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TIME SERIES ANALYSIS 

MURRAY ROSENBLATT1 

COLUMBIA UNIVERSITY AND NEW YORK UNIVERSITY 

1, Introduction 

Estimates of the regression coefficients which are unbiased and linear in the observa­
tions are discussed in this paper. The residual is assumed to be a stationary process* Two 
specific estimates are discussed, the least-squares estimate and the Markov estimate. I 
call the estimate which is computed under the assumption that the residual is an orthogo­
nal process the least-squares estimate. The Markov estimate is the linear unbiased esti­
mate with minimal covariance matrix. The basic assumptions made in the paper are dis­
cussed in section 2 and are held to throughout the paper. In section 3 some remarks 
about the approximation of a continuous positive definite matrix-valued function by 
finite trigonometric forms are made. These remarks are used in section 4 to obtain the 
main results about the asymptotic behavior of the covariance matrices of the least-
squares and Markov estimates. The next section discusses the many interesting cases in 
which the least-squares estimate is asymptotically as good as the Markov estimate. The 
first really systematic discussion of some of these problems was given by IL Grenan-
der [1]. Further work was carried out by U, Grenander and M. Rosenblatt in [2], [3], 
and [4]. The author considers some of these problems in the case of a vector-valued time 
series in [5]. Some of the results of this paper are a generalization of some of those ob­
tained in [5]. 

A few cases in which the least-squares estimate is not asymptotically efficient in the 
class of linear unbiased estimates are discussed in sections 5 and 7. Some small sample 
computations for a linear regression with a residual which is a first order autoregressive 
scheme are carried out in section 6 to test the asymptotic theory. 

2. Assumptions and notation 
I assume that the observed process yt is a vector-valued process (a ^-vector) 

(2.1) yt^xt+mt, J- •-•, — 1, 0, 1,«", 

where ntt = Eyt is the mean value sequence and xh Ext ss 0, is the sequence of residuals. 
The residual xt is assumed to be weakly stationary, that is, the covariances 
(2.2) rt T = rt-T=E%tx!r=E(yt- md(yr- m7)! 2 

depend only on the difference / — r. For mathematical convenience, in sections 3 and 4, 
I assume that the components of the vector observations are complex valued. The real-

Based in part on research supported by the Office of Naval Research at the Statistical Research Cen­
ter, University of Chicago. 

1 Now at Indiana University. 
2 Xt is column vector. Given a matrix At Af denotes the conjugated transpose of A. 
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166 THIRD BERKELEY SYMPOSIUM: ROSENBLATT 

valued case is the one of statistical interest and will be examined in detail later on. The 
mean value mt is assumed to be of a regression form 

(2.3) WjBSs/5 i^i) + /52^) + . . . + / 5 i ^ ) , 

where the regression vector sequences 
(2.4) ^ l ^ > ' " , ^ > i = l , - " , * , 

are assumed known and the regression coefficients ft., - • •, & are unknown. I shall discuss 
the problem of estimating the regression coefficients by unbiased estimates linear in the 
observations 
(2.5) y u ' - ^ y n . 

Two specific linear unbiased estimates will be discussed in some detail, the "least-
squares" estimate and the Markov estimate. The least-squares estimate is obtained by 
treating the residuals as if they were orthogonal, that is, 

(2.6) £ # i # T = St.rl 

where Sit r is the Kronecker delta and I is the identity matrix, The Markov estimate is 
the optimal linear unbiased estimate in the sense of minimal covariance matrix of the 
estimate. 

The covariance sequence rt of a weakly stationary process has the representation 

(2.7) rt** Heil*dF{\) 

where F(X) is a nondecreasing matrix-valued (* X *) function, that is, AF(X) g> (X* I 
shall assume that F(\) is absolutely continuous, that is, 

(2.8) FM = Pfitidfi 
so that 
(2.9) rt= / * V * / ( X ) d X . 

The function F(X) is called the spectral distribution function of the process while /(X) is 
called the spectral density of the process. The spectral density is a nonnegative function 
of X since 

(2,o, , c » - ^ * o . 
I shall assume that /(X) is a continuous function of X [each element of /(X) is a con­
tinuous function of X] and that/(X) is nonsingular for all X. 

For convenience I introduce the following notation. Let 

yJ 

» Given a square matrix A, A 2:0 means that the corresponding quadratic form is positive semidefi-
nitfi. A >Q means that the corresponding quadratic form is positive definite. 
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Let 

(2.12) <pt~ (*JV ■-,*(•>) 

and 

(2.13) p : 

\<Pn/ 

Equation (2.1) can then be rewritten in the form 

(2.14) y~<p(2+%. 

The matrix R is the covariance matrix of y (or %). Here 

r 
(2.15) 0 = 1 

The matrix R is nonsingular since /(X) is continuous and nonsingular for all X* The ma­
trix <pV is also assumed to be nonsingular. 

The "least-squares" estimate fa is the vector j3 that minimizes the quadratic form 

(2.16) (y-vfi'(y-vfi) 

and is given by 

(2.17) pL= foVl-Vy. 

It is clearly an unbiased estimate and has covariance matrix 

(2.18) EtfL-p)(0L-p)'- [<pf<p]-^R<pWf<p\~^ 

The linear unbiased estimate with minimal covariance matrix or Markov estimate is 
given by 

(2.19) fo,= [f/JK-irf -V'JK^y • 

Its covariance matrix is given by 

(2.20) £ ( f t i f - f t < & £ - « ' = [ ^ - V l - 1 -
These remarks on the least-squares and Markov estimates are well known. 

The techniques used in the paper can be considered a sort of generalized harmonic 
analysis. In order to carry out the analysis, various assumptions on the asymptotic be­
havior of the regression vectors are introduced. These assumptions are broad enough to 
include most of the usual types of regression, such as polynomial and trigonometric re­
gression. They do not include the case of exponential regression, 

Let 

(2.21) * » = j j ^ p V p , i - i , — , * . 
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l 6 8 THIRD BERKELEY SYMPOSIUM: ROSENBLATT 

I t is assumed that 
(2.22) * « - > » 

as n —> °°, i = 1, * • *, s. It is also assumed that 

(2,23) 
, ( i ) 

Hmfe-1 $(0 

for every fixed A. Consider the ^-vectors 

(2.24) 

Let the limits 

(2.25) 

^ 0 = 

^ CO 

! > • ' ■ > * 

* - l . ■> » . 

0) <i) 

exist,y, 2 = 1,-- • •, 5 and p, q = 1, ■ • •, k [if t < 0 set gp4
(/) = 0]. Set 

(2.26) iM*~ [nn&'* \ *, « = i , - " , M 
and 
(2.27) Af*-{„Ar»; i , / = l , • ■ - , * } . 

The matrices Mh, h = • ■ •, —1,0, 1/ •■ form a positive definite sequence, that is, given 
any finite collection of ks-vectors {Op] 

(2.28) ^ a'"M>~» ° * ^ ° • 

It then follows that the matrices MA have the representation 

(2.29) 14= fe^dMW 

where ifcf (X) is a nondecreasing matrix-valued (ks X fo) function of X, In accordance 
with the notation introduced in (2.26) and (2.27) I write 
(2.30) M(X) = 1/iATCX); j , Z — 1 , - - - , J } 

and 
yjHf (X) - {^AfM(X); # , ? = ! ,••• ,*}> 

■Miiff(X) = {M^5(X); ; , J = ! , • • • , * } , 
(2.31) 

Note that 
(2.32) J£0« f*dM{\) =MW -M(-v). 

It will be convenient to introduce some additional notation. Given a k X k matrix/ and 
a form M = iififhvi hj — V • •, J ; «, v «= V • -? &}, let 

(2,33) ( / -M) = | 2 ) fuwinii; «, i> - ! , • • • , J £ 
a, j J 
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By the integral 
(2.34) / " [ / ( X ) -dJf(X)] 

I shall mean 
(2.35) j r V fu (X) ^Jlfiy (X); #, q - 1, • - • ,s\ . 

The matrix 
(2.36) T = (/-Mo) 

is assumed to be nonsingular, This means that the vector sequences 

(2.37) <Pp,-->v®> i = - l , ' - - , j f 

are asymptotically linearly independent in a sense which is relevant in this context. Con­
ditions (2.22) and (2.23) are introduced to ensure that the estimates of the regression 
coefficients converge to the true regression coefficients in the mean square. 

It will also be convenient to introduce the matrix 

(2.38) Dn = 
■SCi)1'1 0 1 ft ■ 

0 'sw1" 

3. Remarks on approximation 
The arguments used to obtain results on the asymptotic behavior of the covariance 

matrices of the least-squares and Markov estimates are approximation arguments. They 
make use of iinite trigonometric polynomials that uniformly approximate the matrix-
valued spectral density /(X). 

LEMMA 1. Letf(\) be a continuous positive definite matrix-valued (k X k) function of X. 
Given any e > 0, there is a positive definite matrix-valued trigonometric polynomial 

(3.1) g (X) = J £ g.«** 
U——p 

with coefficients gu Hermitian k X k matrices such that 
(3.2) *z'z> s'[ /(X) - g ( X ) ] %> - e * ' * 

for every k-vecior z. 
There are finite trigonometric polynomials gu(X) such that 

(3.3) ga(\) = g;*(X) 

and 
(3.4) \fijW -gijOO \<8 > S<0 , 

where ij = V • •, h But then on setting g(X) « {gy(X)j i,j = V ' •, &}, 

(3.5) H ' [ / ( X ) - g ( X ) ] z ^ ] £ § h < | | 2 / l ^kSz'*-

If 5 > 0 is chosen sufficiently small 
(3.6) * ' [ / (X) - g ( X ) ] a<e« / * . 
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170 THIRD BERKELEY SYMPOSIUM: ROSENBLATT 

One can show similarly that 

(3.7) - « « < * ' [ / ( X ) - g ( X ) ] z. 

Note that p is the maximal order of the polynomials pij(X). 
LEMMA 2. Lelf(k) be a continuous positive definite matrix-valued (k X k) function of X. 

Given any e > 0 sufficiently small, there are positive definite matrix-valued trigonometric 
polynomials 

p 

•u=—p 
(3.8) 

A(X) = £ > « < piuK 

w $ coefficients gU} hu Hermitian kX k matrices such that 

(3.9) 0 < / ( X ) - e I < g ( X ) < / ( X ) <A(X) < / ( X ) + « 

where I is the identity matrix (k X k). 
Since /(X) is a positive continuous function of X, for all sufficiently small e > 0 

(3.10) 0 < / ( X ) - « J 

and clearly 
(3.11) / (X) - « 7 < / ( X ) . 

By lemma 1, there is a trigonometric polynomial g(X) such that 

(3.12) - i e Z < / ( X ) - i « I - « ( X ) < J e I . 

But then 
(3.13) 0 < / ( X ) - € J < * ( X ) < / ( X ) . 

One can similarly show that there is a trigonometric polynomial A(X) such that 

(3.14) /(X) < * ( X ) < / ( X ) + € 7 . 

LEMMA 3. Let 

(3.15) /(X) - ^ 0 + ^ cos XH h«p cos £X + b\ sin X + - - * + £Psin p\ 

be a positive definite matrix-valued (k X k) function of X with the coefficients av, b» (k X k) 
matrices, Thenf(\) can be written in the form 

(3.16) /(X) =^(S^^m)(£^^A) 
where cQ is nonsingular and 

(3.17) f V" x ( ^ cie-iA''ld\ = 9 
where I > 0. 

Since/(X) is a positive definite matrix-valued (& X *) function of X, there is a A-di-
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mensional weakly stationary process xh Ext s 0, having /(X) as its spectral density. 
The covariance matrices 
(3.18) rt*aaJBxt+TiXr'= / " V V ( X ) d\ 

are the null matrix if |*| > p. L e t Pxt be the projection of xt on the closed linear mani­
fold spanned by %t~i} « w , " ** Consider nt = *h - P#*. The ^ are orthogonal to each 
other, that is, Er\t^r

T = 0 when t ̂  T\ Since &* and 77* are stationary I can write 

(3.19) Xt= re**dZ*W, *,= r^MZ,(X) 

where 2X(X), 2„(X) are processes with orthogonal increments 
EdZx (X) dZx (ix) ' - «„„/ (X) dX 

(3.20) j 
EdZv ( X) iZ„ (M) ' = __ S^Nd-k. 

Here iV = JS^/ . Because rt = 0 for t < ~p it is clear that 

(3.21) %t = fy*HZA\) ~£hsVi-j = fe**(£hje-**)dZ,(\), 

and &0 = 7, On approximating the characteristic function of the set [— TT, X] in the mean 
square by linear combinations of the exponentials exp ii\ equation 

(3.22) f*dZmW « r^he^HZ^X) 

is obtained. On taking the covariance matrix of both sides of equation (3.22) 

(3.23) F.(X) =—£ (J2 hjer**yN(£h,r<*yd\ 
or 

(3.24) /(X) = * ( £ A,*-"* WjSft,,- '*)' 
is obtained. Since/(X) is nonsingular, the matrix N must be nonsingular. Norm the yfe 
so as to get 
(3.25) ^ - j y - v a ^ . 

The |e's are an orthonormal process, that is, 

I can now write 

< 3 ' 2 7 > ^=±Cy^-y 
3-0 

where c0 = #V*. By using the argument that led to equation (3.22) one can see that 
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Since £< is weakly stationary 

(3.29) £t = f_y*dZ( (X) =£/* ( J £ Ci*-**yldZu (X) 

(3.30) £dZ«(X) <*£«(/*) ' -8*.— IrfX. 

By our construction & is in the linear manifold spanned by xh #e-i>* •' so that 

(3.31) r^m(Y\ cje-*A~ld\ = 0 

when I > 0, 

4. The asymptotic covariance matrices 
In obtaining the asymptotic form of the covariance matrices of the least-squares and 

Markov estimates, it will be convenient to deal with 

(4.1) DnE(^L-p)^L-^)fDn^ DnW^^DnD^RipD^Dnl^^^Dn 
and 
(4.2) DnE(pM-f3) (fa- /?) ' D n - Dn toft-Vl - i A . 

THEOREM: 1. Under the conditions on the spectrum of the process %i given in section 2 and 
the conditions on the regression vectors specified there 

(4.3) timDnEtfx,-p)(pL~P)'Dn=2TT-i / " [ / ( - X ) -dJIf (X) ] r ^ 1 . 

The conditions on the regression vectors specified in section 2 imply that 

(4.4) D^WtiD^T 

as »—* oo and the limiting s X s matrix T is nonsingular, I therefore need only consider 
the asymptotic behavior of 
(4.5) Dn*<pfR<pD;1. 

Given any sufficiently small e > 0, by lemma 2 there are finite matrix-valued (k X k) 
trigonometric polynomials 

(4.6) 

MX) = ~ y > „ e ^ 

such that 

(4.7) 0 < / ( X ) - « 7 < g ( X ) < / ( X ) <A(X) < / ( X ) +el . 

Let <?, fl" be the covariance matrices of y if £< has the spectral densities g(\), h(\), re­
spectively. Then 

(4.8) <p'Gv<<p'R<p<(p'H<p . 
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I shall obtain the limit of (4,5) as n —> <» when the covariance matrix of % is G. The 
matrix 

n 

(4.9) <p'G<fi = 2 v'tii-rVr. 
t, r - 1 

A typical element of (4.9) is therefore of the form 

(4.10) !LZ± . 
[$G>)$(8)] 1/2 

Since there are only a finite number of nonzero gu's, the limit of expression (4.10) is 
(4.11) 2a-V rgiii-Xid^vM. 

Thus 
(4.12) l i m ^ V , G v ^ 1 = 2 7 r / " [ g ( - X ) -dM (X) ] . 

Similarly 
(4.13) lim Dn1?'E<pDn1 =2r Tiki-\) -dM(\)]. 

On letting e —> 0, it is clear that 

(4.14) lim Dn^RcpDZ1 ~ 2r r[f(-\) -dM(\)]. 

Note that the expression 

(4.15) jC [ / ( ~ X ) - ^ ( X ) ] 

is nonsingular for/(X) > el if € > 0 is sufficiently small But then 

(4.16) fV[f(~\) -dlf(\)] >ef*[I<dM(\)] = e ( / - M 0 ) 

which is nonsingular. 
THEOREM 2. Under the conditions on the spectrum of %t and the regression vectors as­

sumed in section 2 
(4.17) lira DnE(pM-l3)(!3M-l3)'Dn=2Tr( rif~H-\) -dM(.\)])~\ 

By lemmas 2 and 3, for every sufficiently small e > 0 there are finite trigonometric 
polynomials 

p 

g (x) = 2 *•*-*"' 
(4.18) 

u=0 

h (A) = ]£} ^e_iuX 
M = 0 

with go, /zo nonsingular and satisfying relation (3.17) and such that 

0 < / ( X ) - e K 7 i - g - 1 ( X ) g ^ ( X ) / < / ( X ) < i - / ^ ( X ) ^ H X ) / < / ( X ) + e / . 
ZlV IT 
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Let G, H be the covariance matrices of the vector oc if the process xt has the spectral 
densities WWrWrW > (l/27r)^-1(X)/ri(X)/, respectively. 

In obtaining our result it will be sufficient to consider the asymptotic behavior of 
D~i<p'R-i<pD;\ Now 

(4.19) 0 < <p!H~ V < /22-V < ¥>'G-V . 
Assume for the moment that #< has the spectral density {l/2ir)g-l0C)fl{\Y and con­
sider the asymptotic behavior of Di rVG^AT 1 as »-+ °o4 Now carry out a Gramm-
Schmidt orthogonalization procedure with respect to xh • ■ •, #„ starting with #i, The 
first p equations are 

^ n # i = £i 

( 4 .20 ) ^ 2 i % + ^22^2 = ?a 

The residual £'s are orthonormal. At the next step I have 

(4.21) &*i + • • • + &>tfp+i = £*+i *= ifo+i 
since #* satisfies the difference equation 

(4.22) #*- *?* 

with the rjtS orthonormal. From then on we have the equation 

(4.23) gP%k-\ h go *«?+!»= h+p— Vk+p J 

Let the matrix 

(4.24) A = 

du. 
diid^i 

dpidP2 ' 

ip &~i * 

& ' 

0 

' dpp 

- gi go 
' g2 g l gQ 

Then 

* « ! , ■ w-

(4.25) A * = £ = 

where £ is a vector of orthonormal random vectors. A is a nonsingular transformation 
taking a v •, #n into fi,* * •, £w. On taking the covariance matrix of both sides of equa­
tion (4.25) I have 
(4.26) AGA' = / 
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so that 

14.2 7) G~i = A'A. 

Let {g„y, u,v= 1,- ■ •, »} = G-\ Then 
oo 

(4.2 8) ^ M 1 = 2 ^ + ^ " + « 
« = — CD 

if p or ji is greater than £. Here gv is understood to be zero if v < 0 or v > p. But 
CO ^ 

(4.29) 2 «;+•&.+««^r^-^(X) ' j f (X)rfX. 

Now the (£, $)th element of D^vG^ipD^1 is 

Here ym - ( 1 / 2 T ) / V**(X) '*(X)I*X. 

Now 8n is the sum of at most ip2 terms of the form 

Since every element of gz}* is smaller in absolute value than Sr1 for some small but 
fixed 5 > 0, the elements of 

(*)' - i (a> 

converge to zero as ^—> oo, But then 

(4'33) Jg»'' »<»»») V« = 2 ^ £ S U(-X)-g(-X) l^M^CX). 

I have now shown that 

(4.34) H m D - V G - V ^ 1 ^ / " U ( ~ ?0'g ( ~ X) .<Ulf(X)]. 

In the same way one can show that 

(4.35) l i m Z ) - y # - V Z t I a s s /"* [A ( - X ) ' A ( - X ) - d t f ( X ) ] . 

On letting e | 0 the desired result 

(4.36) l i m ^ V i J - V ^ - T ^ - r t / ^ C - X ) -rfJf(X)] 

is obtained. The matrix (4.36) can be seen to be nonsingular by using the argument used 
at the end of the proof of theorem 1. 
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5, Asymptotic efficiency 
It is interesting to investigate those types of regression for which the least-squares 

estimate is asymptotically efficient in the class of linear unbiased estimates for all ad­
missible spectra/(X). In most cases the covariance matrix R is unknown and a reasonably 
large sample size is required to get adequate precision in estimating it. For this reason it 
would be convenient if one could use the least-squares estimate instead of the Markov 
estimate since the least-squares estimate does not require knowledge of R. Even if R is 
known, it may be difficult to compute R"1 which is required for the Markov estimate. 
In view of the results already obtained, the least-squares estimate will be asymptotically 
efficient if 

(5.1) r - i f [ / ( - X ) -dM{\)]T-ir[f-n-W -<Uf (A)l = 1 

for all admissible /(A). The case of interest is that in which the process %% and the regres­
sion vectors have real components. Because of this/(X) and M(X) must satisfy the addi­
tional restraints 

(5.2) / C X W ( - X ) 

When k = 1, asymptotic efficiency of the least-squares estimate has been discussed in 
U. Grenander [1] and U. Grenander and M. Rosenblatt [2], [3]. 

In the one-dimensional case it is convenient to set 
(5.3) r (X) - M ( X + ) - A f ( - A - ) 

and rewrite (5.1) in the form 

(5.4) T"1 f*f (\) dTMT-i Hf-HD dT{\) =1. 

Equation (5.4) is satisfied for all positive continuous /(X) if and only if T(X) increases 
only at a finite number of points 0 g Xi < * ■ • < Xg g w, q < s, and the jumps 
(5.5) 2\«AT(X<) 

satisfy the relations 

(5.6) TiT-lTj~8ijTi. 

These conditions are satisfied if one has a polynomial regression 

(5.7) w i - M — ' + A - i * 1 - 1 , 

a trigonometric regression 
(5.8) mt « ft cos JXH V &h cos t\8i + p,1+1 sin 2Xi+ • • - + ft^+a, sin t\$t 

(with the points X* distinct), or more generally a mixed polynomial and trigonometric 
regression 

a „* 
q 1 U q 2 li 

(5.9) »« = £ S A . .*"" 1 c o s ^ + £ S i f c , , * ' - 1 sin«X„ 
Uz^i v*=i u^i v=*i 

(with points X* distinct) [3]. Obviously the sine terms in this last regression form dis­
appear if \i = 0. Notice that these regression sequences include most of those used in 
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TIME SERIES ANALYSIS 177 
standard statistical work. It is easy to construct a regression sequence where the least-
squares estimate is not asymptotically efficient. Consider 

* > (5.10) w< = /?(a0 + #icos JXH hflfcCos*Xft), 0 < X i < - - - < \ 

where the constants ai are known. Such a regression has a form similar to the pulse 
trains encountered in communication theory. In the case of such a regression T(\) in­
creases only at the points 0, Xi, • ■ •, X*. The jump of T(\) at 0 is 

(5.11) 

and the jump at X^ j = 1, • • •, k, is 

(5.12) 

aQ 

z 1=1 

i ^ 2 

1 h 

* ?'=i 

The asymptotic efficiency of the least-squares estimate #L in the class of linear unbiased 
estimates is 

(5,13) g 1 . 

In section 7 I shall discuss the question of how much additional information about the 
spectrum/(X) is required to construct an estimate with the same asymptotic mean square 
error as the Markov estimate. 

In the case of multidimensional time series, new phenomena arise. Consider first the 
case of a polynomial regression. If each component of the time series has a polynomial 
regression, that is, 

(5.14) imt^y^ifaP-1, i = l , < • • , £ , 

the least-squares estimate #& is still asymptotically efficient. However, if the different 
components have polynomial regressions of different orders, the least-squares estimate 
is no longer asymptotically efficient [5]. A simple example is that in which the mean 
value of the first coordinate of a two-dimensional time series is unknown while the mean 
value of the second coordinate is known to be zero, Then 

(5.15) mir=z^(pt) ^ = ( 0 / ' 

The function M(X) increases only at zero and the jump at zero 
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Thus 

fUi-V, -dM(\)} = / u ( 0 ) 
(5.17) •;-* 

/ * [/-1 ( - X W M (X) ] = - fn(0) 

/n (°) /» <°) ~ /?« CO) 

The asymptotic efficiency of the least-squares estimate is 

(5.18) 1 /l2 (0) 
/ u ( 0 ) / « ( 0 ) ' 

If there is a mixed polynomial and trigonometric regression (5.9) not only must the 
same regression form occur in each component, but one must also have xsu = 2su if 
X„ ■* 0. Thus, the least-squares estimate will be asymptotically efficient in the case of a 
regression 

(5.19) W i - f t ^ + ft^' + ft^ + ft^ 

but not in the case of a regression 

(5.20) mi = ft p? + ft v? = ft (COS
0'X) + ft ( c o s ° J , X * 0 . 

It is worthwhile examining this last regression in a little more detail. The function M(X) 
increases at two points, X and — X. The jumps 

(S.21) 
AAfii(X) = A M U ( - X ) = ( * jj) 

A4f»(X) = AM12(-X) =(2 *) 

AM21(X) = AM 2 i ( -X) = ( ^ Q ) 

AM22(X) = AM 2 2 ( -X) = ( Q ° ) . 

(5.23, £i/(-x).«(x„=(Re;;:;» £/«<») 
md 
(5.24) / l l r ^ - X ) -cZM(X)] 

1 / / » (X) - Re / u (X) \ 
/ u (X) /«(X) - | / H (X) |» V - Re / „ (X) /1X (X) >*' 

It is worthwhile noting that one does have asymptotic efficiency of the least-squares esti­
mate if Im /w(X) = 0, 

In the multidimensional case k <£ 2 set 

(5.25) 2V(X) = { r - V 2 / , M ( X ) T - ^ ; j , 1= 1, • . . , * } . 
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Thus 

(5. 

and 
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Then equation (5.1) can be rewritten 

(5.26) T [ / ( - X ) -dNW) / " [ / - K - X ) -dN(\)} « J . 

I have not been able to get simple necessary and sufficient conditions on N(\) for equa­
tion (5,26) to be satisfied for all admissible/(X). However, one can get simple conditions 
of this type when N(\) is known to increase only at zero. This corresponds to the inter­
esting case of a polynomial regression. Equation (5.26) can then be written as 

(5.27) U*N)(f~l<N) « J , 

where 
(5.28) 

and 
(S.29) 

Set 
(5.30) 

and 
(5.31) 

Ntt-

f = / ( 0 ) > 0 

N=AN^0. 

{ptNa; P,q=l, 

WU-NU+NH, 

,s] 

19* J . 

Since/ = /(0) and N = AiV(O), the elements of / and N are all real 
THEOREM 3. Letf and N be positive definite and positive semidefiniie symmetric matrices, 

respectively. The equation 

(5,32) (/•iV)(/-1-iV r) « f 

is valid for all positive definite symmetric f if and only if 
NuNti = SUNH ; 

2 Nu = I 
WuWik = Nu Wjk = Wih Nu, 

(5.33) 

Wu Wki = 0 , 
WijNM=NkicWi}- = 0, 

Consider first the case in which/ is a diagonal matrix 

(5.34) / = \ ° , 

\ J 
Equation (5.32) then becomes 

(5.3 5) ^liNu^tfNij-I. 

h j = 

i^k, I; 

<!,"•, k , 

j ^ k , 

j?*k,l; 

i, J9*k. 

X,- > 0 . 
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This equation is valid for all positive X* if and only if 

(5.36) NuNjj= StjNu 

a n d ^ i V i i = L Since N is positive semidefinite and NUNH — SijNa, it follows that 

(5.3 7) WijNkk^NkhWu-O 

if i,j T* k and 
(5.38) WijWki^O 

if i 7* k, I and j ^ k, L Now consider the case in which 

(5.39) / - ( / a fz J 

and is positive definite, On differentiating equation (5.32) with respect to/a twice, equa­
tion 
(5.40) WU^Nu+Nn 

is obtained. On differentiating equation (5.32) first with respect to ft and then with 
respect to/2, equation 

(5.41) NiiWw=WiiNn 

is obtained. Now let 

(5.42) / 

/ l /2 fz 
J h /4 /B 0 

fz /B /« 
0 i> 

and be positive definite. Differentiate equation (5.32) with respect to ft, f2, and/g. I 
now get 
(5.43) MuTii**TiJTn. 

All the other equations (5.33) are obtained by taking some subscripts other than 1, 2, 3 
or interchanging subscripts. 

By using the conditions (5.33), one can readily verify that equation (5.32) is satisfied 
with any positive definite symmetric/ 

6. Some computations 
It is worthwhile looking at a process with a stationary residual of a special and simple 

form to see how good the asymptotic theory considered is for finite samples. Consider a 
process 

(6.1) y« = *< + jSi + ft* 

where the residual xt is a first order autoregressive scheme with covariances 

(6.2) ' . ~ T ? r - 3 ' - K p < l . 
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Here p is the correlation coefficient of the scheme. The regression coefficients ft, £2 of 
the scheme are unknown and to be estimated. The covariance matrices of the least-
squares estimate f}L and the Markov estimate i3M are considered. I have already noted 
that 

(6.3) E (pL - p) (0* - jS) ' - (*V) ~VR<P (*V> ~l 

and 

(6.4) E{fa-P) ( & * - « ' « (^i?~V)~:< 

Here when the sample size is n 
(6.5) 

so that 

(6.6) (*V> -1 -

/ 2 ( 2 » + i ) 
' n(n — 1) 

1 - 6 

- 6 i 
«(» — 1) 

12 
\ » ( M — 1) «(»2— 1) 

Straightforward but tedious manipulations lead to 

(n— l)n 

(6.7) <prR-lv = 

( « - 2 ) ( l - p ) H - 2 ( l - p ) 

(re—l)w. 

( 1 - P ) » + ( » + P ) ( 1 - P ) 

- (1 -p ) 2 

+ < » + p ) ( l - p ) 

( » - l ) » ( 2 n - l ) 
d - p ) ! 

+ « 2 ( l - p ) - p 2 + » p J 

One can similarly show that 

n 2p ( l -p B ) 

( 6 . 8 ) / I t y -

( l - p )» ( l - p « ) ( l - p ) » 
» (»+! ) ( « + l ) p ( l - p w ) *»(»+!) ( 2 » + l ) 

w(»+l) ( » + l ) p ( l - p » ) '* 
2 ( l -p )» ( l - p » ) ( l - p ) » 

»(»+!) P 
2( l -p )« ( l - p 2 ) ( l - p ) 2 6 ( l - p ) « (1 + P ) ( 1 - P ) 3 

2/*»+«(»+1) , 2 p 2 ( l - p n + 1 ) 
( I + P ) ( I - P ) * ' ( i + P ) ( i - p ) s ; 

The covariance matrix as given by the asymptotic theory is 

I 1 n «2 

12 
(6.9) 

( l - p ) M - 6 
n2 nz 

to the first order. 
The (i}j)th elements of the covariance matrices of both the least-squares and Markov 

estimates, % j = 1,2, are given in Table I for the sample sizes n = 10,15, 20, SO and cor­
relation coefficients p = — .8, — .6,- • •, .8. The approximation suggested by asymptotic 
theory is also given. 
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TABLE I 
COVARIANCE MATRICES OF THE LEAST-SQUARES AND MARKOV ESTI­

MATES (AND AN ASYMPTOTIC APPROXIMATION OF THE COVARIANCE 
MATRICES) OF A LINEAR REGRESSION, RESIDUAL FIRST-ORDER AUTO-
REGRESSIVE 

p 

+ .2 

-.2 

+ .4 

-.4 

+ .6 

-.6 

+ .8 

-.8 

+ .2 

-.2 

+ .4 

-.4 

+ .6 

MATRIX ELEMENTS 

(i, i) (1, 2)-(2, 1) (2, 2) 

»=10 

(a) 
(b) 
(c) 
(a) 
(b) 
(c) 
(a) 
(b) 
(c) 
(a) 
(b) 
(c) 
(a) 
(b) 
(c) 
(a) 
(b) 
(c) 
(a) 
(b) 
(c) 
(a) 
(h) 
(c) 

0.65196 
0.64406 
0.62500 
0.35898 
0.34109 
0.27778 
0.99189 
0.94826 
1.11111 
0.29685 
0.27749 
0.20408 
1.69108 
1.54892 
2.50000 
0.27142 
0.22345 
0.15625 
3.48150 
3.17040 
10.00000 
0.32541 
0.18379 
0.12346 

-0.091312 
-0.090046 
-0.093750 
-0.052116 
-0.049425 
-0.041666 
-0.13464 
-0.12785 
-0.16667 
-0,043812 
-0,040614 
-0.030612 
-0.21501 
-0.19421 
-0.37500 
-0.040923 
-0.032950 
-0.023438 
-0.35878 
-0.32391 
-1.50000 
-0.051326 
-0.027257 
-0.018518 

.016602 

.016372 

.018750 

.0094753 

.0089863 

.0083333 

.024880 

.023245 

.033333 

.0079656 

.0073844 

.0061224 

.039090 
,035311 
.075000 
.0074402 
.0059909 
.0046876 
.065229 
.058893 
,30000 
.0093318 
.0049559 
.0037037 

« = 15 

(a) 
(b) 
(c) 
(a) 
(b) 
(c) 

(a) 
(b) 
(c) 
(a) 
(c) 
(a) 
(b) 
(c) 

0.42883 
0.42456 
0.41667 
0.21958 
0.21716 
0.18519 
0.68983 
0.66268 
0.74075 
0.17508 
0.16642 
0.13606 
1.29297 
1.18142 
1.66669 

- .040942 
- .040469 
- .041667 
- .021498 
- .021227 
- .018519 
- .064546 
- .061576 
- .074075 
- .017363 
- .016383 
- .013606 
- .11604 
- .10428 
- ,16669 

.0051178 

.0050587 

.0055556 

.0026873 

.0026534 

.0024692 

.0080684 

.0076970 

.0098767 

.0021704 

.0020478 

.0018141 

.014505 

.013034 

.022223 

(a) Least-squares, (b) Markov, and (c) Asymptotic. 
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 ŝ&
 

0
0

0 
1

-1
»

—
»

. 
1—

*.
 

O
c

o
c

n
 

lp
M

-*
tO

 
*

-^
C

n
to

 
S

N
O

 
I-

* 

1 
i 1

 
O

O
O

 
{—

»•
 J

-i
 

1—
k. 

rf
* 

O
C

o 
V-

* 
tO

 O
N

 
S

C
O

 
C

o 

O
O

O
 

0
0

0 
H

* 
t—

»•
 1

—
». 

C
o 

O
N

 V
O

 
00

 t
o 

b
o 

oo
sr

o 
N

O
O

O
rf

i*
 

3 u ) i? Ĵ
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TABLE I—Continued 

p 

- . 4 

+ .6 

- . 6 

+ .8 

- . 8 

MATRIX ELEMENTS 

(a) 

8t 
(c) 

(a) 
(b) 

j (c) 
(a) 
(b) 
(c) 

(a) 
(b) 
(c) 

(l, i) 

n«50-

0,044081 
0.043302 
0,040816 

0,46697 
0.44575 
0.50000 

0.035245 
0.033457 
0.031250 

1.61368 
1.43485 
2,00000 

0.031137 
0.026625 
0.024691 

( i , 2 ) » ( 2 , 1) 

—Continued 

— 

-

— 

— 

-

,0013209 
.0012933 
.0012245 

.013595 

.012856 

.015000 

.0010643 

.0010010 
,00093751 

.045419 

.039365 

.060000 

,00095752 
.00079766 
.00074074 

(2 ,2) 

.000051799 
,000050719 
.000048979 

,00053312 
.00050415 
.00060000 

.000041737 

.000039256 

.000037500 

.0017810 

.0015437 

.0024000 

,000037549 
.000031281 
.000029629 

7. Some special examples 
In section 5 a few special but interesting types of regression sequences were considered 

where the least-squares estimate of the regression coefficient was not asymptotically 
efficient in the class of linear unbiased estimates. I now consider two of these regression 
sequences to find out what information about the spectrum /(X) is required to construct 
an estimate of the regression coefficient with the same asymptotic mean square error as 
the Markov estimate. 

The first example is that of a one-dimensional process 

(7.1) yt=*t+P<Pt 

where xt is stationary and 
(7.2) <pt = tfo-Mi cos JXH V&k cos t\k ■> 0 < Xi< ••• <Xfc. 

Note that 

(7.3) ®n = 2 V*~n C^ + ̂ S aH ' 

An estimate of 0 which has the same asymptotic mean square error as the Markov esti­
mate is 

for 
(7,5) Ep*~(3 + 0(~) 
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and 
.2 \ - i (7.6) ^(iB»)~lf-4^ + l V ai \ l 

Notice that the only information about the spectrum/(X) required for the construction 
of jS* is knowledge of the ratios 

The second example is a two-dimensional process 

(7.8) Vt=**i + P<p 

with #* stationary and 

(7.9) „-(J). 
An estimate of /3 which has the same asymptotic mean square error as the Markov esti­
mate is 

where iy<, 2;y* are the components of yt. Note that 

(7.11) Jg|3*«p 

and 

< U 2 ) „ I ( ^ ) ~ i [ / „ ( 0 ) - | H W ] . 

8. Final remarks 
There are many interesting open problems. It is clear that one ought to be able to 

obtain analogues of the results obtained thus far in the case of a continuous time parame­
ter. It is likely that such a program would require heavier tools. 

The results obtained thus far have an immediate implication for various types of non-
stationary processes, specifically processes which are integrals or sums of stationary proc­
esses. Consider as an example 

(8,1) Z i « 2 > 

where %t is a stationary process. Results on estimation of regression coefficients with Zt 
as a residual can be obtained from corresponding results with %i as a residual. 

A much more detailed investigation of specific types of regression sequences would be 
worthwhile pushing through. It is worthwhile noting that all the main results obtained 
can be derived for processes with a vector time parameter in the same way, 

I wish to thank M. de Groot and the computing staff of the Statistical Research Cen­
ter at the University of Chicago for carrying out the computations in section 6, 
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