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CHAPTER OVERVIEW 

In the control of infectious diseases, epidemiologic information and 
useful clustering algorithms can be integrated to garner key indicators from 
huge amounts of daily surveillance information for the need of early 
intervention. This chapter first introduces the temporal, spatial and spatio-
temporal clustering algorithms commonly used in surveillance systems – the 
key concepts behind the algorithms and the criteria for appropriate use. This 
description is followed by an introduction to different statistical methods that 
can be used to analyze the clustering patterns which occur in different 
epidemics and epidemic stages. Research methods such as flexible analysis 
of irregular spatial and temporal clusters, adjustment of personal risk factors, 
and Bayesian approaches to disease mapping and better prediction all will be 
needed to understand the epidemiologic characteristics of infectious diseases 
in the future. 
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INTRODUCTION 

Spatial epidemiology has been commonly utilized to describe and to 
analyze the geographical distributions of diseases in recent decades. The 
distribution patterns of diseases are further investigated by several risk 
factors including demographic variables, levels of social economic status, 
environmental factors, genetic variations, exposure-related behaviors, contact 
patterns, specific niche of the etiologic agent, and modes of transmission [1, 2]. 
In general, descriptive epidemiologic studies present the mortality or incidence 
rate of an interesting disease by using thematic maps. The best example is 
John Snow’s cholera map used in 1854 (Figure 10-1). Snow plotted all fatal 
cholera cases on the map to find that the contaminated pump was located on 
Broad Street in London, United Kingdom [http://www.ph.ucla.edu/epi/snow/ 
snowmap1_1854_lge.htm]. In recent decades, the geographic information 
system (GIS) has been applied to understand the epidemiology of infectious 
diseases, particularly the relationship among agent, host and environment 
[3, 4]. And it even helped to eliminate cholera outbreaks in Bangladesh [5]. 
 

 
Figure 10-1. John Snow’s dot map of cholera cases in 1854 (Source: http://www.ph.ucla.edu/ 
epi/snow/snowmap1_1854_lge.htm). 
 

Surveillance, a public health endeavor to monitor health data regularly by 
searching for evidence of a change, is the most cost-effective way to provide 
early warning signals and then to prevent outbreaks of infectious diseases 
[6]. The traditional analysis of geographical distribution of disease cases is 
generally to mark darker colors in a choropleth map1 with the location of 
cluster cases that can be identified visually. This approach is easily misled 

                                                 
1 Choropleth Map: A thematic map in which areas are distinctly colored or shaded to 

represent classed values of a particular phenomenon. 

1.

http://www.ph.ucla.edu/epi/snow/snowmap1_1854_lge.htm
http://www.ph.ucla.edu/epi/snow/snowmap1_1854_lge.htm
http://www.ph.ucla.edu
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by the misclassification of symbology2 or by neglecting temporal factors. On 
the other hand, much progress has been made in spatial techniques, which 
are frequently used to indicate the extent of “clustering” across a map. The 
follow-up spatial analysis can determine whether the increase in each epi-
demiologic measure is localized or general and even where high risk areas 
are located with statistically significant increases [7]. Furthermore, develop-
ment of spatial and temporal clustering methods may provide a more 
integrated picture of the dynamic diffusion of disease cases that could block 
further transmission more effectively. In other words, the combination of 
surveillance, spatial techniques, and statistical methods – particularly the 
methods developed for characterizing the spatial and temporal clustering, can 
not only improve the surveillance system but can also enhance the effective-
ness of the surveillance system to reach public health goals. 

CURRENT COMMONLY USED METHODS  
IN SPATIAL, TEMPORAL, AND TEMPO-
SPATIAL CLUSTERING 

Investigating disease clusters is an urgent task for public health authorities 
and professionals. If the disease happened non-randomly in temporal and 
spatial units, the clustering cases in time and place would be observed. Since 
outbreaks of emerging infectious diseases (EID) have been increasing rapidly 
in the past 2–3 decades, infectious disease surveillance becomes the most 
important task in public health. With the advances of information technology, 
electronic disease reporting systems have been established in many parts of 
the world. The real-time collection of disease information through the Internet 
is becoming more feasible [8]. However, numerous data need to be sum-
marized. Therefore, the development of more convenient algorithms to detect 
temporal and spatial clustering is necessary to help public health staff with 
routine monitoring. In general, temporal clustering algorithms focus on setting 

triggered [8–10]. Spatial clustering algorithms test the null hypothesis, which 
assumes the disease is randomly distributed. If the null hypothesis is rejected 
by the predefined confidence level, the so-called “spatial clusters” would 
occur. Since time and place are the two most important epidemiological 

                                                 
2 Symbology: The set of conventions, rules, or encoding systems that define how geographic 

features are represented with symbols on a map. A characteristic of a map feature may 
influence the size, color, and shape of the symbol used. 

2. 

up the baseline data for determining the threshold cut-off values. When
the observation value exceeds the expected value, the alert signal will be 

10. Surveillance and Epidemiology of Infectious Diseases 
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characteristics in infectious disease outbreaks, recently efforts have tried to 
consider both simultaneously. 

2.1 Temporal Clustering Methods 

2.1.1 Historical Limit, the Concept of Moving Average, and Scan 
Statistics 

Historical Limit 

Historical limit is a method that was frequently used to monitor infectious 
disease surveillance data in the United States before 2001 by requiring 
historical information – generally at least 5 years of background data – to 
serve as the upper baseline data for statistical aberration detection. If the 
observed value is higher than the 95% confidence limit of this upper baseline 
data, it is assumed that an outbreak would occur [10]. Therefore, the levels 
of baseline data in this method are easily influenced by the large-scale 
epidemic(s) of the past. 

The Early Aberration Reporting System (EARS), developed by the 
Centers for Disease Control and Prevention in the United States of America 
(US-CDC), consists of a class of quality control (QC) charts, including the 
Shewhart chart (P-chart), moving average (MA), exponentially weighted 
moving average (EWMA), and variations of cumulative sum (CUSUM) [10]. 
In temporal analysis of syndromic surveillance data, a common approach is 
the use of a sample estimate for obtaining the baseline mean and standard 
deviation (SD) to circumvent the possible difficulties associated with the 
baseline trend that may be complicated by the seasonality and daily fluctuation 
of the syndromic data [9]. 

The Application of Moving Average 

In 1989, Stroup et al. [11] used three simple moving average measures, 
moving average in mean, moving average in medium, and scan statistics, to 
implement historical limit methods on notifiable infectious diseases. The 
concept of analysis adopted the general form shown in  Equation 10-1. The 
numerator X0 was the observation value at the current time point (the temporal 
unit that can be daily or weekly or monthly, defined by the users). The 
denominator, serving as a baseline, was calculated as a mean or a median 

Public health professionals have used three main methods – historical

temporal clustering. 
limit, cumulative sum (CUSUM), and time series to detect cases with
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value of the same time period plus the pre- and post-periods within the past 
5 years (e.g., total 15 time points) (Figure 10-2). 

Baseline
X 0  (10-1) 

 

 
Figure 10-2. Baseline for comparison cases reported for March 1987 [11]. 

 
Since 1989, the historical limit method has been employed in the 

summarized surveillance results of the U.S.A. published in the Morbidity 
and Mortality Weekly Report (MMWR). The case numbers of a reported 
specific disease for a given health outcome in the three most recent time 
periods (pre-, current, post-) are compared with historical incidence data on 

years. The results are shown by comparing the ratio of the current case 
numbers with the historical mean and SD. The historical mean and SD 
involve the 15 totals of the three time intervals, including the same pre-
viously mentioned three periods (the current period plus the preceding one 

historical data. For example, if we want to know whether the influenza-like 
illness (ILI) cases in September of 2008 are unusual or not, the ILI case 
numbers of August, September and October in each year from 2003 to 2007 
need to be added up to obtain a mean or a median for comparison. For an 
infectious disease with a strong seasonality trend, the seasonally adjusted 
CUSUM can be applied. That is, the positive one-sided CUSUM where the 
count of interest is compared with the 5-year mean ± SD for that specific 

the same health outcome from the same three time periods of the preceding 5 

period, and the subsequent one period over the preceding 5 years) as the 

10. Surveillance and Epidemiology of Infectious Diseases 

period. Similarly, Taiwan’s emergency department syndromic surveillance 
system can track diseases with strong holiday, post-holiday, or weekend effect 
because closures of most local clinics occur on most holidays/weekends.  
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To verify the accuracy and sensitivity of the outbreak detection, the 
epidemiologic investigation has to be followed. In 1993, Stroup et al. [12] 
compared the historical limit method with three other methods (bootstrap, 
jackknife, delta) for estimating standard error to detect abnormal time 
clusters. The results showed that the values estimated by using the historical 
limit method and delta method were close to the true value. The variance 
values estimated by the two methods were under-estimated, which might 
result in over-alert. Therefore, using bootstrap in the historical limit method 

2.1.2 Cumulative Sum 

Cumulative sum (CUSUM), a method initially used in quality control, 

was to set up a control limit under a steady period. The strength of CUSUM, 
similar to the exponentially weighted moving average control chart, is to 
detect small shifts in the process mean even without historical data for 3–5 
years. Two important parameters are used in CUSUM. First, an appropriate 
value for the control limit, h, is based on the average run length (ARL) of the 
CUSUM, while the failure rate is acceptable within a time interval for 
quality control that can be regarded as the upper limit of failure rate in 

other parameter is k, which represents the minimum standardized difference 
from the running mean. The traditional CUSUM chart generally uses the 
sum of differences both above and below the mean to detect anomalies in 
either direction. For biosurveillance, an upper sum SH is used to look only 
for excessive counts in which small differences are ignored and only 

to detect a shift of one SD. 
Since the anthrax attack [10] that occurred shortly after the September 

11, 2001World Trade Center Attack, more interest has arisen in using public 
health approaches that could rapidly detect “unusual events” without 
requiring several years of background data. Therefore, newly developed non-
historical aberration detection methods can analyze data as short as 1 week. 

ments from C1, C2 to C3 to increase the sensitivity of the detection based on 

then developed [9]. For C1 and C2, the CUSUM threshold reduces to the 
mean plus 3 standard deviations (SD). The mean and SD for the C1 are 
based on the raw data from the past 7 days. The mean and SD for the C2 and 
C3 are based on the data from 7 days, ignoring the two most recent days to 

to obtain an estimated confidence interval is a good statistical approach. 

quality control or the case number of a studied disease in surveillance. The 

has recently been applied to surveillance [13]. The original idea of CUSUM 

day/week/other time unit t) are counted. A common practice is to set k at 0.5 

a positive one-sided CUSUM calculation from a week’s information, was 

differences of at least 2k standard deviations above the mean μt (mean of 

To consider daily variation, the revised CUSUM method, using the measure-
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minimize the bias. For C1 and C2, the test statistic on day t was calculated as 
St = max [0, (Xt − (μt + k*σt))/σt] where Xt is the count data (number of 
cases) on day t, k is the shift from the mean to be detected, and μt and σt are 
the mean and standard deviation of the counts during the baseline t time 
period. For C1, the baseline period is (t-7 to t-1); for C2 the baseline is (t-9 
to t-3). The test statistic for C3 is the sum of St + St-1 + St-2 from the C2 
algorithm. Using these C1, C2 and C3, outbreaks of any infectious disease 
with a strong seasonal or regular fluctuation trend can be easily detected. 
This is particularly useful for an agent such as influenza virus, in which 
different types or subtypes of the virus are dominant each year in addition to 
continuous antigenic drifts. 

2.1.3 Time Series 

Based on the epidemiologic characteristics of each infectious disease, 
certain diseases have trends in the periodicity of epidemics. Therefore, 

epidemiologic data or to predict future time points in a series. The fine-
tuning characteristics of ARIMA involve adding lags of the different series 
and/or considering time lags of the forecast errors to the prediction equation 

selected is very critical. The cyclical pattern of time intervals such as seasons 
or months or other time units should be represented in the training data. 
Then, the dynamic pattern would be updated and predicted by the latest data. 
This time series model has recently been used in predicting the impact of 
several infectious diseases related to climate changes. 

2.2 Spatial Clustering Methods 

To analyze spatial data, the characteristic of the data – pointed data or 
regional data – needs to be examined first. In general, northern, southern, 
central and eastern Taiwan regional data are frequently used in routine 
surveillance for monitoring possible changes of several important infectious 
diseases in different geographical areas. Once the outbreaks occur, point data 
will be gathered by collecting the geo-coding information of the cases’ 
addresses or by using a Global Positioning System (GPS) to locate any 

to better predict the temporal trend. The Serfling model uses regression by

possible time and wave of the outbreak. The ARIMA models fit better with 
grated moving average model (ARIMA) or the Serfling model to predict the 

used in the excess mortality data analysis of influenza or pneumonia and 

time series data that can be applied to better understand the characteristics of 

influenza. Using these methods, the training period of the dataset to be 

researchers could use time series models such as the autoregressive inte-

adding sine and cosine functions to adjust the periodicity. It is frequently 

10. Surveillance and Epidemiology of Infectious Diseases 
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important sites related to possible exposures of the cases for further detailed 
investigation. 

The next step is to select appropriate methods for analysis of spatial 
clustering. Three methods of spatial clustering, including global cluster, 
local cluster and focused cluster, are frequently used for analyzing 
epidemiologic data [14]. Spatial autocorrelation, involving global indices 
and local indices as the degree of association between a factor of interest and 
its specific location, is a convenient approach to explore the degree of spatial 
clustering among cases and the possible associated spatial risk [14]. 

2.2.1 Global Clustering Test 

Global cluster detection methods can help to determine whether or not 
spatial clustering exists in any place of the study period statistically [15]. 
Positive spatial autocorrelation reflects a “clustering” of points related to a 
particular variable of interest to be assessed. Negative spatial autocorrelation 
(e.g., spatial outliers) displays inverse correlation between the tested neighbor-
ing areas based on the attribute of interest. A zero spatial autocorrelation 
indicates a random distribution rather than a cluster or a dispersed distribution. 
This method is particularly useful if the source of infection is unknown or 
not easily identified. The limitation of this method is that it cannot identify 
the specific location(s) of spatial cluster(s). 

Clustering tests involve four types – (1) area-based tests for global 
clustering, (2) point-based tests for global clustering, (3) area-based tests for 
local clustering, and (4) point-based tests for local clustering. Different 
statistical tests are used for each of these four types, depending on the type 
of data. Area data emphasize analysis on the relationship between the tested 
area and its neighboring area. Pointed data stress the distance between the 
two points. However, the central point of an area can be regarded as a point 
and then be tested in point data. Besides, both LISA and Moran’s I spatial 
autocorrelation tests in Table 10-1 can be applied to point or polygon data, 
depending on the definition of the spatial relationship. If public health 
authorities have pointed data, more hypotheses can be tested and better 
diffusion dynamics of cases can be described. To protect patients’ privacy, 
more area-type data are available than pointed-type data, particularly for 
those infectious diseases with higher social stigma. 

Table 10-1 summarizes the clustering methods. The first two methods 
(Whittemore’s test and K nearest neighbors) are global tests for pointed data 
and the next three methods are local tests for pointed data. Whittemore’s test 
is to measure the mean distance of all cases divided by the mean distance of 
all individuals in that area. IF this ratio is less than 1, it reflects there is a 
cluster. In addition, the K nearest neighbor method assumes that the spatial  
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Table 10-1. Summary of the most commonly used spatial clustering algorithms. 
 

Data format 
(point/polygon) 

Type of method 
(global/local) 

Statistical methods Authors 

Point Global Whittemore’s test Whittemore et al. (1987) 
Point Global K nearest neighbors Cuzick and Edwards (1990) 
Point Local Geographical analysis 

machine (GAM) 
Openshaw et al. (1987) 

 
Point Local Besag and Newell test Besag and Newell (1991) 
Point Local Satscan Kulldorff (1995) 
Area Global Moran’s I Moran (1950) 
Area Global Geary’s C Geary (1954) 
Area Local Gi Getis and Ord (1992) 
Area Local Local indicator of spatial 

association (LISA) 
Anselin (1995) 

 
 

distribution of cases is random. If the observed value is higher than the 
expected value, it means a spatial cluster is present there. However, this test 
does not point out where the cluster is. 

On the other hand, two global tests for area-type data are Moran’s I and 
Geary’s C tests. Moran’s I statistic works by comparing the value at any one 
location with the value at all other locations. Moran’s I is the most frequently 

reveal whether there is evidence of clustering or indication of the evidence 
of hot spots, shown by geographic boundary aggregated data. The results of 
Moran’s I vary between −1.0 and +1.0. The Moran’s I > 0, =0, and <0 
indicate the positive spatial autocorrelation, random distribution, and negative 
correlation, respectively. If areas are close together with similar values, the 
Moran’s I result is high. Geary’s C statistic is used to describe differences at 
the local level by measuring the deviations in intensity values of each point 
with one another. The values of the C statistic vary between 0 and 2, where 

than 1 indicate evidence of positive spatial autocorrelation, and values 
between 1 and 2 indicate evidence of negative spatial autocorrelation. 

2.2.2 Local Clustering Test 

This method can provide definitive information on the specific location 
of clusters derived from local autocorrelation indices to evaluate clustering 
trends of an interested variable or factor, particularly under the condition 
with unidentified source of the infection, by determining whether the data 

 

 

values equal to 1 represent spatial independence for each point, values less 

used as the screening tool for clusters in global testing. It is generally used to 

10. Surveillance and Epidemiology of Infectious Diseases 
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are spatially similar or different at that specific area/site [16]. Practically, 
public health personnel can use this method to define the risk areas of a 

of dengue in 2002 in Taiwan was fast spreading. First, we investigated 
whether clustering occurred using the “global cluster” test. Then, the 
boundary between Kaohsiung City and Kaohsiung County was identified by 
“local cluster” test, and prevention and control efforts were immediately 
implemented. In infectious disease epidemiology, the local clustering test is 
very useful in investigating not only the source of the infection but also 
potentially unidentified risk areas that might facilitate subsequent diffusion 
and further spread of cases. 

Satscan is a point-based test for local clustering whereas Local Indicator 
of Spatial Autocorrelation (LISA) is an area-based test for local clustering. 
Both methods are very frequently used. LISA divides the significant areas 
into four categories: (1) high-high for central area is high and neighboring 
area is also high, (2) high-low, (3) low-high and (4) low-low. The other area-
type data local test is Gi and its calculation is quite simple. High Gi value 

value indicates the existence of cluster in low Gi value areas, similar to high-
high and low-low areas in LISA, but it does not involve the other two 
categories in the LISA method. 

Scan Statistic 

Spatial scan method, initially used to detect clusters in cancer epi-
demiology [17], has been applied to infectious diseases since 2000, such as 
bovine tuberculosis in Argentina, Toxoplasmosis in Southeast Asia, West 
Nile encephalitis in the United States, and human granulocytic ehrlichiosis 
near Lyme disease in Connecticut [18, 19]. The spatial scan can handle both 
point and area types of data, and it takes the central point of each polygon of 
the area-type data to be calculated. Nowadays, Satscan, which uses a circular 
window (circle centroid) to scan the entire study area to calculate the 
likelihood ratio, has become the most popular tool to detect diseases clusters. 
For any given location of the centroid, the radius of the screened window is 
continuously changed to take any value between zero to a certain upper 
limit. 

The size of the circular window changes until the predefined population 
is screened. The maximum size of this circular window in the tested area has 
to be less than 1/2 of the target population to get a meaningful likelihood 
ratio in comparison with those in other areas and to avoid the overlap areas 
as well. After scanning the whole area, the area of the maximum likelihood 
ratio with statistical significance, so-called “clustering area,” will be obtained. 

disease for further prevention and control efforts. For example, the epidemic 

represents the presence of clusters in high Gi value areas whereas low Gi 
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Local Indicator of Spatial Autocorrelation 

In many studies, the LISA method has frequently served as the spatial 
risk index to identify both significant spatial clusters and outliers [22]. Spatial 

opposite to its neighboring areas. The definition of a LISA index is: 

1
( )

n
ji

ij
j

X XX XI i W
δ δ=

−−
= × ×∑  

where I(i) = the LISA index for region i, Wij = the proximity of region i to 
region j, where a value of 1 means the region i is next to the region j, and a 
value of 0 means the region i is far away from the region j, Xi = the value for 
the tested variable in region i, Xj = the value for the tested variable in region 
j, X  = the mean value of the tested variable, δ = the standard deviation of 
Xi, and n = the total number of regions to be tested. 

A positive l(i) value of the LISA index designates that a region and its 

area-specific cases of an interested infectious disease in the tested region and 
its neighboring areas approach homogeneity. In contrast, a negative l(i) 
value, which tends toward the opposite values between Xi and Xj (i.e., 
Xi = high, Xj = low or vice versa), specifies that the spatial dependency is 
negative, thereby suggesting that the region is a spatial outlier in relation to 
neighboring regions. In general, a Monte Carlo statistical test is used to 
evaluate the significance of spatial clusters and outliers [23]. Using LISA 
index values, risk areas of any infectious disease, such as dengue in southern 
Taiwan, have been classified into several different risk levels for implementing 
various control strategies to counteract outbreaks [24]. 

GAM and Besag and Newell Tests 

The other two local clustering methods for pointed data are geographical 
analysis machine (GAM) and Besag and Newell tests. GAM is to test 
whether there is a statistically significant high disease rate by comparing 
each circle of the studied area with various radius values. The Besag and 
Newell test assumes that k is the minimum case number of the clustering 
area and then uses each case as a center to look for k-1 cases regarded as a 
cluster. In this way, the lacking neighboring cases force the investigator to 

However, the circular window in the spatial scan method is not the natural 

outliers present particular areas that have values of the tested variable 

[21] have been developed recently. 
shape of most clusters. Therefore, an ellipse shape [20] and irregular shape

neighboring areas tend toward local spatial dependency. In other words, 

10. Surveillance and Epidemiology of Infectious Diseases 
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look for further areas so that the case number divided by larger searching 
area becomes a smaller value implying “cases without cluster.” Both of these 
two methods result in the overlaps of sub-clusters (circles with different 
radius values or different k-1 cases), in which case the GAM method offers 
higher repetition without independence that may provide more false positives. 

2.2.3 Focused Clustering Test 

The “focused clustering” test is to assess the clustering of the observed 
cases around a fixed point – the smallest scope that is different from “general 
clustering” or “local clustering” without having any prior information on the 
centre of clustering. Therefore, this test has been used to investigate raised 
incidence of disease, particularly the rare disease or the beginning period of 
an outbreak of infectious disease, in the vicinity of pre-specified putative 
sources of increased risk. In addition, the focused clustering method is 
applied to detect whether there is an excess risk or a cluster of cases of a 
disease around a putative source of the infection [25]. Stone’s test [26] is a 
very popular method used in testing “focused clustering” since it is based on 
traditional epidemiological estimates after adjusting the important confounders – 
standardized mortality ratio (SMR) or standardized incidence ratio (SIR). 

The following summary Table 10-1 helps readers to firstly assess which 
type of spatial data – pointed format or area format – are collected. Then, 
global clustering tests can be employed to examine the presence of clusters 
or not. If the answer is “yes,” subsequent local clustering tests will be 
followed to indicate the exact location of the case clustering areas. All these 
methods can be found in GIS software or free statistic test R packages.3 
Different statistic tests using the same datasets can also be simultaneously 
compared and evaluated to find out which one offers the best power. In 
general, spatial scan statistic has good power in detecting hot spot clusters. 

2.3 Spatial and Temporal Clustering Methods 

In addition to a spatial clustering method, temporal factors must also be 
taken into consideration. Analysis of spatial clustering data is quite similar to 
the data analysis in cross-sectional study design in epidemiology. When the 
distribution of the cumulative cases is displayed, it only explains the results 
of the overall pattern without definite conclusions on causal inference. Once 

                                                 

 

3 The R Package for Multidimensional and Spatial Analysis: This is a group of programs 
(Macintosh and VAX/VMS) that allows public health data analyzer to perform with ease 
various complex multidimensional and spatial analysis procedures (http://www.r-project.org). 

http://www.r-project.org
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the temporal factors are included into the analysis, the results can clearly 
show the different waves of the epidemics, the transmission patterns, and 
possible risk factors that are involved in different time periods. Then, the three 
most important epidemiologic characteristics – person, place and time – can 
be simultaneously integrated to obtain more insights than each characteristic 
alone. Here we briefly introduce two methods, namely Knox method and the 
space-time scan statistic, which integrate spatial and temporal factors. 

2.3.1 Knox Method 

The Knox method is to test for space-time interactions, particularly when 
there are different impacts of time factor on the studied population in various 
regions [27, 28]. The time and geographical location of each case is obtained. 
For each possible pair of cases, the distances between them are also 
calculated in time and space. If many of the cases that are “close” in time are 
also “close” in space or vice versa, then there is a space-time interaction. 
Users can predefine how close the time period and the geographical distance 
are to one another of those studied cases in temporal and spatial units, based 
on their research questions. Then for each space-time combination, expected 
values will be calculated by a 2 × 2 contingency table [29]. Cases are 
assumed to be rare, independent events, distributed as a Poisson variable. 
The significance of the departure of the observed number of close pairs (O) 
from the expected number (E) is tested using d, where: 

)(
)(

OVar
EOd −

=
 

The Knox test is attractive in epidemiologic data analysis because it is 
simple and straightforward to calculate the test statistic without requiring the 
knowledge of controls. However, the Knox test can be biased if the population 
growth is not constant for different geographical areas (e.g., distribution does 
not meet Poisson distribution). For detecting an “early” outbreak of infectious 
disease, such bias is not a major problem to be considered. 

2.3.2 Space-Time Scan Statistic 

Space-Time Scan Statistic [16], an improved version of the purely spatial 
scan method, is defined by a cylindrical window with a circular geographic 
base and with height corresponding to time. The base will vary the radius 
continuously. The height reflects any possible time interval of less than or 
equal to half the total study period. The likelihood in each cylinder will be 

A d value greater than 1.96 indicates that there is a statistically significant 
cluster at p-value 0.05. 

10. Surveillance and Epidemiology of Infectious Diseases 
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calculated. Using the cylinder with the maximum likelihood, and then 
selecting the tempo-spatial one with more than its expected number of cases, 

Comparing the Knox and space-time distance methods, the Knox method 
categorizes the individual case’s space-time distance into several groups and 

The space-time scan statistic, a purely spatial scan, uses the cylinder as the 
scanning window and the height is time. It scans over the study area by the 
different radii of the base to calculate the observed values in different areas. 
The expected value can be calculated by Monte Carlo simulation. Finally, 
the question on tempo-spatial clusters can be tested to determine whether the 
observed value exceeds the expected value. For example, if point data of 
individual cases from outbreaks of infectious diseases such as dengue or 
enterovirus-related cases are available, the Knox method is very suitable to 
apply. Alternatively, when an overall incidence or prevalence rate from 
different geographical regions rather than individual case data is available, 
the space-time scan method is more appropriate to use. 

CASE STUDIES USING SPATIAL CLUSTERING 
METHODS IN INFECTIOUS DISEASE 
EPIDEMIOLOGY 

The following sections introduce the application of the above spatial and 
spatio-temporal methods to infectious diseases with public health significance, 
including respiratory spread, gastrointestinal-related (GI) transmission, vector-
borne transmission, zoonotic and emerging infectious diseases. 

3.1 Respiratory Spread 

increasing cases of acquired immunodeficiency syndrome (AIDS) and multi-
drug resistant tubercle bacilli. The incidence rate of TB in the Fukuoka 
Prefecture urban area of Japan (Figure 10-3a) in 2001 was higher than that of 
the nationwide data. Using local cluster tests for pointed data by spatial scan 
statistics and spatial-temporal scan statistics, the spatial analysis alone 
identified TB clusters in different geographical areas of Japan that occurred 
in different years (Figure 10-3b), including: (1) Chikuho coal mining area in 
1999, 2002, 2003 and 2004, (2) Kita-Kyushu industrial area in 2000, and 
(3) Fukuoka urban area in 2001 [30]. However, using the space-time analysis, 
the most likely clusters were found in the Kita-Kyushu industrial area in 

3. 

Epidemics of tuberculosis (TB) have reemerged in recent years due to the 

distance between the cases is determined by the user-based research questions. 
then uses a test similar to the Chi-square test. The temporal and spatial

is denotes the most likely cluster. 
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Kyushu industrial area in 2000 before the occurrence of other spatial clusters 
from 2002 to 2004. Further analysis found that the occurrence of TB in the 
clusters located in northern Fukuoka Prefecture in 2000 were also significantly 
higher than those clusters identified in other years. In conclusion, spatial 
method alone can be used to evaluate the cluster cases in each year whereas 

within a specific time period and their dynamic changes over different time 
periods and places as well. 

 
 

 
 

 

 
Figure 10-3. (a)The Space-time Analysis detected clusters of TB cases in Kita-Kyushu 
industrial area located in the northern Fukuoka Prefecture during 1999~2004, based on the 
historical data from 1999 to 2004 [30]. (b) Locations of the clusters of TB cases detected in 
Fukuoka Prefecture from 1999 to 2004, based on a purely spatial analysis [30]. 

2000. In other words, clusters of cases had already appeared in the Kita-

spatial-temporal methods can be applied to find out where cluster cases are 
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3.2 GI-Related Transmission 

Giardia lamblia is the most frequently identified human intestinal proto-
zoa in Canada with an estimated prevalence of 4–10%. The spatial scan 
statistic was used to identify local spatial clusters of those cases with pointed 
data, to measure the possible “rural” effect from the distribution of the giardiasis 
and to explore the associations between the area-specific giardiasis rates and 
the manure application on agricultural land and livestock density [31]. Finally, 
giardiasis clusters in southern Ontario were identified (Figure 10-4a). How-
ever, neither livestock density (Figure 10-4b) nor manure application on agri-
cultural land plays an important role in the epidemiology of giardiasis there. 

 

 
Figure 10-4. (a) Spatial distribution of giardiasis with significant high rate of giardiasis 
clusters located in southern Ontario during 1990–1998, (b) Spatial distribution of cattle 
density in southern Ontario[31]. 

3.3 Vector-Borne Transmission: Dengue as an Example 

To retrospectively detect spatio-temporal dengue clusters at patients’ 
homes (point-type data) in Iracoubo, French Guiana and the disease onset 
dates during 2001 [32], GIS integrated with the Knox method was employed. 
Heterogeneity in the variations of relative risk (RR) in space and time was 
found to be associated with mosquito factors, including mosquito feeding 
cycle, host-seeking behavior, and life span of mosquitoes. Particularly, 
higher RR values were more likely to be identified in the time periods and 
areas with shorter temporal and spatial distances (Figure 10-5a) and more 
clear suspected/confirmed dengue clusters were detected in shorter time 
distances (Figure 10-5b). In addition, confirmed dengue cases showed 
more clear higher risk (in red color) than suspected dengue cases, illustrating 
the importance of laboratory diagnosis. The cluster analysis also proved that 
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the probability of observing a dengue case outside of 100 m around the dengue 
foci, a distance measured to correspond to a statistical threshold, was low. 
However, this threshold could vary if the case numbers increased with the 
improved surveillance system. By contrast, Taiwan’s GIS analysis of con-
firmed dengue cases showed that the relocation diffusion occurred more 
frequently as the duration of the epidemic wave in that epidemic site became 
longer [33]. In other words, spatial limit of transmission, expanding distribution 
of mosquito vectors even after control efforts, and dynamic changes in 
populations at risk (e.g., susceptible) can be obtained more precisely once 
integrated temporal and spatial data are simultaneously analyzed. The 

 
 

 
 

 

 
 

Iracoubo, French Guiana during 2001, when space-distance and time-distance from the first 

area for dengue fever (within 100 m and 30 days boundaries), derived from both the laboratory- 

Figure 10-5. (a) The relative risk (RR) calculated from the confirmed dengue cases in 

cases (B) in Iracoubo, French Guiana. Vertical dark

situation might be even more complicated for malaria, which involves  

positive dengue cases (A) and all suspected 
periodicity, and horizontal dark lines correspond to apparentlines indicate an apparent temporal 

spatial breaks [32]. 

index suspected dengue case varied from 0 to 500 m and from 0 to 60 days, respectively. Color
areas indicated their RR values significantly greater than 1 (p < 0.001) [32]. (b) Main risk
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different species of mosquitoes and their variations in ecology [34], and for 
yellow fever, in which the immunity following vaccination means public 
health officials need to consider the “population at risk” as well as naturally 
acquired infection [35]. 

3.4 Zoonosis: Rabies as an Example 

Zoonotic diseases involve the ecology of infectious diseases while animals 
in nature are sick. Therefore, the surveillance of zoonosis must start from the 

 
 

 
 

 

 

terrestrial rabies virus variants – defined by monoclonal antibody typing [36]. (b) The 

of both animals and humans. Solid arrow (Right) indicates the geographical distribution of

Figure 10-6. (a) Reservoirs for Rabies Virus in the United States. Geographic distribution of 

“positive” rabies identified by laboratory diagnosis. Dashed arrow (Left) indicates reported cases

distribution of rabies in the USA, using complete web-based easily updated rabies RabID data 

with the samples tested as “negative” for rabies [36]. 

targeted animal population, its ecological niche and possible associated  
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environmental factors [4]. Particularly, a disease such as rabies would lead to 
higher case fatality rates if proper treatment and control were not implemented 
in a timely manner. Therefore, a GIS web-based platform for the surveillance 
of rabies named “RabID” was set up to rapidly map the animal rabies cases, 
to track the rabies reservoir and then to disseminate this information for public 
education at the US-CDC [36]. Several geographically discrete terrestrial 
wildlife reservoirs were identified (Figure 10-6a). In addition, real-time and 
web information on the type of animals infected and associated genotypes 
and strains of rabies virus identified by monoclonal antibodies have been 
shared among local animal and public health personnel across various geo-
graphical areas. This information will certainly facilitate the timely manage-
ment of rabies control (Figure 10-6a and b). In other words, GIS information 
with integrated spatial epidemiologic characteristics is very useful for prevention 
and control on zoonotic or vector-borne infectious diseases, from public health 
planning to implementation and evaluation of the effectiveness of control. 

3.5 EID: Avian Influenza as an Example 

Avian influenza has been an increasing public health threat since the 
cross-country spread during 2003–2004. Between October 2005 and June 
2006, 161 outbreaks of highly pathogenic avian influenza (HPAI) H5N1 
occurred in poultry villages of Romania [37]. Using two combined temporal 
and geostatistical methods, Anselin’s local indicator of spatial autocorrelation 
statistics (LISA) for area-type data and space-time permutation scan statistic 
for point-type data, the clusters of H5N1 were identified. The former method 
focuses only on spatial clusters and the latter method simultaneously con-
siders temporal and spatial clusters. The space-time permutation scan statistic 
method is particularly useful in infectious diseases with shorter incubation 
period but closely associated with large-scope ecology and also in those 
situations where the numbers of populations at risk is unknown in syndromic 
surveillance [18]. The results found that the locations of the clusters were 
different by using the two different cluster algorithms (Figure 10-7a and b). 
The origin, evolution and increasing spread of the epidemic can be grasped 
more clearly. The outbreak first appeared in the region of the Danube River 
Delta by the introduction of the virus, implying the importance of landscape 
epidemiology. Then, the movement of poultry might facilitate its further 
spread to central Romania the next year. Using the spatio-temporal methods, 
the progression of the outbreak from a confined, local epidemic extended to 
a large, nationwide epidemic can be fully understood. Such efforts are very 
helpful to minimize the spread of the next H5N1 epidemic in other countries 
and the future global spread of HPAI H5N1 viruses. 
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Figure 10-7. (a) One cluster (open circle) of HPAI subtype H5N1 and the villages with 
outbreaks (filled circle) in Romania, October 2005–June 2006, were identified by the local 

subtype H5N1 and the villages with outbreaks (filled circle) in Romania, October 2005–June 

 
To summarize the analysis of temporal and spatial clusters for infectious 

diseases with different modes of transmission, both the transmissibility and 
pathogenicity of the microbial agents are the key factors to determine the 
best method to be selected. For the diseases with high transmissibility and 
high pathogenicity, the rapidly cross-geographical spread shown by a cross-
sectional map with the appearance of cases might indicate an emerging 
infectious disease which needs to use integrated spatio-temporal clustering 
methods for further data analysis. For the diseases with low transmissibility 

indicator of spatial autocorrelation statistic [37]. (b) Three clusters (open circle) of HPAI 

2006, were identified by the space-time permutation scan statistic [37]. 
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and high pathogenicity, the spatial clustering method can capture the distribution 
of the cases. For the diseases with high transmissibility and low patho-
genicity, temporal clustering methods would need to be used to obtain warning 
signals as early as possible. 

Until now, we have not had the perfect method to detect all kinds of 
clusters. Due to the unknown clustering pattern, it is better to use more than 
two methods to cross-validate the clusters before drawing a final conclusion. 

4. CONCLUSIONS, LIMITATIONS AND FUTURE 
DIRECTIONS 

4.1 What We Have Learned in the Past 

Spatial and temporal clustering methods have been applied to prevention 
and control measures of infectious diseases, from improving surveillance 
systems, real-time integrating of clinical, microbiologic, environmental and 
epidemiologic data, to understanding the epidemiologic characteristics of 
infectious diseases and evaluating the effectiveness of control measures. 

In routine surveillance systems, the algorithms such as CUSUM, ARIMA 
and Satscan have been widely used in different surveillance systems to detect 
early abnormal signals. The sensitivity and specificity of the algorithms for 
aberration detection need to be evaluated by each algorithm using different 
datasets. In general, the incorporation and integration of several different 
algorithms to complement each other can help to verify the occurrence of an 
outbreak. 

For those infectious diseases with high communicability such as measles, 
smallpox or a disease with a high case fatality rate such as rabies, Ebola 
hemorrhagic fever and highly pathogenic avian influenza H5N1, or a disease 
with fast transmissibility such as the 2009 swine-origin H1N1 in human 
populations, the real-time integration of clinical, microbiologic, environmental 
and epidemiologic data is crucially important to increase the efficiency and 
accuracy of surveillance. Spatio-temporal analysis of the updated confirmed 
cases is frequently compared with that of the reported suspected cases for 
investigating how the epidemic expands rapidly and where analysis can be 
further improved. These analytic results can then provide positive feedback 
to improve the surveillance system and can also point out those high risk 
areas in need of more attention. 

In the analysis of epidemiologic data of an infectious disease, spatial and 
temporal clustering algorithms can be applied after collecting the spatial 
information using GPSs of geo-coded addresses of the studied cases and their 
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exposure sites. Through fully understanding the epidemiologic characteristics 
of the outbreak disease, the specific prevention and control strategies can 
be formulated based on scientific data. This is most important for emerging 
infectious diseases when the etiologic agent is not known, such as the cross-
country outbreak of severe acute respiratory syndrome (SARS) in 2003. For 
example, the modes of transmission, the time period that is most communic-

4.2 Limitations of GIS Studies and Unsolved Problems 

Several limitations of GIS studies need to be improved including data 
collection, quality of data to statistical methods and interpretation of the data. 

4.2.1 Data Collection and Quality of GIS Data 

In data collection, timely data and “modifiable area unit problem” (MAUP) – 
similar to ecological fallacies in epidemiology – are the two major barriers. 
Available timely data are important to fast-spreading infectious diseases 
such as most respiratory infections. In addition, the high quality of GIS data 
is another limitation in many developing countries. By contrast, those pointed 
address data of cases related to privacy are generally inaccessible in developed 
countries. Most importantly, for infectious diseases involving higher social 
stigma or patients’ private life such as tuberculosis, sexual transmitted disease 
(STD) or AIDS, the pointed data for spatial cluster analysis will be very 
difficult to obtain. Then, the problem of spatial precision or polygon data 
will make it very hard to investigate the evolution of the outbreak by time 
and place simultaneously or to search for interesting hypotheses. Since most 
public health systems are governed by local departments, it is very likely 
those surveillance data are frequently aggregated into administrative units. 
Unfortunately, different densities and distribution patterns of disease, such as 
cholera in Figure 10-8, exhibited from different aggregated administration  

unclear at the initial stage of disease outbreaks [38]. The subsequent cases 
after the introduction of prevention and/or control measures can also be 
carefully evaluated to verify the most effective strategy, using time-based 
integrated surveillance data. The visualized dynamic distributions of cases in 
various time periods and places at different levels of the public health system, 
from local, state/provincial to national and international, can be presented to 
generate hypotheses and to verify the success of containing the outbreak for 
decision-makers. Most importantly, evidence of spatial clustering along with 
other epidemiological findings and laboratory tests may indicate a possible 
infectious etiology for emerging infectious disease, similar to Epstein Barr 
virus for Hodgkin’s disease [39]. 

able, and the spatial patterns of the cases with different social contacts are 
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Figure 10-8. Different density maps and distribution patterns of cholera are shown by using 
different aggregative levels [40]. 
 

appropriate spatial units related to possible hypotheses at the initial stage of 
data collection. 

4.2.2 Limitations in Statistical Methods and Interpretation of Data 

Several unsolved statistical methods include too small value of relative 
risk to be detected, multiple covariate adjustment in spatial analysis, and 

among study areas was lower than 1.5, the sensitivity of the detecting clusters 
dropped dramatically. However, the specificity can still keep a high perform-

should be low. Then, the false negative might be high. Under this circumstance, 
it is better to take specimens for laboratory diagnosis to increase the specificity. 
In addition, the demographic variables such as age structure and gender ratio 
are the frequently encountered confounding variables and other basic covariates 
should be adjusted for the risk. In dealing with fast-spreading infectious 

gathering, and better statistical power all must be considered. 

boundaries [40]. Therefore, researchers need to think about the most 

diseases, higher precision of the temporal and spatial units, real-time data 

better prediction during the occurrence of fast dynamic changes of cases in 

ance level (above 95%). For an infectious disease with low pathogenicity, the 

time and place. According to a simulated study [41], when the relative risk 

relative risk is almost close to l and the sensitivity of the clustering algorithm 
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4.3 Future Directions 

Many challenges of infectious diseases are common in different countries, 
including the impact of global warming on infectious diseases, emergency 
responses to EID, timely collection, and interchanges of high quality data to 
develop better control strategies. All these related issues need international 
collaboration. From our experiences, future global needs will involve flexible 
cluster methods to analyze irregular clusters, adjustment for personal risk 
factors, and application of Bayesian approaches to disease mapping and 
better prediction. 

4.3.1 

Due to the natural barriers and the movement of humans, hosts and the 

algorithm intends to enhance the performance of detecting true clusters, 
flexibility of the shape will be needed. Risk-adjusted Nearest Neighbor 

ellipse shape Satscan [20] are all used to solve the problem of detecting 
clusters with irregular shape. 

4.3.2 Adjustment for Personal Risk Factors 

All ecologic data may involve the possible risk of “ecologic fallacy,” and 
particularly the aggregated data might involve too many risk factors together. 

4.3.3 Bayesian Method for Better Prediction [43] 

Bayesian hierarchical spatial models have become widespread in disease 

vectors, the realistic shapes of clusters in most situations are irregular. If the 

Flexibility of the Cluster Method in Detecting Irregular Clusters 

algorithms, incorporating the data of important risk factors such as age, gender,

Hierarchical clustering (RNNH), Support Vector Machine (SVM) [42], and 

use posterior distribution of space–time interactions for predictions, information

Detailed information is always difficult to collect through routine surveillance. 

over space and time must be applied to estimate typical patterns for each area.

ten covariates, would need to be adjusted using Satscan 8.0. In clustering 

Based on the extension of the Bayesian hierarchical models, the problems 

mapping and ecologic studies of health-environment associations. In order to

in detecting small numbers of events, particularly a small incidence of cases

In general, the demographic information such as age and gender, as total of 

in the early wave of an outbreak, may soon be overcome in the future.

occupation into analyses will help figure out the epidemiological conditions to
form clusters.
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QUESTIONS FOR DISCUSSION 

2. Are there any differences in using spatio-temporal analysis methods to 
analyze the data of an acute infectious disease versus a chronic disease? 

3. Do you agree that the irregular clustering shapes and Bayesian model 
may enhance the capability to detect the true clusters? 

4. Real-time syndromic surveillance is important for the early detection of 
abnormal events. Which clustering methods would you use to detect an 
early outbreak in a real-time manner? 
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