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1. Introduction. Consider an irreducible time-homogeneous Markov chain 
with discrete time. The recurrence-time moments of the s ta tes of such stochastic 
processes are studied. We point out that if the recurrence time of one state has 
its first k moments finite, then the recurrence times of all the other s ta tes have 
their first h moments finite. We then specialize and investigate the recurrence-
time moments of random walks. The main result of the paper consists of exhibit
ing random walks whose first k - 1 recurrence-time moments exist and whose 
higher moments are infinite, for k - 1, 2, • • • . A comparison theorem is derived 
that permits the moment properties of recurrence times of a large c lass of random 
walks to be determined. 

2. Preliminary considerations. We begin with the following: 

DEFINITION. By the index of the random variable X, denoted by I(X), we 
shall mean the largest integer k such that E(Xk) < oo. If all moments of X are 
finite, we write I(X) = oo. Clearly I(X) >_ 0. We shall consider only nonnegative 
random variables. 

LEMMA I . 1 ( a ) / / Xl9 ••• 9 Xn are independent random variables, then 

I(Xi + • •• + Xn ) = min \ 1{XX\ • •• , I(Xn)\r 

( b ) If X has the geometric distribution 

P(X = n) = p(l-p)n-1 ( p > 0 ) , 

then I{X) = oo . 

( c ) / / N, Xx, X2, • • • are independent random variables, N is 
positive integer valued, Xx> X29 • • • are identically distributed, and then 

The proof of these simple facts is omitted. 
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128 J. L. HODGES, JR. AND M. ROSENBLATT 

l(Xl +...+XN) = m i n | / ( / V ) , / ( ^ l ) } . 

We adopt the terminology and notation for Markov chains u sed by F e l l e r 

[ 1, Chap . 15 ] • Le t El9 E2, • • • be a denumerable s e t of s t a t e s . We a s sume the 

chain is i r reducible ; i . e . , for every pair £ ; , Ej there e x i s t s n(i9 j) such that 

t rans i t ion from £ / to Ej in n{i9 j) s t e p s h a s pos i t ive probabi l i ty . L e t /?,• be the 

random number of s t e p s for first return to £ ; , and le t /?jy be the random number 

of s t e p s for first p a s s a g e from £ ; to Ej, s t a r t ing at £ j . It i s well known [ l ] 

that if, for any / , P(Rj < oo )= 1, then th i s ho lds true for a l l / , and we s h a l l 

assume th i s to be the c a s e ; i . e . , our p r o c e s s i s a s sumed to be recurrent . 

LEMMA 2. 2 ( a ) / ( / ? ; ) has a constant value, say / ( C ) , for all i= 1, 2 , • • • . 

( b ) For every pair i <f j> 

I(Ri) = m i n i / ( / ? , - / ) , HRji)\. 

T h i s lemma i s re la ted to the well-known r e su l t that in a recurrent i r reducible 

t ime-homogeneous Markov chain , if the expec ted time for first return to any 

s t a t e i s f inite, then the same holds for al l s t a t e s . In the language of [ 1 , Chap . 

1 5 ] , if any s t a t e i s nul l , then every s t a t e i s nu l l . The lemma ex tends th i s r e su l t 

from first moment to arbitrary moments . 

Examples of Markov cha ins of index k are to be found in a c l a s s of Markov 

cha ins cons idered by F e l l e r [ 1 ] . L e t X{n) be the Markov chain , and l e t 

p . = P{X(n) = Ej + 1 | X(n-l) = £ . ! , 

q. = 1 - p . = P\X{n) = El | X(n-l) = E}\, ; = l , 2 t . . . . 

Then 

t = l i=l t = l 

We obviously obtain a Markov chain with E(R^) < oo, £ ( / ? ^ + i ) = oc, where 

i _> 1, if the p. are such that 

n-1 n f 

El Pi-UPi = - ( 0 < e < D . 
1 1 n k + l + e 

2 After obtaining this result we learned that it had been obtained earlier by K. L. 
Chung and by R. N. Snow, in a more general form (unpublished). We omit the proof. 

75 



RECURRENCE-TIME MOMENTS IN RANDOM WALKS 129 

where 

C T = l . 
i nk+1+€ 

3. Comparison theorem for random walks. We shall now specialize from 
Markov chains to random walks. There is no loss of generality in taking the 
states of the walk to be consecutive integers, and we shall let p. denote the 
probability of transition from i to i + 1. To ensure irreducibility, we shall re
quire 0 < p. < 1 for all interior s ta tes . To apply Lemma 2, we must have the 
walk recurrent, so we shall assume that the boundaries, if any, are reflecting, 
and that (if the walk is unbounded in one or both directions) the probability 
of escape to infinity is 0. Denote the walk by W and its index by I(W). 

THEOREM 1. ( a ) / (/?;.) has a constant value, say 1 , for all i > j , and 
a constant value, say I , for all i < j . 

( b ) Further, I(W) = min {IL, IR \ . 

Proof. We shall first show that /( /f j +1, i) = I(Ri, j - i )• Consider a walk 
starting at i and indefinitely prolonged. It is certain eventually to reach i — 1; 
let M denote the number of times the walk is at i, including the start, before 
reaching i - 1; M has the distribution 

P ( « = m ) - ( l - p | . ) p ™ - 1 ; 

and given M = m, the walk consists of m — 1 steps from i to t + 1, m - 1 first 
passages from i+ 1 to i (denote these by R\\ •>•• •» / ? . ? , . ), and a terminal 
step from i to i — 1. Thus 

R. . = M + R(\\ .+ - . . + R^ .. 
I, l - i I + 1 , I 1 + 1 , 1 

Apply Lemma 1 (b ) , ( c ) , ( a ) . 

To complete the proof of (a ), represent a walk from i to /, i > / , as the sum 

Ri,j = Ri,i-i + #*-i,i-2> + ••• + #/ + i,/> 

and apply Lemma 1 ( a ) . As for ( b ) , this follows from Lemma 2 ( b ) . 

It is clear that in a walk over finitely many s ta tes , the index is oo. (See 
[ l , problem 8, p . 345].) Similarly, passages away from a reflecting boundary 
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have moments of all orders. The interest attaches to passages away from an 
unbounded side, and by virtue of Theorem 1 (b ) we may consider the two sides 
separately. We may therefore, without loss of generality, consider only passages 
to the left in semi-infinite walks unbounded on the right, and we may take the 
states to be nonnegative integers. We now approach the following general ques
tion: given the sequence of transition probabilities p , p , • • • o f such a walk, 
to determine the index of first passages from right to left. 

This question is somewhat analogous to the question of determining the 
minimum integer k such that the series 2-,X. is convergent. As in the conver
gence of series, all that matters is the performance of \p\ in the tail —any 
finite number of terms may be changed or suppressed without altering the result. 
We also have a "comparison" theorem. 

THEOREM 2. Consider two random walks, W and V, with transition prob
abilities { p. } and { q- |, respectively. If p. < q- for every i = 1, 2, • • • , then 
I(W)>I(V). 

Proof. We may assume that the walks begin at the same state . Refer both 
walks to the same infinite process Xi9 X2, ••• * where Xi9 X2, ••• are mutually 
independent random variables, each uniformly distributed over (0 , 1 ) . If the 
walk W is at state / for trial j , it proceeds to the right if and only if X. < p . , 
and similarly for walk V, which proceeds to the right if and only if X. < q.. 

Consider Xl9 X2, ••• fixed at observed values xl9 x2, ••• . Observe that 
$ and V always differ by an even number and that this difference changes by 
either 0 or 2 on each step. We shall show that walk W can never be to the right 
walk V* If it were, there would have to be a first time on which this occurred, 
and on the preceding time, say trial iy the walks would coincide, say at state / . 
But p. < q., so that x. < p. and x- > q- are contradictory. 

As an application, we remark: if lim sup p. < 1/2, then the index is oc; and 
if lim inf p. > 1/2, when the walk is nonrecurrent. This fact follows from com
parison with the classical walk with constant transition probability p. 

The fact just cited indicates that the interest will lie in those sequences 
I p.} for which lim sup p. _> 1/2 and lim inf p. <̂  1/2. We shall in the next 
section investigate a class of walks in which lim p̂  = 1/2, and these will serve, 
together with the comparison theorem, to handle a large class of problems. 

4. A class of random walks. We now consider a class of random walks which 
are related to the ordinary unbiased coin tossing. The random walk has as its 
possible s tates the integers r, r + 1 , r + 2 , • • • • Let 
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pk = P\X(n) = k + l } X(n-l) = k\, 

l-pk = qk = P\X(n) = k-l j A ( / i - l ) = * } , 

^ = P{ going from A: to r for the first time in n steps ! (k > r). 

Then 

? M + i = Pfc?* + l.n + ?* 1k-i,n (A > r ) . 

The state r will be an absorbing barrier. This implies that 

9r,0 = !» w h i l e ?r,n = ° i f * > ° • 

We shall set qr = 0 for all n as a convenient convention. Note that 

?r + i . i - ?r + i» w h i l e ? i ( 1 = 0 i f * > r + l ; 

?*,o-° if k>r-

Define 

G f c ( s ) - E %,nsn (& = r - l , r, r + 1 , . . . ) , 

and observe that 

G r . l ( s ) = 0, G r ( s ) = l . 

Let 

P^\{1~T\ 9*-i(1+i) ( A; = r, r + 1, • • • ) < 

Note that r = 0 gives us the ordinary case of unbiased coin tossing. 

The generating functions satisfy the following equations: 

Gk(s) = pksGk + i{s) + qksGkml(s) (k > r ) , 

Gr(s) = P r « G r + l ( s ) + qrsGrml(s) + 1 =qrsGr^(s) + 1 . 

Let 
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G(t,s) = ]TGk(s)tk = 

s \G(t>S)-tr 

+ tG ( t , s) + * r + —\\lG{t9 s)dt- f 
t G(t, s)-tr 

dt 

We now differentiate with respect to £ (0 < £ < 1) , use [ l - ( s / 2 ) Q A + t)Y*1 

as an integrating factor, and integrate the differential equation between the 
limits t and a = [1 - (1 - s 2 ) l / 2 ] / s , where 0 < t < o. We then obtain 

( i ) - G (t , s ) -;(Hr 
■ / * 

s t r-2 
+ rT r-i -i(Hr rfT. 

Let C/Xi denote the cth factorial moment of the first passage time from k to r. 
It is easily seen that the c\i^ (c fixed), if they are finite, cannot increase with 
k more than exponentially. Therefore, if c\i, < oo for some positive c and some 
k > r, then 

k-c 
k = r 

is convergent for sufficiently small U Therefore 

dc 

Hm G{t, s) = £ cH **"° 

exists for sufficiently small t if and only if c/x, < oo for some k > r ( and hence 
for all k > r ) . 

It is now easily shown that the first r derivatives of the integral on the right 
of ( 1 ) with respect to 5 are bounded in the closed interval (ty 1 ) , and hence 
have finite limits as s —> 1~. The ( r + l ) s t derivative, however, contains a 
term with the factor do /ds, which diverges as 5 —» 1 — . 

The same techniques can be used to prove the following result: 
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THEOREM 3 . If one has a onesided random walk with 

a > 0 ( A; = CC, a + 1, • • • ) then f\Lk < oo if r - 1/2 < a < r + 1/2 and k > a, 
while cfi, = oo for c > r and k > CC • 

We sha l l now cons ider walks with pn > 1/2. It i s c lear from Theorem 2 that 

for such walks the index i s 0. The in te res t now a t t a c h e s to the ques t ion of 

whether first p a s s a g e s are cer ta in to occur . 

LEMMA 3 . 3 Consider a random walk over the states 0, 1, 2, • • • • Assume 
p, _> 6 for some e > 0. The walk is recurrent if and only if the series 

* = l PXP2 • • • ? * 

is divergent. 

Proof. Consider first the finite walk over 0, 1, 2, • • • , n, and l e t Pj^' de

note the probabi l i ty tha t the walk, s ta r t ing a t k, r e a c h e s n before reach ing 0. 

Clear ly 

and 

pln) = pAnA + <ikpl":\ ( f t - i . 2 , . . . . » - i ) . 

We may so lve for P^n\ P$n\ • • • , P ^ in terms of P[n\ get t ing 

^ ( ^ ( n ) " * & > ) " Pk {P&\ ~ t ' ) U - 1. 2, . . . , » - 1 ) , 

and hence 

P i » > - ( l + fc1 + 62 + . . . + i5fc.1)P1<»>. 

where bs = (q q ••• q-)/(p p • • • p . ) . Now suppose 2Z^L fe. = oo. Since 
3We were informed by the referee that this lemma and the following theorem have 

also been obtained by T. E. Harris. 
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134 J. L. HODGES, JR. AND M. ROSENBLATT 

PM-PM/ l + "£ bk < l / l /£ b\t 
k=l k=l 

we must have P^n*—»0 as n—> co* ^ e conclude that the walk is recurrent. 

Conversely, suppose 2Lk = i b, < oo. Then £ & = ! b, = b , where 6ft is some 
positive number. Using the fact that 

k ~ o' 

P<»> = p f + a t P{nl n-\ rn-i ^rc-l rc-2 

we have 

n-2 

* = 1 / \ /c=l 

and therefore 

pM _ i 
n-2 

l + Z h + K-JPn-l 
k=l 

Thus 

lim P™ = 1/b > 0 , 

whence the walk is nonrecurrent. 

As an illustration, consider a random walk over the nonnegative integers 
with reflecting barrier 0 and 

p* 2 \ Bk/9 U = l , 2, . . . ; £ > 1 ) . 

THEOREM 4. The walk is recurrent if and only if ft >_ 2. 

Proof. Let 

P^ = P \ walk never reaches 0, given that it starts at k \ ( k = 1, 2, • • • ) . 

We have 
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p ' - ? K h l-3(l-jfirK.+5(I + £ K ' <*-*».->• 
Rewriting, we have 

/ 3 - 1 „ „ pk-1 L. P P _ P = 11 

Thus 

f / 3 - 1 j 8 - l 2 ) 3 - 1 / i S - 1 ( f t - l ) 0 - l \ 1 
r , = r . | l + + • + • • • + [ ••• L 

* M jS+1 0 + 1 2)3+1 \ / 8 + l ( A - l ) j B + l / J 

Recalling the preceding lemma, we see that the recurrence of the walk is equi
valent to the divergence of 

0 - 1 j B - 1 2 ) 3 - 1 / 8 - 1 2 j S - l 3y8^1 
1 + + . + • • + ••• = / (p). 

j 8 + l j 8 + l 2)3+1 j 8 + l 2/3+1 3)3+1 

We easily see that 

1 1 
/ ( 2 ) = 1 + - + - + . . . =oo, 

3 5 

so the walk is recurrent when j3 = 2. That it is recurrent for /3 > 2 then follows 
from the lemma. The series / ( ) 3 ) (1 < /3 < 2) , may be shown to be convergent 
as follows. For 1 < )3 < 2, 

r / 3+1 2/3+1 \ / 3 + 1 / 3/3+1 \ j 8 + l / \ 2 / 3 + 1 / 

< 1 + I+I(i-^Ul(i-^(i-^) + .... 
2 3 \ 3 / 4 V 3 / \ 5 / 

But 

( l _ ^ \ ( l _ ^ j . . . ( l _ i l ) < c-(2-)8)(i/3 + i/5 + ...+ i/aA+0 

< e[-(2-/8)/4]log (2A+I) = (2A; + 1 ) " ( 2 " ' 8 ) / 4 . 

Thus 

82 
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1 1 1 1 1 
f(B)<l + - + - + + • • • < o o . 

2 3 3 (2 - /3 ) /4 4 5(2-/3)/4 

The preceding class of examples of random walks together with the com
parison theorem (Theorem 2) now permit us to determine the moment properties 
of a large class of random walks. For example, the one-sided walks with 

p = _ ( l + ) (n - 1, 2, . . . ) 
n 2 \ n/3 I 

have the same moment index as the walk with pn = 1/2 if (X > 0, /3 > 1, while 
if )8 < 1, a < 0 the index is infinity (all moments ex i s t ) . For a > 0, the walk 
will be certain to return if j8 < 1, but not if /3 > 1. 

R E F E R E N C E 

1. W. Feller, An introduction to probability theory and its applications, Wiley, 
New York, 1950. 

UNIVERSITY OF CHICAGO 

83 


