On the Elimination of Nuisance Parameters

DEBABRATA BASU

Eliminating nuisance parameters from a model is universally recog-
nized as a major problem of statistics. A surprisingly large number of
elimination methods have been proposed by various writers on the
topic. In this article we propose to critically review two such elimina-
tion methods. We shall be concerned with some particular cases of
the marginalizing and the conditioning methods. The origin of these
methods may be traced to the work of Sir Ronald A. Fisher. The
contents of the marginalization and the conditionality arguments are
then reexamined from the Bayesian point of view. This article should
be regarded as a sequel to the author’s three-part essay (Basu 1975)
on statistical information and likelihood.
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1. THE ELIMINATION PROBLEM AND METHODS

The problem begins with an unknown state of nature
represented by the parameter of interest . We have some
information about 6 to begin with—e.g., we know that
is a member of some well-defined parameter space ©—but
we are seeking more. Toward this end, a statistical ex-
periment & is planned and performed which generates
the sample observation z. Further information about 6
is then obtained by a careful analysis of the data (&, x)
in the light of all our prior information about ¢ and in
the context of the particular inference problem related
to 6. For going through the rituals of the traditional
sample-space analysis of data, we must begin with the
invocation of a trinity of abstractions (X, @, ®), where
X is the sample space, @ is a o algebra of events (subsets
of %), and @ is a family of probability measures on Q.
If the model (X, @, @) is such that we can represent the
family ® as {P,: 6§ €& O}, where the correspondence
6 — Py is one-one and (preferably) smooth, then we go
about analyzing the data according to our own light and
are thankful for not having to contend with any nuisance
parameters.

However, instances of statistical models with ® indexed
by 6 alone are very rare. Typically, we have to work
with a family @ that is indexed as

® = {Pss:6E€ 0,¢C D},

where ¢ is an additional unknown parameter. If the
inference problem at hand relates only to 6 and if infor-
mation gained on ¢ is of no direct relevance to the
problem, then we classify ¢ as the nuisance parameter.
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The big question in statistics is: How can we eliminate
the nuisance parameter from the argument? During the
past seven decades an astonishingly large amount of
effort and ingenuity has gone into the search for reason-
able answers to this question. Broadly speaking, this
collective endeavor of the community of statisticians may
be classified into the following overlapping categories:

1. To plan the experiment & in such a fashion that the model is
related to the parameter of interest and is relatively free of
disturbing nuisance parameters. In this article we are not
concerned with the important problems of planning experi-
ments. Our concern is with the problem of data analysis. How-
ever, a few elimination methods, such as randomization and
sequential sampling which will be discussed in a sequel, may
well be classified under this heading.

2. To justify a replacement of the basic model (%, @, @) by a
related 6-oriented model (7, ®, 9), the family Q is indexed by
6 alone. The marginalization and the conditionality argu-
ments that we shall be examining in this article belong to this
category.

3. To estimate the nuisance parameter away; that is, to sub-
stitute the unknown nuisance parameter ¢ by an estimated
value ¢. This classical method of elimination is used re-
peatedly in the large sample theory of statistics.

4. To Studentize in the manner of W.8. Gossett with the idea
in mind to construct a reasonable looking pivotal quantity
involving the sample z and the parameter of interest 6.

. To invoke the invariance argument of Pitman-Stein-
Lehmann. This particular marginalization argument will be
examined in a subsequent article.

6. To delimit the argument to a small class of decision pro-
cedures, e.g., unbiased estimators, fixed size confidence in-
tervals, similar tests, etc., whose average performance charac-
teristics are, at least in part, free of the nuisance parameter.
Mathematicians love this argument. See, e.g., Linnik (1965,
1968).

7. To eliminate the nuisance parameter from the risk function
rs(6, ¢) of the decision procedure 3 by the invocation of a
so-called maximization (or minimax) principle. The recom-
mendation for the choice of  is then made on the basis of the
eliminated risk function

R;(8) = sup rs(6, ¢) .
$

o

In Lehmann (1959) we find this argument used quite fre-
quently. For example, the size of a test is always understood
as the maximum probability of committing an error of the
first kind.

8. To invoke the fiducial argument of R.A. Fisher. With the
departure of Sir Ronald from our midst, we seem to have lost
our zest for this novel elimination argument.

9. To justify an elimination of the nuisance parameter directly
from the likelihood function L (8, ¢|z) generated by the par-
ticular data (s, z). The idea is to construct a new scale
L.(8, z) (the suffix e denotes the process of elimination of the
nuisance parameter) for a direct comparison of the amount
of support that the data lends to various values of 4. The
maximization of likelihood with respect to ¢ is the classic
example of this kind of elimination.
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10. To act like a Bayesian; that is, to fix a prior, compute the
posterior, integrate out the nuisance parameter from the
posterior to arrive at the posterior marginal distribution of
the parameter of interest, and then to let the statistical
argument rest on the posterior marginal distribution.

In addition, we have the choice of a fairly large number of
specialized elimination methods: the two-stage sampling plan
of Stein (1945), the randomization method of Durbin (1961),
the characterization argument of Prohorov (1967), the partial
sufficiency argument of Héjek (1967), the M-ancillarity
argument of Barndorff-Nielsen (1973), etc.

After this introduction to the problem and methods of
elimination, we plunge headlong into the depths of the
marginalization and the conditionality arguments and
try to sort out a number of ideas related to partial
sufficiency and partial ancillarity.

2. MARGINALIZATION AND CONDITIONING

The marginalization method of elimination consists of :
Choosing a suitable statistic T': (X, @) — (7, ®), such
that the family

®r = {Po,sT1:0E 0, ¢ € B}

of probability measures on (7, ®) is f-oriented, i.e., the
family ®r is indexed by 6 alone; and then recommending
that the model (X, @, ®) be given up in favor of the
model (7, ®, ®r).

In effect, the method replaces the data (8, z) by its
reduction (8r, t), where T'(x) = t. By &7 we mean the
marginal experiment that may be operationally defined
as “perform & but record only T'(z).” It is not easy to
justify data reduction of the above kind. A great deal
of thought and mathematical expertise have gone into
the many efforts made so far at such justification. Two
distinet major lines of thought in this general direction
are: (a) the invariance argument and (b) the partial
sufficiency argument. In this article, we shall be con-
cerned with the partial sufficiency argument only.

The conditioning method of elimination consists of:
Choosing a suitable statistic ¥V: (%, @) — (Y, €) such
that the conditional distribution of the sample z, given
Y = y, is 6-oriented (it depends on (8, ¢) only through 6)
for all y € Y; and recommending that the data (&, z)
be analyzed by looking at the sample z, not as a random
variable with the unconditional distribution model
(%, @, ®) but as a random variable with the 6-oriented
conditional distribution model that corresponds to the
condition ¥ = y, where y is the observed value of the
statistic Y. In effect, the method aims at replacing the
data (8, z) by the conditioned data (&,Y, z), where §,¥
is a conceptual conditional experiment that corresponds
to the observed value y of a suitable statistic Y.

For the marginalization argument, the statistic 7' not
only needs to be f-oriented but also has to be one that,
in some sense, summarizes in itself all the relevant and
usable information about 6 that is contained in the data.
Similarly, for the conditionality argument, it is not
enough to choose just any statistic ¥ that will do the
elimination job. The static ¥ needs to be such that, in
some meaningful sense, we can assert that referring the
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observed sample z to the reference set of all possible
samples 2’ with Y (2') fixed at the present observed value
y = Y (z) entails no loss of information on the parameter
of interest 6. The statistical literature is strewn with
logicians’ nightmares of the above kind. Let us see what
sense we can make of such nightmares.

3. PARTIAL SUFFICIENCY AND PARTIAL ANCILLARITY

In this section we put together a number of mathe-
matical definitions.

Definition 1 (Model): By the model (or statistical
structure) of an experiment & we mean the usual trinity
of abstractions (%, @, ®).

We suppose that the family @ is indexed as
® = {P,: w € @} and call w the universal parameter. Let
6 = 6(w) be the parameter of interest. By a statistic T'
we mean a measurable map of (X, @) into another
measurable space (7, ®).

Definition 2 (Ancillarity): The statistic T is ancillary
if the marginal (or sampling) distribution of 7 is the
same for all w € Q—i.e., for all B € ®, the function
P,(T-'B) is a constant in w.

Definition 8 (6-Oriented Statistic): The statistic T is
6 oriented if the marginal distribution of 7' depends on
w only through 6 = 6(w). That is, 8(w1) = 6(we) implies
Po(T-1B) = P,,(T'B) for all B € ®.

Observe that every ancillary statistic is 6 oriented
irrespective of what 6 is

Example 1: Let * = (%1, ¥3, ..., Ta), with n fixed in
advance, be a sample of n independent observations on a
N(u, o). Let D = (x2 — 21, T3 — 1, ..., Tn — T1) be
the difference statistic. Clearly, D is o oriented and,
therefore, so is every measurable function A(D) of D.
That the class {h(D)} of measurable functions of the
difference statistic does not exhaust the family of
c-oriented statistics is seen as follows. Choose and fix
two functions h;(D) and k(D) that are identically dis-
tributed and also a Borel set E in R;. Since & is stochasti-
cally independent of D for all (g, o), it now follows that
the statistic Tz defined as

Tp(# D) = (D) if $E€EE
=h(D) if ZEE,

is ¢ oriented—indeed, Ty is identically distributed as
h1(D) and he(D). Tt is thus clear that D is not the maxi-
mum c-oriented statistic. In fact no maximum o-oriented
statistic exists. (See Basu (1959) and (1967) for more
information on this kind of problem.) In this case we
have a plentiful supply of o-oriented statistics. However,
the notion of u-orientedness is vacuous in the sense that
no nontrivial (nonancillary) statistic can be u oriented.
This remark is generally true for the location parameter
r in a location-scale parameter setup.

Definition 4 (Variation Independence): The two func-
tions w — a(w) and w — b(w) on the space @ with re-
spective ranges A and B are said to be variation inde-
pendent if the range of the function w — (a(w), b(w)) is
the Cartesian product 4 X B.
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If the universal parameter » can be represented as
w = (0, ¢), where 6 and ¢ are variation independent in
the preceding sense—that is, @ = ® X & where © and
& are the respective ranges of § and ¢—then we call ¢ a
variation independent complement of §. With 6 as the
parameter of interest, we may then call ¢ the nuisance
parameter.

We have not come across a satisfactory definition of
the notion of a nuisance parameter. It is only hoped
that the above working definition will meet with little
resistance. (See Barndorff-Nielsen (1973) for further de-
tails on the notion of variation independence.)

By a sufficient statistic, we mean a statistic that is
sufficient in the usual sense with respect to the full
model (X, @, ®). The following definition of a specific
sufficient statistic appears in Neyman and Pearson
(1936). Let ¢ be a variation independent complement of 6.

Definition 6 (Specific Sufficiency): The statistic T is
specific sufficient for 6 if, for each fixed ¢ € &, the
statistic 7' is sufficient with respect to the restricted
model (X, @, ®;), where ®; = {Pj,4: 0 & 0, ¢ fixed}.

In Example 1, the sample mean & is specific sufficient
for p. In fact, # is a minimum specific sufficient statistic
for u. The sample standard deviation s is, however, not
sufficient for o for any specified value of u. Indeed, a
statistic can be specific sufficient for ¢ only if it is
sufficient.

In the spirit of Definition 5, we then define the notion
of specific ancillarity in the following terms. As before,
let ¢ be a variation independent complement of 6.

Definition 6 (Specific Ancillarity): The statistic T is
specific ancillary for 8 if, for each fixed ¢ € &, it is
ancillary with respect to the restricted model (X, @, ®;).

In other words, T is specific ancillary for ¢ if it is
¢ oriented, where ¢ is a variation independent comple-
ment of 6. It should be noted that the definition of
6-orientedness does not presuppose the existence of a
variation independent complement ¢, but the definitions
of specific sufficiency and specific ancillarity (for 6) do.

In Example 1, with ¢ as the parameter of interest, it is
tempting to marginalize to the statistic s. But can we
logically justify such a marginalization? In what sense
can we say that s summarizes in itself all the relevant
and available information about ¢ in the absence of any
information on u? We shall return to the question later.

Suppose u is the parameter of interest in Example 1.
Marginalization to the statistic #, which is specific
sufficient for u, will not eliminate o as Z is not u oriented.
We shall also lose valuable information on u if we throw
away the s-part of the sufficient statistic (&, s) and record
only Z. For one thing, we shall no longer be able to
speculate about the accuracy of £ as a point estimate of
u. The marginalization method is of no use for the purpose
of eliminating the scale parameter o. As we have noted
earlier, if 7T is u oriented then it has to be an ancillary
statistic. Surely, we do not want to marginalize to some-
thing that has nothing to do with u! The conditionality
argument is also of no use for eliminating ¢. If condition-
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ing with respect to Y eliminates o, then Y has to be
specific sufficient for o. But, as we have stated earlier,
every such Y has to be sufficient for (u, o). Hence,
conditioning with respect to ¥ will eliminate x as well!
The problem of eliminating the scale parameter ¢ is not
an easy one. Student’s i-test and Stein’s two-stage
sampling plan are classical examples of statistical method-
ology that were developed to solve the problem in non-
Bayesian terms.

The following definition of partial sufficiency is usually
attributed to Fraser (1956). But we find the definition
clearly laid out in Olshevsky (1940), who attributed it
to Neyman (1935).

Definition 7 (p-Sufficiency): The statistic T' is partially
sufficient (denoted by p-sufficient) for 8 if 7' is specific
sufficient for # and T is 6 oriented. From this it is clear
that the notion of p-sufficiency for 6 presupposes the
existence of a variation independent complement ¢ for 6.
With the same presupposition, Sandved (1967) defined
a notion of partial ancillarity in the following terms.

Definition 8 (S-Ancillarity): The statistic Y is a partial
ancillary (S-ancillary) for 8 if ¥ is specific ancillary for
6 (Y is ¢ oriented) and Y is specific sufficient for ¢. It
should be noted that in Definitions 7 and 8, we are
looking at the same concept but from two different angles.
The statistic ¥ is S-ancillary for 6 if and only if it is
p-sufficient for ¢.

The name S-ancillary (ancillary in the sense of Sand-
ved) is due to Barndorff-Njelsen (1973) whose terminol-
ogy for p-sufficiency is S-sufficiency. Barndorff-Nielsen’s
mathematical formalization of the twin notions of
p-sufficiency and S-ancillarity as a “cut” may be defined
as follows.

Definition 9 (Barndorff-Cut): A statistic T: (X, @)
— (7, ®) defines a Barndorff-cut of an experiment

&§={(x,a P.,):wEQ,

if there exist two variation independent and comple-
mentary subparameters § = 0(w) and ¢ = ¢(w), such that
the marginal experiment 87 = {(7, ®, P,T): 0w & Q)
is 0 oriented (P,T-! depends on « only through 6(w))
and that each one of the family {&,7:¢ & T} of condi-
tional experiments is ¢ oriented.

The statistic T is then p-sufficient for § and S-ancillary
for ¢. Observe that every sufficient statistic defines a
Barndorff-cut and so also does every ancillary statistic.
In the former case 6(w) = wand ¢(w) is a known constant,
and in the latter case it is the other way around.

In Example 1 there exists no Barndorff-cut that
separates u and o. The following are a few other examples
where the definition yields something.

Example 2: Let the random variables z;(z = 1, 2,
..., m) beiid N, 1), and let y;(j = 1,2, ..., n) be an
independent set of iid N (¢, 1). Clearly, % is p-sufficient
and 7 is S-ancillary for 6.

Ezample 3: Let x and y be independent Poisson
variables with means p and », respectively. With the
reparametrization § = p/(u + v) and ¢ = p + 7, it can
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be checked that ¥ = 2 + y is S-ancillary for . There
does not exist a statistic 7' that is p-sufficient for 6.

Example 4: Let z = (y, 2, w) have a multinomial
distribution with y +2+w =n and p, ¢, r(p + ¢
+ r = 1) as probabilities (parameters). The parameters
p and ¢ are not variation independent. However, when
we reparametrize as § = p, ¢ = ¢/(1 — p), it is easy to
check that the statistic y becomes p-sufficient for 6
(S-ancillary for ¢).

Ezample 6: Let 0 < 6 <1 and 0 < ¢ <. Let X be
a random variable with pdf

(|6, ¢) = (1 — O)pes* for z <0
Ope—¢* for z>0 .
Let 24, 23, ..., 2, be n independent observations on X.

Let T be the number of positive z/'s, and let ¥ = 3~ |z|.
Then T and Y are respectively p-sufficient and S-ancillary
for the parameter 6.

Note the similarities between Examples 2 and 5. In
either case, we have for the parameter of interest 6 a

statistic T that is p-sufficient and a statistic Y that is.

S-ancillary. In each case, however, the two statistics are
stochastically independent for all possible values of the
universal parameter. The fact that this is not generally
true is going to bother us in due course.

It will be useful to review the various definitions in
terms of the corresponding factorizations of the likelihood
functions. To this end let us suppose that the family
@ = {Py: 6 € O, ¢ € &} is dominated by a o-finite
measure p and let {p(-]6, ¢)} be the corresponding
family of probability density functions. To fix our ideas
and to avoid all measure-theoretic difficulties let us
pretend for the time being that & is a countable set and
that p is the counting measure on X. Corresponding to
any statistic T: % — 7 we have a factorization (of p)
of the form

p(x]0,¢) = g(T|6,$)f(|T, 6, ¢) ,

where g defines the marginal distribution of T and f
defines the conditional distribution of z given 7. (Our
notations are admittedly rather sloppy, but there should
be no difficulty in following our meaning.) Consider now
the following particular cases of the above general
factorization.

Case I: p = g(T'|8, ¢) f(x| T)—this corresponds to the
case where T is sufficient.

Case II: p = g(T)f(x|T,86, ¢p)—the statistic T is
ancillary.

Case III: p = g(T|0)f(z| T, 6, ¢)—the statistic T is
0 oriented. The case where T is ¢ oriented is similar.

In the situation where 6 and ¢ are variation inde-
pendent parameters, the notion of 6-orientedness is the
same as the notion of specific ancillarity for ¢. Case III,
therefore, also corresponds to the case where T is specific
ancillary for ¢. With 6 and ¢ variation independent, we
have the next case.
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Case IV: p = ¢(T16, ¢)f(x|T, ¢)—the statistic T is
specific sufficient for 6. The case where T is specific
sufficient for ¢ is similar.

Case V: p = g(T|0)f(x|T, ¢)—the statistic T is
p-sufficient for 6 and is S-ancillary for ¢.

Case Va: p = g(T|¢)f(x|T, 6)—the statistic T is
S-ancillary for 8 and is p-sufficient for ¢.

Instead of looking at factorizations in terms of marginal
and conditional frequencies, suppose we consider factori-
zations of the more general form

p(]6, ¢) = G(z,6, $)F (2,6, ¢) .
The very familiar
Case VI: p = G(T, 6, ¢)F (),

when proved equivalent to Case 1, constitutes the well-
known factorization theorem for sufficiency. Similarly,
the factorization

Case VII:p = G(T, 6, ¢)F (z, ¢)

can be shown to be equivalent to Case IV (the case of
specific sufficiency for 8). Now consider

Case VIII: p = G(T, O)F (z, ).

Is Case VIII equivalent to Case V? It is important to
recognize that the answer is in the negative. The ex-
amples in Section 9 will clarify the matter. Finally, we
have factorizations of the form

Case IX: p = G(z, 0)F (z, ¢).

It will turn out later that we really should be after
factorizations of this form. Clearly, p factors in the
manner of Case IX whenever we have a Barndorff-cut
separating 6 from ¢ (as in Cases V or Va). That the
converse is not true will be variously exemplified in
Section 9.

4. GENERALIZED SUFFICIENCY AND
CONDITIONALITY PRINCIPLES

To understand the logic of the generalized sufficiency
and conditionality principles $* and €* it is useful to
consider a few hypothetical situations. (For a compre-
hensive discussion on the sufficiency, conditionality, in-
variance, and the likelihood principles refer to Basu
(1975).)

(i) We have two experimental setups & and ¢, where the
former provides information only on the parameter of in-
terest 0 while the latter is informative about an unrelated
parameter ¢ alone—the parameter ¢ is unrelated to 6 in the
sense that we do not recognize the relevance of any informa-
tion on ¢ for the purpose of inference making on 8. Faced
with data such as { (s, 2), (&', 2')}, it makes good statistical
sense to ignore the second part of the data and concentrate
our attention on the relevant part (s, z).

(ii) Let & be an experiment whose randomness (probabilistic)
characteristics depend only on §. Having obtained the data
(&, z), suppose we choose to perform a randomization
exercise &() thus arriving at the additional data (&), ¥).
If all the randomness characteristics of &) (possibly in-
fluenced by z) are known to us, then the secondary data
(&), ¥) cannot give us any additional information on 8, or
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on anything for that matter. It makes good statistical sense
then to suggest that the analysis of the data {(s, z),
(8¢, ¥) | ought to proceed on a total nonrecognition of the
randomization exercise &) and the resulting outcome y.
Indeed, this is one way of looking at the sufficiency principle
$ (see Basu 1975).

(iii) If in (ii) we find that the randomness characteristics of
&(z) are fully known except for a nuisance parameter ¢ that
is unrelated to 6, then we are in a situation quite analogous
to (i). Conforming to the statistical intuition that told us
to ignore (&', 2’) in (i), the generalized sufficiency principle
$* tells us to ignore (&), ¥) in this situation.

(iv) We have a choice of k experiments &), &), ..., 8. The

randomness structure of suy(y =1, 2, ..., k) is related

only to the parameter of interest. Let & stand for a ran-
domization exercise that selects one of the k experiments

with known (predetermined) selection probabilities i,

w2 ..., 7. The experiment &, selected by & is then per-

formed resulting in the outcome z. The full data is { (s, ¥),

(&), 2)}. Since the part (&, y) of the data is totally unin-

formative, it makes good statistical sense to disregard this

part of the data and focus our attention on the relevant part,

i.e., (&@), ). Thisis a version of the conditionality principle.

Now, suppose in (iv) above the selection probabilities

w1, ™2, ..., m are not fully known but depend on (are

functions of) an unrelated nuisance parameter ¢. We are
now in a situation that is very similar to (i). The generalized
conditionality principle ¢* tells us to analyze the data by
concentrating our whole attention on that part of the
data—namely (&), z)—that is related to 6.

(v

<

We are now ready to state formally the two generalized
principles of sufficiency and conditionality.

Principle 8* (Generalized Sufficiency Principle): If, in
terms of the model (X, @, ®) for the data (§, z), we
recognize the statistic 7" as p-sufficient (partially sufficient
in the sense of Definition 7) for the parameter of interest
6, then the data (&, z) should be reduced by marginali-
zation to (&r, t), where 87 is the marginal experiment
corresponding to 7' and t = T'(x).

Principle 8* may be stated in a less severe form in the
following terms.

Principle $**: If T is p-sufficient for 6, then T(2')
= T(z”) implies that the information content (the
evidential meaning) of the data (&, z') and (&, 2”)
relative to the parameter 6 are identical in all respects.
In other words, the data (&, 2’) warrants the same in-
ference on 6 as does the data (8, z’’).

Principle @* (Generalized Conditionality Principle): If
Y is an S-ancillary (Definition 8) for 6, then the data
(&, x) should be analyzed by reinterpreting it as (&), ),
where 8, (= 8,Y) is the conditional experiment that
corresponds to the observed value y = Y (z) of Y.

As we have said before, corresponding to any statistic
T we can conceive of a decomposition of the experiment
& into a two-stage experimental setup in which the
marginal experiment &7 is followed by the conditional
experiment 8,7 that corresponds to the observed value
t = T(x) of T. The original data (&, z) may then be
viewed as {(8r, t), (8.7, z)}. If T is p-sufficient for 6
then, by definition, the experiment &z is 6 oriented, and
the experiment &,7 is ¢ oriented. So, in view of (i) and
(iii), it makes good statistical sense to invoke principle
8* and marginalize the data to (&z, ¢). Conversely, if T
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is S-ancillary for 6 then, by definition, 87 is ¢ oriented
and 8,7 is 6 oriented. So, in view of (i) and (v), it appears
logical that we ought to ignore the (8r, t) part of the
data and analyze it as (8,7, z). This is the generalized
conditionality principle C*.

5. A CHOICE DILEMMA

In the writings of R.A. Fisher we find the conditionality
argument used in three different ways: to recover the
ancillary information in the data when it is found that
the maximum likelihood estimator is not sufficient; to
eliminate the nuisance parameter as in the case of the
celebrated test of independence with a 2 X 2 multi-
nomial data; and to generalize the fiducial argument as
in the case of multiple observations on a random variable
with a location parameter in its distribution.

In Basu (1964), while studying in depth Fisher’s re-
covery of information argument, the author discovered a
disturbing inherent difficulty in the conditionality argu-
ment. The difficulty flows from the fact that, in general,
there does not exist a largest ancillary statistic in the
sense of the usual partial order on statistics. Even in the
simplest of situations we may have two ancillary statistics
Y and U such that the statistic (¥, U) is not ancillary.
Indeed, the pair (¥, U) may be fully informative, i.e.,
sufficient. In such a situation, the conflict between which
of the two ancillaries to choose for the purpose of condi-
tioning the data remains unresolved, despite some valiant
efforts by Barnard and Sprott (1971) and Cox (1971),
in non-Bayesian terms. The generalized conditionality
(S-ancillarity) argument founders on the same non-
uniqueness rock. We reproduce here an example from
Basu (1964) that has attracted a lot of attention from
non-Bayesians.

Example: Let X be a random variable with range
{1, 2, 3, 4} and probability distribution

X: 1 2 3 4
Prob: (1 —8)/6 (1+06)/6 (2—6)/6 (2+6)/6,

where 0 < § < 1. We have n independent observations on
X. The cell frequencies = (n1, na, n3, n4) constitute the
minimum sufficient statistic. The likelihood function is

L@ = (1 —6)n(l +0)™(2 — 0)ms(2 + 6)™.

Let us write Bin (n, p) for the Binomial distribution
with parameters n and p. Observe that ¥ = ny + n, is
an ancillary statistic with probability distribution
Bin (n, 3) and that U = n; + ns is another ancillary
with distribution Bin (n, %). If we condition z by Y then
we can look upon the data as a pair of independent ran-
dom variables 7; and n; that are distributed as

Bin (Y, (1 — 6)/2) and Bin (n — Y, (2 — 0)/4) ,

respectively. However, if we choose to condition z by
the other ancillary U, then we simplify the data to
two independent variables n; and n; distributed re-
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spectively as
Bin (U, (1 - 6)/3) and Bin (n — U, (2 — 6)/3) .

In either case, the sample-space analysis of the con-
ditioned data will be fairly easy and straightforward. But
can anyone give a convincing argument for the choice of
either ¥ or U as the conditioning ancillary?

We can easily introduce a nuisance parameter into the
foregoing example by incorporating into the data, say,
the result z of an independent coin-tossing experiment
with an unknown bias ¢ in the coin. (George Barnard
once remarked that when he retires he will go into
business manufacturing biased coins and selling them to
people like Basu!) In this case both (Y, 2) and (U, 2)
will be S-ancillaries and we shall be back in the choice
dilemma.

In contrast to the conditionality argument, the
marginalization argument, in terms of the sufficiency or
the generalized sufficiency principles, does not suffer
from the above kind of a choice dilemma. With the kind
of models that we work with in statistics, the existence
of an essentially unique minimum sufficient statistic is
always assured, and if the class of statistics that are
p-sufficient for 6 is not vacuous, then there will exist an
essentially unique minimum such statistic.

6. A CONFLICT

The two elimination methods, namely, the one that
marginalizes to a statistic 7 that is p-sufficient for
and the one that conditions with respect to a statistic ¥
that is S-ancillary for 6, owe their origin to the same
statistical intuition that guided us through (i) to (v) in
Section 4. However, this does not mean that the two
methods can co-exist in logical harmony. The possibility
of a natural conflict between the methods was pointed
out to the author by Philip Dawid (1975). We give below
a simple example along the lines of the dilemma example
of the previous section to highlight this conflict.

Ezample: Let T and Y be two random variables with
the same range {1, 2, 3, 4} and a joint distribution as
described in the following table.

To simplify the argument let us suppose that we have
only one observation z = (¢, y) on the pair (T, ¥)—
the general case where we have n observations on (T, ¥)
is very similar. Observe that the statistic 7', defined as
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that T and Y are not stochastically independent in this
example. The marginal distribution of T is very different
from its conditional distribution for any given value of Y.

It is thus clear that we can have a pair of stochastically
dependent statistics 7' and ¥ such that (T, Y) is sufficient
for (6, ¢), T is p-sufficient for 6, and ¥ is S-ancillary for
6. The nuisance parameter ¢ can be eliminated from the
argument either by marginalizing to T or by conditioning
(T, Y)—that is, T—by the S-ancillary Y. The two
elimination methods cannot be reconciled in such cases.

What went wrong? Should we blame the statistical
intuition that guided us through (i) to (v) in Section 4?
The above conflict is only a manifestation of the diffi-
culties that we have to face when we try to interpret
data in some sample-space terms.

7. RAO-BLACKWELL TYPE THEOREMS

In Section 4, our case for the Sufficiency Principle S,
the Conditionality Principle € and their generalizations
8* and C* rested on the highly nonmathematical phrase,
“It makes good statistical sense.” The author does not
know how else to argue in non-Bayesian terms for these
essentially Bayesian principles of data analysis. A large
majority of the statisticians belonging to the Fisher-
Neyman school of thought seem to agree wholeheartedly
with 8§ although most of them are quite wary of €. This
almost universal faith in 8 is there, partly because it
makes good statistical sense, but mainly because of the
widespread belief that principle 8 has been mathemati-
cally proved in the Rao-Blackwell theorem. On p. 17
of Basu (1975) we briefly examined this mathematical
proof of a statistical principle. Now, let us turn the
spotlight on a similar proof of $* given by Fraser (1956).

Let a(6) be a real valued function of 8. We are looking
for a reasonable point estimate of a(f) on the basis of
the data (8, z). Let us suppose that the loss W (i, 6),
when ¢ (9) is estimated by ¢, is convex in ¢ for each 6. Let
U be the class of all estimators U of a(8) such that the
risk function

ry(0) = rv(6, ¢) = E[W(U, 0)|6, ¢]

is well defined and 6 oriented, that is, depends on
w = (6, ¢) only through 6.

Theorem (Fraser): If T is p-sufficient for 6 then, for

T(z) = t, is p-sufficient for 9 and that the statistic ¥, each U & U, there exists an estimator Uy = Uy(T) such
defined as Y (z) = y, is S-ancillary for 6. The trouble is that 7y,(6) < ry(8) for all § € O©.
Joint Distribution of Tand Y
T

Y 1 2 3 4 Total

1 (1-0)(1-¢)12 (1 +6)(1 — )12 0 0 (1-¢)6

2 (1-6)(1+¢)12 1 +6)(1 + )12 0 0 (1+¢)/6

3 0 0 (2-6)(2 - ¢)/24 (@ + 6)(2 ~ $)/24 (2-¢)/6

4 0 0 (2 -6)2 + ¢)/24 2+ 6)(2 + ¢)/24 (2 +¢)/6
Total (1-0)6 (1+6)/6 (@ -0)6 2+6)6 1
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Proof: The statistic T is 6 oriented by definition, so
the risk function generated by any function of T, if
well defined, must be 8 oriented. Now, choose and fix
¢o € ® and define

UO = E(UIT! 0; ¢0) .

Since T, by definition, is sufficient for # when ¢ is fixed,
it follows that U, is well defined as an estimator; that is,
the unknown 6 does not enter into the definition of U,.
From Jensen’s inequality it follows that, for all § € ©,

7u,(6) = 10,(8, o) < 10 (8, do) = v (6) ,

and thus the theorem is proved. The Rao-Blackwell
theorem clearly corresponds to the particular case where
¢ is a known constant ¢,.

The above theorem may be generalized further along
the following lines suggested by Héjek (1965). Let U’ be
the class of all estimators U such that the risk function
ru(8, ¢) is well defined (but not necessarily 8 oriented).
Using the so-called minimax principle (see paragraph 7
of Section 1) let us define

Ry(8) = sups ru(6, ¢)

as the eliminated risk function associated with U, if
U & U then ry(6) = ry(d, ¢) is 6 oriented and thus
Ry(6) = ry(6). Now, if we define U, as in the Fraser
theorem, then it follows (in view of the fact that U, is
6 oriented) that Ry,(8) = 7u,(6, ¢0) < rv (6, ¢o) < Ru(6).
This generalizes the Fraser theorem to the following
result :

Theorem (Hdjek): If T is p-sufficient for 6, then for
each U € U’ there exists an Uy = Uo(T) such that
Ry,(6) < Ry(6) for all 6 € O.

The proofs of the preceding two theorems do not make
full use of the supposition that 7T is p-sufficient for 6.
They rest heavily on the supposition that 7' is 6 oriented
but require 7 to be sufficient for 6 for just one specific
value ¢, of ¢. This suggests the following generalization
of the notion of partial sufficiency. For each 6 & O, let
us define ® to be the convex hull of the family
®9 = {Po,4: 0 fixed, ¢ € ®} of measures on (X, @). In
other words, @ is the family of all measures Q of the form:

Q4) = A Pos(A)dE() forall ACa, (1.1)

where £ is an arbitrary probability measure on ®. The
following definition is due to Héjek (1965).

Definition (H-Sufliciency): The statistic T is H-suffi-
cient (partially sufficient in the sense of Héjek) for 6 if,
for each 6 &€ O, there exists a choice of a measure
Qs € By such that, with @ = {Qs: 8 € 0}, T is sufficient
in the model (%, @, 9), and T is 9 oriented in the model
(%, @, @).

It should be noted that for the definition of H-suffi-
ciency it is not necessary for  and ¢ to be variation
independent. Clearly, p-sufficiency implies H-sufficiency.
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We have only to choose and fix ¢o € & and then define
Qs = Pg,4, Let us check now that the Fraser-Héjek
theorems remain true even if we replace the requirement
of p-sufficiency for the statistic T' by the less stringent
requirement of H-sufficiency. For any U, we define U,
as E(U|T, Q). Observe that U, is an estimator in view
of the definition of H-sufficiency. We then invoke
Jensen’s inequality to prove that, for all § € @,

f W (Us, 6)dQs < f WU, 0)dQs .
€ X X

Now, if we look back on the supposition that @ is in
the form (7.1) above, then, from the fact that U,—being
a function of T—is 6 oriented, it follows at once that the
left side of the above inequality is equal to

7u,(8) = Ru,(0)

for all 4. Similarly, the right side is equal to ry(6) if
U € U and is clearly not greater than Ry (6) if U € U'.
Thus the two preceding theorems may be finally re-
stated as:

Theorem (Fraser-Hdjek): If T is H-sufficient for 6, then
for any U &€ U there exists a Uy = Uo(T) such that
ru,(8) < ry(8) for all . Furthermore, for any U € 4’
it is true that Ry,(8) < Ry(9) for all 6.

How much comfort can an advocate of the generalized
sufficiency principle $* derive from the Fraser-Héjek
theorem? Before answering this question, let us take a
brief look at the question of how and where the notion
of H-sufficiency fits-into the ten-fold factorization scheme
of the likelihood that we laid out in Section 4.

In order for T to be H-sufficient for 6 it is necessary
that T is 6-oriented ; that is, we have a factorization of
the form

p(zl6, ¢) = g(T|0)f(|T, 6, ¢) . (7.2)

It is also necessary (in view of the sufficiency condition
for T) that there exists a family {£: 6 & ©} of prob-
ability measures on ® such that the “mixed” frequency
function

q(x|0) = f p(z|6, ¢)dts()

factors as
q(z|60) = G(T, OF (x) . (7.3)

Let us look back at the classical problem where the
sample x = (1, T3, ..., ) consists of n independent
observations on an N (g, o). Clearly Z is not H-sufficient
for y—indeed, no T can be H-sufficient for u. But is
st = Y (x; — %)* H-sufficient for ¢? Can we find a
family {£,:0 < ¢ < ®} of “mixing measures’ on R, that
will lead to a factorization of the type (7.3) above with
T = s2? Observe that

p(x|p, o) = A(o) exp (— -2%2;) exp [-— n—(%;—“)z] )

where 4 (¢) = ((2m)lo)™

285



362

We, therefore, need a family of mixing measures £,
such that

© n(E — p)?
[ en[- o e - Bace) . @

The above factorization clearly holds if we choose for
£, the uniform distribution (the Lebesgue measure) over
the whole real line. But, with such improper mixings, it
is easily seen that the Fraser-Héjek theorem will fall to
pieces. If the range of ¢ is the whole of the positive half
line, then there cannot exist a family of proper mixing
measures £, for which the factorization (7.4) will hold.

So how are we going to prove that we ought to mar-
ginalize to s when the parameter of interest is ¢? Hijek
(1965) came up with the following ingenious mathe-
matical argument. In any particular situation, we should
always be able to limit (on a priori considerations) the
parameter o to some finite interval (0, k). With o re-
stricted to such a finite interval, the statistic s becomes
H-sufficient for ¢. Just check that the factorization (7.4)
holds if we choose for ¢, the Normal measure with mean
zero and variance (k* — ¢2)/n.

H4jek’s definition of partial sufficiency is intriguing
and full of mathematical possibilities. But, what are the
statistical contents of Héjek’s definition of partial
sufficiency and his generalized Rao-Blackwell theorem?
Hijek’s ‘proof,’” that we should marginalize to s when we
do not know g, certainly does not scandalize our statistical
intuition. In the language of R.A. Fisher, if we throw
away & and marginalize to s, then our loss of information
on ¢ has the measure of only one degree of freedom in the
worst possible case (when u is fully known). Of the total
information available on o, the fraction of information
summarized in s is at least (n — 1)/n. Let us now look
at the following celebrated example due to Neyman and
Scott (1948):

Ezample (Neyman & Scott): The data « consists of 2n
observations zi, i/, s, %2/, ..., s, Z.’. The statistical
model here corresponds to 2n independent normal vari-
ables with equal variances ¢ and with z,, z/ having
common mean u;(¢ = 1, 2, ..., n). The parameter of
interest is o, the nuisance parameter is the vector
v = (M, B2, «. ., Ha).

With $2 =X (z: — 2)% & = (z: + /)/2 and A(0)

((27)%s)~2", we then have
[_ X (@&i— #4)2]'

The statistic S? is clearly o oriented. Is it H-sufficient for
o? Again the answer is no if o is unrestricted, but it is
yes if we restrict o to a finite interval (0,k). For the
mixing measure £, on B,, we now choose the one for which
W1, M2, ..., Mn are iid normal variables with means zero
and variances (k* — o2)/2.

Of course, we are prepared to assume that 0 < ¢ < k
for some k. The Héjek proof notwithstanding, how secure
do we really feel about marginalizing to S without taking

S2
piln0 = a0y (- )
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a hard look at &, &, ..., &,? If u were known, then the
sample would contain 2 n units (degrees of freedom) of
information on ¢, out of which S summarizes in itself
only 7 units. Are we really prepared to sacrifice n degrees
of freedom at the altar of ignorance on u? The issues
raised in this example of Neyman and Scott are all very
complex and we shall return to them again in a sub-
sequent article.

We close this section with one more jab at the notion
of H-sufficiency and the Rao-Blackwell type proof of
our generalized sufficiency principle in sample-space
terms.

Example:* Let ¢ = (@1, &3y ..., Tm; Y1, Y2, - - ., Yn) bE
m + n independent normal variables all with unit vari-
ances. It is known that Ez; =0( =1, 2, ..., m) and
Ey,=0¢(j =1, 2 ..., n), where — o <9 <co is the
parameter of interest and ¢(=0 or 1) is the nuisance
parameter.

The likelihood function neatly factors as

p(z|8, ¢) = A(x) exp [—m(Z — 6)2/2]
-exp [—n(7 — 64)%/2] .

Clearly, the pair (&, §) constitutes the minimal sufficient
statistic. The statistic £ is 8 oriented. It is also sufficient
(for ) when ¢ is fixed at the value zero. Therefore, T is
H-sufficient for 6 and so the Fraser-Hijek theorems
proved earlier recommend marginalization to . However,
the reduction of the data from (&, ) to & will mean a
substantial loss of information on 6 in the event ¢ = 1.
From the full data we should be able to tell (with a reason-
able amount of certainty if m and n are large) whether
¢=0o0r 1. (If K stands for the event m(E—5)2> (m+n)7?,
then it is easy to check that the maximum likelihood (ML)
estimator ¢ of ¢ is the indicator of E and that the mun
estimator of 9is 8 = (1 — @)% + $(mE + ng)/(m + n).)

This example does not contradict the good statistical
sense that led us to the generalized (or partial) sufficiency
principle $* but only tells us not to be unduly impressed
with Fraser’s mathematical proof of the principle. The
statistical literature is full of this kind of proof (see for
instance Lehmann (1959)) where we start on the wrong
foot either by delimiting the discussion to a conveniently
small (and nice) class of decision procedures or by simpli-
fying the hypothetical risk function by an ad hoc maximi-
zation process. The author is very skeptical about the
relevance of this kind of statistical mathematics in
theoretical statistics.

8. THE BAYESIAN WAY

After a long journey through a whole forest of con-
fusing ideas and examples, we seem to have lost our way.
Let us now see if our Bayesian guide can find a way out
of this wilderness for us.

According to a Bayesian, the role of the data (&, x)
is to act as an operator on the experimenter’s prior

1 A referee has pointed out that a similar example appears in
Barndorff-Nielsen (1973).
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opinion ¢ (a probability measure on ) and to transform
it into a posterior opinion ¢.*. This transformation is
effected through a formal use of the Bayes Theorem and
the likelihood function L(w) = p(z|w) generated by
the data.

With w = (6, ¢), where 6 is the parameter of interest
and ¢ is the nuisance parameter, the Bayesian analysis
of data is always firmly anchored to the posterior margi-
nal distribution ¢,! on © defined as

QZT(o) = Z q:*(oy ¢) )
(4

where ¢.*(0) = L(w)q(w)/2 o L(w)g(w). As we said in
paragraph (10) of Section 1, the Bayesian way of elimi-
nating the nuisance parameter from the argument is to
integrate it out from the posterior distribution of (6, ¢).

In 1942, A.N. Kolmogorov defined the notion of a
sufficient statistic in the following Bayesian terms:

Definition: The statistic T is sufficient if, for every
prior g on £, the posterior ¢.* depends on z only through
T; that is, T'(z) = T(2’) implies that ¢,* = g¢.-*

In the discrete setup, there is no difficulty in proving
the equivalence of the above definition and the classical
Fisher definition of sufficiency. In the same 1942 paper,
we find Kolmogorov suggesting the following definition
of partial sufficiency.

Definition (K-Sufficiency): The statistic 7 is partially
sufficient for 6 if, for all prior ¢ on &, the posterior marginal
distribution ¢,' on © depends on z only through 7. (Let
us call such a statistic K-sufficient for 6.)

At last we seem to have something for which we have
been looking for so long. However, it was demonstrated
by Hajek (1965) that the definition of K-sufficiency is
vacuous in the following sense:

Theorem (Hdjek): If the parameter 6 is not a constant
in w, then every T that is K-sufficient for 6 is sufficient
(in the usual sense).

Proof: Pretending as always that we are dealing with a
discrete model, we first recall that if T is not sufficient
then there must exist z, 2’ such that T'(z) = T(z’), but
the likelihood ratio p(z|w)/p(2’|w) is not a constant in
w. Therefore, if 7' is not sufficient, then we must have z,
2’ and wi, ws such that T(z) = T'(«’) and

p(e|w)/p( [w1) # p(x|w)/p(a'|w) . (8.1)

Let wy = (61, ¢1) and w; = (0, ¢2). There is no loss of
generality in supposing that 6, > 6,. (Otherwise, we
choose w3 = (03, ¢3), with 65 5 6, = 6,, and consider the
ratio p(x|ws)/p(2’'|ws) along with any one of the two
ratios-in (8.1) that differs from it.) Now, consider the
prior ¢ whose entire mass is equally distributed over the
two points w; and w,. Observe that

¢.'(6) = ¢.*(w1) = p(e|w))/ X p(x|w) ,

i=1

and that a similar expression holds true for ¢..f(6;). In
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view of (8.1) it follows that
¢, (61) # q.7(61) even though T'(x) = T(z') .

Thus, T not-sufficient implies 7' not K-sufficient. This
proves the theorem. (Observe that we do not require 6
and ¢ to be variation independent either in the definition
of K-sufficiency or in the proof of the above theorem.)

The fault in Kolmogorov’s definition of partial suffi-
ciency is easily detected. We may try to correct this by
restricting the discussion to a relatively small class @
of prior measures ¢ on 2. We find the following definition
in Raiffa and Schlaifer (1961):

Definition (Q-Sufliciency): The statistic T' is Q-sufficient
for 6 if, for all ¢ € Q, the posterior marginal distribution
¢.' on ® depends on z only through 7. (In the language
of Raiffa and Schlaifer, such a T is called marginally
sufficient with respect to Q.)

From the beginning, we have been concerned with the
problem of eliminating a parameter ¢ that is “unrelated”’
to the parameter of interest 6. However, we have not as
yet clearly stated what we mean by two unrelated
parameters. Is it enough to say that 8 and ¢ are un-
related if they are variation independent and if the loss
depends only on the terminal decision and the parameter
8? Clearly not, but what else can a non-Bayesian say?
Just ask a non-Bayesian what he means when he agrees
that the unknown true height ¢ of Mount Everest is
unrelated to the unknown number 8 of civilians who lost
their lives in the Vietnam war! A Bayesian has no
problem in defining the term. He calls 8 and ¢ unrelated
parameters if, apart from the condition on the loss
function, his prior ¢ for v = (6, ¢) is of the form

908, ¢) = q1(0)q2(9) -

Let Qo be the class of all (independent) priors ¢ of the
form q(6, ) = ¢1(8)g2(¢). When is a statistic T going to
be Qo-sufficient for 8 in the sense of our modified Kolmo-
gorov definition of partial sufficiency? We find the follow-
ing result in Raiffa and Schlaifer (1961):

Theorem (Raiffa and Schlaifer): If, for all x € %, the
likelihood function factors as

p(z|6,¢) = G(T,0)F(z, ¢) ,

then T is Qo-sufficient. )
Proof: If the prior distribution is ¢(8, ¢) = q1(6)¢:(¢),
then

¢:'(8) = X ¢.*(6, ¢)
¢

= (T, 6)q:(6)/Z G(T, 6)q:(6)

depends on z only through T.

The above theorem suggests the following definition.

Definition (L-Suffictency): The statistic T is L-sufficient
for 6 if, for all 2 € &, the likelihood factors as in the
statement of the previous theorem.
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We just proved that L-sufficiency implies Qo-suffi-
ciency. Is the converse true? The answer is, of course, no.
If T is sufficient, in the sense of Fisher or Kolmogorov,
then it is @-sufficient for every @ and in particular for
Qo. Raiffa and Schlaifer’s definition of Qo-sufficiency for ¢
suffers from a defect very similar to that of Kolmogorov’s
definition of partial sufficiency (K-sufficiency). The
definition is too wide and fails to pinpoint the exact
notion of partial sufficiency we are after. Perhaps an
example will make clear the point we are driving at.

Ezample: Let zy, 23, ..., 2, be iid N(6¢, 1) where
0 < 6 < = is the parameter of interest and ¢(=—1 or 1)
is the nuisance parameter. Just imagine p(— o < p < ©)
to be the common mean and then let 6 = |u| and
¢ = Sgn u.

The statistic T = |Z]| is 8 oriented. It is a reasonable
estimator of 6, but is it, in some sense, partially sufficient
for 8?7 Check that 7T is not Q-sufficient for 6. Indeed, the
notion of Qe-sufficiency leads us to £ which is sufficient.
If, however, we agree to restrict our discussion to the
smaller class Qo' C Qo of (independent) priors ¢ of the
form q(6, ¢) = ¢1(0)g2(¢) such that ¢, is the uniform
prior on ® = {—1, 1}, then it is easy to check that
T = |#| is Q/-sufficient for § = |u].

If we look back on the proof of the one-way implication
theorem above, then it will be clear that L-sufficiency
takes us far beyond Qo-sufficiency. If T is L-sufficient for
6 then the posterior marginal ¢," on ® depends on the
sample 2 only through T and on the prior ¢ = ¢i¢» only
through ¢;. In Bayesian terms, we may redefine the
notion of L-sufficiency as follows:

Definition (B-Suffictency): The statistic T is B-sufficient
(partially sufficient in a restricted Bayes sense) for 9 if,
for ¢ = 192 € Qo and z € X, the posterior marginal ¢,
on O depends on z only through 7 and on ¢ only
through ¢:. (Indeed, one may try to further generalize
the above notion of partial sufficiency by restricting ¢
to an arbitrary but fixed class @ of priorson 2 = ® X @
and calling ¢; the prior marginal on @. In the present
context we have, however, no use for such a generali-
zation.) In the next section we develop the theme of
B-sufficiency to its natural conclusion.

9. UNRELATED PARAMETERS

Let us consider a rather loosely formulated question:
Under what circumstances can we recognize the nuisance
parameter ¢ to be so unrelated to the parameter of
interest 6 that we can meaningfully isolate the whole of
the relevant information about the parameter 6 con-
tained in the data (&, z)?

This is a good test question with which we can try to
classify a statistician into one or another of the numerous
feuding groups (or mutual admiration societies) that
divide the current community of statisticians. For in-
stance, a pucca (fully baked) Bayesian will probably
dismiss the question out of hand as naive, incompetent,
and unnecessarily argumentative. This is because a
pucca-Bayesian has no use for the notion of “information

Journal of the American Statistical Association, June 1977

in the data.” According to him the natural dwelling place
for information is the head of a homo sapien, and he
recognizes only two kinds of statistical information—
prior and posterior. Being a pucca-Bayesian, he always
knows his prior ¢ as a well-defined probability measure
on @ = © X @. Given the data he can, therefore, com-
pute the posterior information ¢,* and then isolate the
information ¢.' on 6 by integration.

In the pucca-Bayesian statistical theory of Bruno de
Finetti and L.J. Savage, there is no room for a family @
of prior distributions. However, having examined the
question from various angles, the author has come to
recognize the merit of Kolmogorov’s half-baked* Bayesian
approach to the problem at hand. In the spirit of Kolmo-
gorov, Raiffa, and Schlaifer, let us put down the following
definition for unrelated parameters. Let § € © and
¢ € ® be two parameters that enter into the statistical
structure or model of an experiment &8, and let Qo be the
class of all product probability distributions ¢ = ¢ig: on
Q=0 X2

Definition (Unrelatedness): The parameters 6, ¢ are
unrelated relative to a model of the experiment & if,
for all prior ¢ € Qo and all sample outcomes z of &, the
posterior distributions g.* also belong to the class Q.

If the likelihood function L(9, ¢|z) = p(z|6, ¢) factors
as

p(z|6, ¢) = A6, x)B¢, v) , 9.1

then, for any prior ¢(8, ¢) = q1(8)g2(8), it is easily seen
that the posterior factors as

%6, ) = ¢."(0)g:'(8) ,
qx‘i‘(@) = A(9, x)ql(ﬂ)/?, A(ey x)ql(o) )

where

with a similar expression holding true for ¢.’(¢). Con-
versely, if

¢:*(0, ¢) = p(z|6, 4’)41(9)42(45)/5% PQ1g2

belongs to Qo then it is equally clear that p(x |6, ¢) must
factor in the manner of (9.1) above. We thus have the

Theorem: The parameters 6, ¢ are unrelated relative
to a model of the experiment & if and only if the likelihood
function factors in the manner of (9.1).

It is then easy to recognize whether the parameter of
interest is unrelated (in the preceding sense) to the
nuisance parameter or not. With such a recognition of
unrelatedness, (and, of course, with the further condition
that the nuisance parameter has nothing to do with the
hazards of incorrect decisions) the Bayesian will not
waste his time in figuring out his prior ¢, for ¢ as long
as he is satisfied that his prior ¢ for (8, ¢) must be in the
class Qo. He will carefully figure out his prior ¢, for 0
and then work out his posterior for 6 as

g.'(0) = A6, w)m(@)/; A6, )q:(0)

2 The Hindi antonym of pucea is so hard to spell in English!
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In Basu (1975) we examined in depth the question of
information in the data. Our conclusion was that, relative
to a particular statistical model for the experiment & in
question, Fisher’s notion of the “whole of the relevant
information’’ about w = (8, ¢) that is contained in the
data (&, ) may be identified with the likelihood function

L6, ¢|2) = p(2]6, ¢) .

What we are saying now is that when the likelihood
comes factored as in (9.1), when, on a priori consider-
ations, we are willing to regard 6 and ¢ as independent
entities, and when information gained on ¢ is of no
direct relevance to the decision problem on hand (i.e., ¢
does not enter into the loss function), then we may
regard the function

L'(8]2) = A(6, 2)

as the “whole of the relevant information” on 4 that is
supplied by the data (8, z). This may be regarded as a
generalized likelihood principle.

The generalized sufficiency principle $* and the general-
ized conditionality principle @€* are in conformity with
the above principle. The existence of a statistic 7' that
is p-sufficient for 6 or of a statistic ¥ that is S-ancillary
for 6 presupposes a factorization of the likelihood as in
(9.1). The principles 8* and @* are indirectly advising
us to concern ourselves with the factor of L(6, ¢|z) that
involves only 6. This is precisely why the p-sufficiency
and the S-ancillarity arguments do not lead us astray.

Also observe that we can have a statistic 7 that is
L-sufficient (B-sufficient) for 6 if and only if § and ¢ are
unrelated in the sense of the likelihood factoring as in
(9.1). If and when the likelihood factors in the above
manner, we can always fashion a statistic 7' that is
minimal L-sufficient for § and a statistic ¥ that is minimal
L-sufficient for ¢. For example, T will be defined in
terms of the equivalence relation: 2’/ ~ 2’/ if 4(6, 2)
= C(af, 2")A (0, 2”’) for all § € O. In general, such a T
will fail to be f-oriented ; that is, 7' will not be p-sufficient
for 4. Similarly, ¥ will, in general, fail to be S-ancillary
for 6. Indeed, we shall give an example where 7' and Y
are the same. In such an example the same statistic 7' is
in some sense isolating all the relevant information
about 6 and also all the information about the unrelated
parameter ¢.

A major source of our confusion on the important
question of when and how we can isolate the information
on the parameter of interest, is the fact of our arguing
(in the manner of Sir Ronald) in terms of statistics. The
notion of a statistic as a measurable map has hardly any
relevance at the data analysis stage. It was Sir Ronald
who distorted the question ‘“what is information?”’ to
the question ‘“what (statistic) has all the information?”
He taught us that a statistic is sufficient if and only if it
summarizes in itself all the relevant information in the
data. In the same spirit, we have been looking for a
statistic T that is partially sufficient for 6—a statistic
that summarizes in itself all the relevant and usable

365

information about 6 in the event of ignorance about the
nusiance parameter ¢.

We end this marathon discussion with three examples
of statistical models where the parameters come naturally
separated in the manner of (9.1), and yet we cannot
take advantage of the fact (and isolate the information
on the parameter of interest) in terms of either the
generalized sufficiency or the conditionallity principle.

Example 1: We have a multinomial distribution with
three categories and with probabilities

06, (1 —0)(1+¢)/2 and (1 +6)(1—¢)/2,

where 0 < 9 <1 and 0 < ¢ < 1. With n observations,
the three frequencies (ni, ns, n;) constitute the minimal
sufficient statistic, and the likelihood factors as

2-trtmwgn(1 = )ma(1 + 6)WI[4m(1L + ) (1 = §)™5] .

We do not have any statistic that is p-sufficient, H-suffi-
cient or S-ancillary for 6. The statistic T' = (n1, ns, 73)
is minimal L-sufficient (B-sufficient) for # and also for
¢. The (likelihood) information in the data on the param-
eter of interest 6 is crying to be isolated as

L1(0) = m(1 — o)=(1 + o)™ .

If 6 and ¢ are independent a priori and if ¢ does not enter
into the loss function, then a Bayesian will analyze the
data in the same manner as he would have done in the
hypothetical case when ¢ were known to be equal to 3,
say. Can anyone suggest a reasonable sample-space
analysis of the data?

Example 2: Let 0 < § < and 0 < ¢ <. Let X and
Y be two random variables with probability density
functions

b= == (x — ¢) and ¢e WDy + 6) ,

respectively, where I(-) stands for the indicator of the
positive half of the real line. The sample consists of n
independent observations i, 2, ..., Z, on X together
with an independent set y1, ¥2, ..., y» of # independent
observations on Y. Observe that the likelihood neatly
factors as

[6mexp (—n6Z)I(y ) + 6)]
‘[¢mexp (—noP)I(zwy — ¢)] ,

where (1) = min z; and y) = min y;. Clearly, the two
parameters , ¢ are unrelated relative to the model. The
statistic (£, yq)) is B-sufficient (L-sufficient) for 6. The
Bayesian analysis of the data is very simple as ¢ gets
eliminated almost by itself. Can anyone suggest how to
deal with the nuisance parameter in non-Bayesian terms?

Anyone who would sneer at the last two examples, on
the grounds that they are not apparently related to any
real life problem, is advised to take a hard look at the
next example.

Ezample 3: The experiment consists of the observation,
for each of n week days in a large metropolitan area, of
the number of accidents involving one or more auto-
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mobiles and also the corresponding number of such
accidents involving one or more fatalities. The parameter
of interest is the proportion 6 of automobile accidents
that result in death. The mean number ¢ of auto accidents
per working day is the nuisance parameter. The statistical
model for our record,

2 (xn, yn)} )

of the number of accidents x; and the corresponding
number of fatal accidents y; on the ith day (7 =1,
2, ..., n) is that we have a set of n independent obser-
vations on a pair of random variables (X, Y) such that
X is a Poisson variable with mean ¢ and Y, given X, is
a Binomial variable Bin (X, 6). Now with N = Y z; and
T = Y y., the likelihood neatly factors as

p(z]0, ¢) = A(@){s" exp (—ne)} {67(1 — YT} . (9.2)

If n were a preselected constant, then the statistic N,
distributed as a Poisson variable with mean n¢, would
qualify as an S-ancillary for 6. In this case the generalized
conditionality principle will eliminate ¢ and will permit
us to argue in some sample-space terms. Sir Ronald
would have advised us to reduce the data to the minimal
sufficient statistic (N, T), hold the ancillary N as fixed
(at its observed value), and then look upon T as an
observation on a Binomial variable with parameters N
(known) and 8 (unknown).

What happens if we do not preselect n but let it be
determined by the very system that was under obser-
vation? Suppose we continue our observations until
T = Y y; exceeds a preselected number, say 10. How
should we analyze the data then? Observe that our
stopping rule has no effect on the likelihood function
which comes factored in the same form as (9.2) above.
Now the triple (n, N, T) constitutes the minimal sufficient
statistic—the statistic T is nearly a constant but not
quite. The statistics (N, T) and (n, N) are B-sufficient
(L-sufficient) for § and ¢, respectively, but the notions
of p-sufficiency and S-ancillarity are vacuous in this
instance.

In a subsequent article, we shall study in depth various
conditionality and marginalization arguments which have
been put forward for the purpose of eliminating a nuis-
ance parameter that is nof unrelated to the parameter of
interest in the present sense of separated (factored)
likelihood.

[Received January 1976. Revised December 1976.]
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