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1. Summary. A certain class of stationary processes is discussed. It is 
shown that each process in the class has an absolutely continuous spectrum. 
Under some moment conditions, it is shown that such processes satisfy the 
central limit theorem. 

2. Introduction. Let rj = (• • • , r].x , rj0 , rjx , • • •) be a doubly infinite 
sequence of independent identically distributed random variables. Let T be 
the translation operator defined on rj by 

(2 .1) Trj = n' = ( • • • ,770 , i?i , ife , • • • ) . 

Let B be the Borel field generated by v\ and let g = #(??) be a function defined 
on JS such that i?{ | gr j2} < °°. 

Given any such function gr, we define a stationary process {Xn} where 

(2.2) Xn = g(rii), n = 0, ± 1 , • • • . 
We assume without loss of generality that E{Xn} = 0. Let rs = i£{XnXn+s}. 

Then r8 = / I T eisXdF(h), where F(X) is the spectral distribution function of the 
process. In §3 the spectral distribution function of any process of the form 
(2.2) is shown to be absolutely continuous. Finally it is shown in §4 that under 
some additional assumptions on the moment structure of the process the central 
limit theorem is applicable. 

3. Absolute continuity of the spectral distribution function. In this section 
we prove 

THEOREM I. / / F(X) is the spectral distribution function of a process of the 
form (2.2), F(\) is absolutely continuous. 

Proof. In proving the theorem we assume that each % is uniformly dis
tributed on the unit interval. It is easily seen that this may be done without 
loss of generality. For if £ is uniformly distributed on the unit interval, we 
can always construct a monotone function <p(£) such that the distribution of 
<p{£) is the same as that of any rjj , and consequently as far as the probability 
structure of the process {Xn} is concerned, we may assume that each ^ is 
uniformly distributed [0, 1]. 
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For each integer n define a process {Xn,w}, m = 1, 2, • • • , by 

( 3 . 1 ) Xn>m = E { X n j rjn-m+l j ' * ' j ??n + m- l}» 

It is easily verified that for n fixed, the process {Xn, m} is a martingale. Further
more #{| Xn,m |2} < E{\ Xn |2} = #{| g(rj)\2} < co. It then follows from 
well-known theorems on martingales that Xnttn converges in mean square and 
with probability one as m approaches infinity. To see that lim^oo Xn>m = Xn , 
note that Xn,w is the projection of Xn on the space generated by all measurable 
functions of rjn„m+1 , • • • , rjn+m-i . Since Xn lies in the space generated by the 
entire t\ sequence, it follows that lim^o, E{\ Xn — Xn>m \2} = 0. (See e.g. 
Dpob [1; 331, Theorem 4.3]. 

Let $i(u); j = 0, 1, • • • be an orthonormal sequence of polynomials where 
Oi{u) is of degree j on [0, 1] i.e., jl O^u) dk(u)du = Sjk where 8ik is the Kronecker 
delta. The functions {0,-(w)} are complete in L2[0, 1]. Let (ux , • • • , uk) be a 
point in the /c-dimensional unit cube Uk . The sequence of products {0jt (u^ 
• • • Bjk{uk)) with j1 , • • • , j f c nonnegative integers is a complete orthonormal 
system for L2[Uk]. To get an orthonormal system for the infinite-dimensional 
unit cube U we take the function which is identically one and the system of 
products {8u(urm) • • • 0jk(umk)} where mx < m2 < • • • < mk and k = 1, 2, • • • . 
This system is clearly orthonormal. Now let k be an arbitrary positive integer. 
From the discussion above it follows that we can expand X0,k in the form 

2k — 1 oo 

(3.2) X0.k = E E E Cfa , m,)^,.(^,) 
? = 1 — k + l<mi< • • •<?»/<&—1 nn , • ♦ • , 7 i j = l 

where wy = (mi , • • • , m,), % = (%,••• , n?), and 

*s,(w,) = ft.,00 ••• 9ni(r,mi). Since E{\X0tk |2} < £ { | X0 |2} < -

it follows that 

Z T, E c% , m,)2 < «. 
3 = 1 m i < m 2 < * • *<mj » i , • • • , t t f = l 

Now X0 = lim^co X0,& with probability one so that 
00 00 

(3.3) X0 = E E E C(&* »ffidvssivsi) 
1=1 m i < " , < m j w i , * » * , n j = l 

with probability one Similarly we have 
00 CO 

(3.4) X„ = E E E <?(*&/ , m,- - n)<es,(ijs,) 
j»»l m i < • • • < * » j n\ , • • • ,nj = 1 

where m, — n = (m-^ — n, • • • , m, — n). 
Now let fc be a positive integer, n = {nx , ♦ • - , % ) be a fc-tuplet of positive 

integers, and m = (mx , • • • , mk) be a fc-tuplet of integers with mx < • • • < mk ♦ 
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Given any integer /, we define Xt (m, n) by 
CO 

(3.5) Xt(m,n) = £ C(fi> ™ + J ~ 0^»0&w) 
J 3 - 0 0 

where m + I = (ml + ly • • • , mfc + I) for any integer Z. Xt(m, ft) is a moving 
average, and such processes are known to have an absolutely continuous spectrum 
[1; 499]. Now let (m', nf) be different from (m, n) in the sense that ft ^ n' or 
that m — m! is not a vector with equal coordinates. Then it is easily seen that 
the processes Xt(m, n) and Xt(in\ nf) are mutually orthogonal. There is a de-
numerable collection of such distinct processes and we enumerate them. Let 
{X\{)} be the i-tib. process and let /(°(X) be its spectral density. Consider the 
process ]C;=i X*U) and let /„(X) be its spectral density. From the mutual 
orthogonality of the processes {X,(°} it follows that /n(X) = X X i /co(X). 
Since the fio(\) are nonnegative, /n(X) is non-decreasing in n. Let /(X) = 
limw_*„ /n(X). Then we have 

(3.6) 
f /(X) d\ = f lim /m(X) dX < lim f' fn(X) 

J — w v — -jr n-»«> n—><» «/ — TT 
dX 

= lim#{| E * . ( ° \2} = E{\g\2} < oo. 
n~>oo (J » » l [ ) 

Hence /(X) is almost everywhere finite and integrable. An easy computation 
shows that /(X) is the spectral density of the process {Xt} and the theorem 
is proved. 

It follows from the theorem just proved that if h is any square integrable 
function defined on the probability space generated by X = ( ••• , X_x , X0 , 
Zi , • • •) and if {Un} is the process defined by Un = h(TnX) then the process 
{Un} also has an absolutely continuous spectrum. It would be of some interest 
to determine if the converse of this proposition is also true. That is, if {Xn} 
is strictly stationary and if {X„} and any process {Un\ obtained from {Xw} 
in the manner indicated above has an absolutely continuous spectrum, does it 
follow that Xn is of the form g{Tny\) where g is square integrable and q = (• • • , 
17-1 , rjo , Vi } •' 0 is a doubly infinite sequence of independent identically dis
tributed random variables? 

4. The central limit theorem. In this section it is shown that under some 
additional moment conditions, the processes we have discussed satisfy the 
central limit theorem. As before let Xn>k = E{Xn \ yn-k+1 , • • • , yn+k-i} when 
k = 1, 2, • • • , and let Xn>Q = 0. Furthermore, let Vn,k = X»th+1 - Xn>k, and 
for any integer s let a9thtk> = E{Vn,kVn+8tk>\. Then we have 

THEOREM 2. / / 

(4.1) E{\ Xn \a} < oo for some a > 2, 
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(4.2) Z E !«..».*' I < « , 
s » —co &,&' ==1 

and 

(4-3) E S a..».». * 0 
*«= — co A ^ & ' ^ l 

then N~* 23*-1 X* is asymptotically normal with mean zero and variance 2vf(0), 
where f(\) is the spectral density of the process {Xn}. 

Proof. For fixed k it can easily be verified that the process {Xn,k} is 
a stationary (2k — Independent process. Marsaglia [2] has given conditions 
under which such a process satisfies the central limit theorem. Let s%tk = 
E{\ /Lrt-i-Xi,* H- Then we can state Marsaglia's conditions in the way we 
shall use them: 

(4.4) 

(4.5) 

(4.6) 

E{\Xn,k |2} <B < oo, k = 1,2, 

# - < £ , iV= l ,2 , . - - , 
* iV.fc 

l i myv^(|3r. .>n1 / i ,0 > forsome 
2V->oo $tftk 

We first show that these conditions are satisfied for k sufficiently large. Con
dition (4.4) follows immediately from the fact that E{\Xnfk\2} < E{\g\2} < co. 
To prove (4.5) we write 

M s §*■<)' 
.2 

N ~ N 
k-1 N 1 _ 

-I fc-1 i V - l 

= AT 23 Z a*,i,j>(N - \U I), 

where u = i' — L Hence 
2 k-1 oo 

l im- |~ = 2w 22 auti,i' • 

Given hypothesis (4.3) we can clearly choose fc so large that (4.5) is satisfied. 
Jensen's inequality is used to obtain E{\ Xnk \a] < E{\ Xn \a} for all k% Con
dition (4.6) follows immediately. 

Now let r{ = E{XnXn+i}, ri%k = E{XnfkXn+jtk], and let fk(\) be the spectral 
density of the process {XUtk}. Then 
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and 

Hence 

/*(X) = h E *v V x -
^ 7 T 4 * . - o o 

IA(X)-/(X) I < | l E k y . » - r , |. 
Z7T / - - c o 

For each,? we have lim^oo ritk = rf . Furthermore it is easily established that 

E \r< | < E E I <*/.<.<' 
J > 3 o 3 > / o * , t ' « 0 

and 

E I ^.* I < E E I «/,<,<' I uniformly in fc. 
j > j o j > ) ' o i , t ' a 0 

Applying hypothesis (4.2) we see that 
1 °° 

l im«I E |*V.* - r, | = 0. 

Thus it is clearly seen that lim*-,* fk(\) = /(X) uniformly in X. Since 

/(o) = ^ E ^ 4 f E «*.».»' > o. 
we may choose k so large that /*(0) > 0 and so that Marsaglia's theorem applies. 

Then 

limPJ(2ri\r/t(0))-* EX, - , , <a} = (2»)~* f e~" 
JV->co V. t' = l / J — c o 

/ 2 efot. 

Now 

£• (tf/»(o))-* E (x, - x,.,,) iV/ft(0) # 
isr a. 

E E K„-
♦ - 1 j - & + i 

JV oo 

< 2ij 2-/ I ai'-*,/,}' 
Njk{0) i , * ' - l j . j ' - f t + l 

where u = if — i. On letting iV approach infinity in the last sum we obtain 
-f CO CO 

-f /A\ ^ ^ . Z ^ I ^u,3,j' |» 
J k\yj j,j'=k + l w=-oo 

Clearly we may make this sum arbitrarily small by choosing k large enough. 
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Since lim^*, fk(0) = /(0) we obtain 

which is the desired result* 
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