sections 4 and 5. In section 4 
the spectral density is positive and continuous except for an interval of length 
2w — 2a3 T > a > 0, where the spectral density is zero. The prediction error al 
approaches zero geometrically 

( \ 2n+ l 
sin|J . 

In section 5 the spectral density /(A; a) is positive away from X = 0 and has a 
very high order of contact with zero at X = 0 

/(X; a) ~ 2 exp | - j | r j |sin X|. 

The prediction error al approaches zero as n —> <» but at a slower rate than (10) 
2 „-

an ~n 

This paper was prepared for the Office of Naval Research under contract Nonr 285(17) 
at New York University, It may be reproduced in whole or in part for any purpose of the 
United States Government. 
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