‘H

. stochastic
LA processes
;g% and their

applications

ELSEVIER Stochastic Processes and their Applications 99 (2002) 295-321

www.elsevier.com/locate/spa

Statistical estimation of nonstationary Gaussian
processes with long-range dependence and
intermittency

Jiti Gao®*, Vo Anh®, Chris Heyde®d

2The University of Western Australia, Perth, Australia
bQueensland University of Technology, Brisbane, Australia
¢Columbia University, New York, USA
dThe Australian National University, Canberra, Australia

Received 13 December 1999; received in revised form 23 October 2001; accepted 31 January 2002

Abstract

This paper considers statistical inference for nonstationary Gaussian processes with long-range
dependence and intermittency. The existence of such a process has been established by Anh et al.
(J. Statist. Plann. Inference 80 (1999) 95-110). We systematically consider the case where the
spectral density of nonstationary Gaussian processes with stationary increments is of a general and
flexible form. The spectral density function of fRBm is thus a special case of this general form. A
continuous version of the Gauss—Whittle objective function is proposed. Estimation procedures
for the parameters involved in the spectral density function are then investigated. Both the
consistency and the asymptotic normality of the estimators of the parameters are established. In
addition, a real example is presented to demonstrate the applicability of the estimation procedures.
(© 2002 Published by Elsevier Science B.V.
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1. Introduction

Many recent studies have indicated that data in a large number of fields display
long-range dependence (LRD) (Beran, 1994; Baillie and King, 1996; Anh and Heyde,
1999). A basic process which has commonly been used to model LRD is fractional
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Brownian motion (fBm) By with Hurst index % < H < 1. This is a Gaussian process
which has stationary increments and spectral density of the form

qbl(a)):[a)lz%ﬂ, ¢c>0, 0<H<1, weR" (1.1)

In (1.1), the “spectral density” ¢;(w) must be understood in some specific sense (e.g.
in the sense of time-scale analysis (Flandrin, 1989) or in a limiting sense (Solo, 1992))
since By is a nonstationary process.

Anh et al. (1999a,b) introduced fractional Riesz—Bessel motion (fRBm), which is a
Gaussian process with stationary increments and the spectral density of the increments
is given by

R 1
b2 = ot Ty ©€R (1.2)

where # > 0, ~% <p< % and o > 0 are parameters. It is noted that model (1.2) is
well defined and that the spectral density of the increments of fBm is given by (1.2)
with o« = 0.

The significance of fRBm (via Eq. (1.2)) is in its behaviour when |w| — oo. It
is noted that the ¢,(w) of (1.2) is well defined as |w| — oo due to the presence
of the component (1 + w?)~% o > 0, which is the Fourier transform of the Bessel
potential. As a result, the covariances R(¢) of the increments of fRBm are strong for
small |7|. That is, large (resp. small) values of the increments tend to be followed
by large (resp. small) values with probability sufficiently close to one. This is the
clustering phenomenon observed in stochastic finance (e.g. Shiryaev, 1999, p. 365).
This phenomenon is referred to as (second-order) intermittency in the turbulence lit-
erature (e.g. Frisch, 1995). Summarising, the increments of fRBm display both LRD
and intermittency, while those of fBm have LRD but no intermittency.

In this paper, we shall consider the case where the spectral density of nonstationary
Gaussian processes with stationary increments is of a general and flexible form. The
spectral density function of fRBm is thus a special case of this general form. A continu-
ous version of the Gauss—Whittle objective function is proposed. Estimation procedures
for the parameters involved in the spectral density function are then investigated. Both
the consistency and the asymptotic normality of the estimators of the parameters are
established. In addition, a real example is presented to demonstrate the applicability of
the estimation procedures.

The organization of this paper is as follows. Section 2 proposes the estimation proce-
dures and the corresponding asymptotic properties. A real example is given in Section
3. Mathematical proofs are given in the appendix.

2. The estimation procedures

Let {X(t): t€R' = (—00,00)} be a zero-mean Gaussian process. Denote the incre-
ments of X(¢) by AX(t,7) =X (t+ 1) — X(¢) for t,1€R'. The Gaussian process X (t)
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is said to have second-order stationary increments if
D(t,11,12) = E{[AX(t + 5,71)[[AX (s, 72)]}

is independent of s for all s,7,7;,7, €R'. The function D(z,7,,7,) then has the spectral
representation

Sl . . 1 2
D(t,71,72) :/ (1 —e )1 — emw)7+2w F(dw), 2.1)
oo w
where F(dw) is a nonnegative measure on R! such that ffooo F(dw) < oo (e.g. Yaglom,
1986).
We shall assume that F(dw) is absolutely continuous with derivative of the form

2

flw)= f(o,p)= |w|h(1n+ e _C:coz n(w;a,y), @eR!, (2.2)

where = (o, y,) € 2 =1[0,00) X (%,%) x (0,00), and n(w) = w(w;a,y) is a positive

and continuous function to be specified in Condition 2.1. When n(w) = 1, model (2.2)
corresponds to the fractional Riesz—Bessel motion case.
According to (2.1) and (2.2), we can define the spectral density of X(¢) by

1 — (), w€ER".

1+ w?
g@)=g(w,p) = —5— flo) = |w7(1 + w?)*

Let yp be the true value of u. We assume that g is in the interior of €2, a compact
subset of Q.

We now define the estimator of g(w) by
2

>

1
L(0) = 5—

N
fi(otXt dr
27N /0 ¢ X

where N > 0 is the upper bound of the interval [0, N], on which each X (#) is observed.
Throughout this paper, the stochastic integrals are limits in mean square of appropriate
Riemann sums. We assume that X(0)=0. It can be easily shown that the conclusions
of Theorems 2.1 and 2.2 are not affected when X () is replaced by X_(¢)=X(¢)—X(0)
if X(0)#0.

Note that the question of whether /{(w) is a consistent estimate of g(w) has not
been answered in the literature.

We need to introduce the following condition.

Condition 2.1. (i) Assume that n(w;a,y) is a positive and continuous function in both
o and (a,7), bounded away from zero and chosen to satisfy

/ flo,u)dow < oo for pe Q.

In addition, n(w; @, y) is a symmetric function in o satisfying 0 < lim, ¢ (w; ®,7) < 00
and 0 < lim,,, o, T(; &, 7) < oo uniformly in (o, 7) € [0,00) X (%,% .
(ll) 1im(:)—>0 wzg(wv MO) =0.
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(iii) For & < ||u — pol| < § with any small & >0,

> 1
/ g(w, o) do> < oo,
oo (@) 1+ 0?

Now we state the following result and its proof is relegated to the appendix.
Theorem 2.1. Assume that Condition 2.1 holds. In addition, if
%<y<1 and o =0, (2.3)

then we have as N — oo

E[Iy (®)] = g(w, mo), (2.4)

E{I§ (0) — E[I}} ()1} = g*(®, o) + o(1) (2:5)
and

E{(I}{(w) — EUy (0)DUx (2)) — EUF ()]} = o(1) (2.6)

for all w#0, A#£0 and o # A.

Remark 2.1. (i) The conditions of Theorem 2.1 are quite natural and mild. Condition
2.1(i) allows the dependence of n(w) on « and y in model (2.2). This provides more
flexible models than the following form:

S (w)
@)= f(@0) = o5 o
where f*(w) is just a positive and continuous function of w. A similar model for time
series with only long-range dependence has already been discussed. See model (1) of
Hurvich et al. (1998). Both Conditions 2.1(ii) and 2.1(iii) hold automatically when
n(w) is just a function of w.

(ii) It is possible to further generalize model (2.2) to a form similar to model (1.4)
of Robinson (1997). For this case, one needs to impose some more detailed conditions
on 7(w). As the main objective of this paper is to estimate the parameters #, « and Y,
we shall use only the decomposed form (2.2).

(iii) For the process X(¢), Theorem 2.1 shows that I3 (w) is asymptotically unbiased
while I{¥ (w) is not a weakly consistent estimator of g(w). In addition, Eq. (2.4) justifies
the fact that g(w) can be defined as a spectral density of X(¢). Recently, Solo (1992)
established (2.4) for the case where

g(w)= ]w[fz?' for % <y< 1L

This part of the paper considers estimating the parameters involved in the spec-

tral density of the nonstationary process X(¢). For this case, we define the following
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continuous version of the Gauss—Whittle objective function:

Yoy— 1 [ (@) do
L =g [ {loetouy + O Lo @7)

and the minimum contrast estimator of u by
Ay = arg min Ly (n),
‘ ;le§2(.
where 2 is a compact subset of Q.

Remark 2.2. This paper considers using the continuous version of the Gauss—Whittle
contrast function to estimate the spectral density g(w) with its frequency defined on
(—00,00). For the continuous case, due to the slow decay of the spectral density at
oo, the weight function 1/(1 4+ w?) must be used in (2.7) to ensure that Eq. (2.7) is
well defined. Eq. (2.7) can also be justified by applying the entropy theory discussed
in Dym and McKean (1976).

The weak consistency is given below and its proof is postponed to the appendix.

Theorem 2.2. Assume that the conditions of Theorem 2.1 hold. In addition, if the
true value parameter [y of W is in the interior of Qo, then

fy —p o as N — oo.

Remark 2.3. It is worthwhile to point out that condition (2.3) covers the important
case where % <y <1and0 < a < 1. More recently, Gao et al. (2001) consider another
important case where X (¢) is a stationary Gaussian process and the parameters involved
in its spectral density g(w) satisfy 0 <7y < % and o > % The latter case allows a
stationary process to display both LRD and second-order intermittency.

As pointed out in Anh et al. (1999a,b), it is more useful to establish a consistent
estimator for u for the case where

1<y<% and o >=0. (2.8)

Due to the fact that (2.4) and (2.5) are only true under condition (2.3), we can
only establish a weakly consistent estimator for u under condition (2.3). Therefore, in
order to construct a consistent estimation procedure for the case of (2.8), we need to
transform the nonstationary process X (¢) into a stationary process. This paper suggests
using the following transform.

Define the Haar wavelet function

1, O<ux< %
h(u)y=1< —1, %<u<l,
0, otherwise.
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We have its Fourier transform lﬁ given by

. . 2
= o (Y.

We now define a new process

1/2 1

Y(t):/ooX(s)h(s—t)ds={ X(t+u)du — X(t—}—u)du}, teR'.

0 1/2
Then, it follows from (2.1) and (2.2) that
E[Y(t+1)Y(2)]

_ /OO /oc E[X(u+ t + )X (0 + 1)]h(u)h(v) du dv
:/oo /oo </oo (1 — e ooy _ eivw)l—:uizw2 f(w) da)) h(u)h(v)dudo

:/_O; (/:;(1 — e Yy du

0 . 1 2
[ OO(l—e”"“)h(v)dv) 7;2“’ f(o)dw

o0 . . 1 2
[ e i) fw)do,

— 00

which is independent of ¢. Consequently, the process Y(¢) is a stationary Gaussian
process with the following spectral density:

B Croplt+o? 1 m(w;ap) (sin(w/4) 4
0) = 9(0.0) = I ZET fw) = o ey TEE) (SO

where w € R!, B=y—1 and 0=(a, B,1) € @=[0,00) %[0, 1/2)x(0, 00). For convenience,
we use m(w) = n(w;«, f) = n(w; a,y) throughout the rest of the paper. Let 6y be the
true value of 0. We assume that 0, is in the interior of &, a compact subset of 6.

Remark 2.4. (i) We believe that both the wavelet transform and the resulting estima-
tion procedure provide a general approach to the estimation of (locally) self-similar
processes. In addition, as pointed out in Vergassola and Frish (1991), the wavelet
transform is continuous and linear, and the process Y(?) is itself Gaussian when the
process X (¢) is Gaussian. By contrast, the usual increments do not necessarily retain
the Gaussianity property.

(i1) We also need to point out that this paper adopts a simple form of the Haar
wavelet function for the stationarity transform. When using a more complicated form,
the structure of f(w) will remain unchanged. The only change is the form of h(),
which will not affect the estimation of the parameters. See Anh et al. (1999a,b). In
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addition, our experience suggests that the choice of the simple form of 4(-) can provide
stable simulation and numerical results.

(ii1) The main assumption of this paper is that the nonstationary process X(z) is
Gaussian. If X(¢) is not Gaussian but the increments of X(¢) are assumed to be Gaus-
sian, we can still estimate the parameter 6. One can use for example the first difference
Y(t)=X(t+1)—X(¢) to obtain a stationary process. If Y(¢) is Gaussian, then its spectral
density can be proved to be

n o m(w;0,p) (sin(w/2)\
|o[2F (1+w2>a( /2 )

where 0 is as defined above. It can be seen that the conclusions of Theorems 2.4 and
2.5 below remain true.

dy(w)=

For any given w € (—00,00), we define the estimator of ¢(w) = ¢(w, ) by

N 2
/ e Yy (t)de
0

For the periodogram I} (w), we have the following consistency result and its proof
is postponed to the appendix.

1
11\);(60) = ﬁ

Theorem 2.3. Assume that condition (2.8) holds. In addition, Y(0)=0. Then we have

as N — oo
E[Iy()] — ¢(,00) = O(1/N), (2.9)
E{Iy(0)) — E[y(0)]}* = ¢*(»,00) + O(1/N?) (2.10)
and
E{(Iy(»)) = EUy(0)DUy(2)) — EUy(A)D} = O(1/N?) (2.11)

for all w#0, A#0 and w+# A.

Remark 2.5. Eq. (2.9) implies that IJ(w) is asymptotically unbiased while (2.10)
shows that 7} (w) is not a consistent estimator of ¢(w), although Y(¢) is now sta-
tionary. Results (2.9)—(2.11) are similar to those for the discrete time processes with
short-range dependence. See for example, Chapter 10 of Brockwell and Davis (1990).

As mentioned earlier, the main objective of this paper concentrates on the estima-
tion of 6. This paper then considers using an extended version of the Gauss—Whittle
contrast function to estimate the spectral density ¢(w) with its frequency defined on
(—00,0). When considering the case where the spectral density is defined on (—7, 7],
the weight function 1/(1+ w?) is not required (see, for example, Heyde and Gay, 1993
for example).

For the stationary process Y(¢), we define the following objective function:

R B Iy(w) | _do

47
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The minimum contrast estimator of 6 is defined by
Oy = arg min LY,(0 S
N g o6, v(0)
where © is a compact subset of ©.

In order to state the asymptotic normality of éN, we need to introduce the following
conditions:

Condition 2.2. (i) Assume that the first two derivatives of log(¢(w, 8)) in 6 exist and
are continuous in w € (—o0,00) and 0 € O.
(i1) Assume that

/“ P (,69) (alogw(w,e)))T (alog<¢(w,e)))

(o) a0 20 . =%
where
dlog(¢(w,0)) (Olog(qb(wﬁ)) dlog(¢P(w,0)) 510g(¢(w,9)))1
00 N oo ’ op ’ on '
(iii) For any real function / € L*(—00,00),
* ¢Hw,00) . (log(¢(w,0))\" (dlog(¢(w,0))
/oo (1+w?)? ) ( 20 ) ( a0 ) 0=0, s

(iv) Assume that Y ° _ ¢(w—2kn,0) converges uniformly in w € (—=n, ]\{0} and
0 € Oy.

Condition 2.3. (i) For € O,

_ L[ (2log(¢(w,0)) (dlog(d(,0))" 1
”m_ﬂ/‘< o0 )( o0 >a+wyw<m'

(ii) The inverse matrix, I'~!'(6y), of I'(0y) does exist.

— 00

Remark 2.6. (i) Conditions 2.2 and 2.3 are similar to those for the discrete case. See
for example, Condition (A2) of Heyde and Gay (1993).

(ii) Conditions 2.2 and 2.3 indirectly impose some restrictions on the form of n(w).
When n(w) = 1, Conditions 2.2 and 2.3 hold automatically. The justification is similar
to that of Lemma B.1 of Gao et al. (2001).

(ii1) Condition 2.2(iii) is required for an application of a continuous-time central
limit theorem to the proof of the asymptotic normality.

We now state the next result of this paper and its proof is postponed to the appendix.
Theorem 2.4. (i) Assume that Condition 2.1 holds. In addition, if the true value 0,
of 0 is in the interior of ©,, then under condition (2.8)

éN — 0y with probability one
as N — oo.
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(ii) Assume that Conditions 2.1-2.3 hold. In addition, if the true value 6y of 0 is
in the interior of O, then under condition (2.8)

VN(@Oy — 0y) —p N(O,T~"(0y)),

where I'~'(0y) is as defined in Condition 2.3(ii).

Remark 2.7. (i) Theorem 2.4 establishes both the strong consistency and the asymp-
totic normality of Oy. Previously, we were unable to establish the asymptotic normality
of Oy. Instead, we established the asymptotic normality for a discrete approximation of
Oy. See for example, Theorem 2.2 of Gao et al. (2001). Similarly, we can now establish
the asymptotic normality of 0y of Gao et al. (2001). Thus, for both the nonstationary
and stationary cases, we can establish an asymptotically normal estimator for the vector
of parameters involved in the spectral density. This theory is now complete.

(i1) Theorem 2.4 extends and complements some existing results. For example,
Dahlhaus (1989) established asymptotic normality for estimators based the Whittle
approach for the discrete case. Giraitis and Leipus (1995) discussed asymptotic con-
sistency for estimators based the Whittle approach for the discrete case. Viano et al.
(1994) established some probabilistic and asymptotic results for continuous-time frac-
tional ARMA processes. Viano et al. (1995) considered a class of extended fractional
ARMA processes, and discussed the asymptotic behaviour of their correlations.

As Y(t) is stationary and Gaussian, we now can study the asymptotic distribution
of I} (w) for any fixed w. Similar results for the discrete case have been discussed
extensively (see, for example, Kiinsch, 1986; Hurvich and Beltrao, 1993; Robinson,
1995).

We state the last result of this section and its proof is postponed to the appendix.

Theorem 2.5. Assume that the conditions of Theorem 2.3 hold. Then the normalized
periodogram 1} (w)/¢(w,00) is asymptotically distributed as 5 z3.

Remark 2.8. For the discrete case, Theorem 6 of Hurvich and Beltrao (1993) shows
that I} (w)/d(w, 0y) at a given frequency is asymptotically distributed as a quadratic
form, and is only asymptotically distributed as %xg for a specific case. By contrast,
Theorem 2.5 shows that for the continuous case the asymptotic distribution of 73 (w)/
¢(w,0p) for any fixed o is %,(%

3. Implementation and application

In many practical circumstances, however, observations on Y(¢) are made at dis-
crete intervals of time, even though the underlying process may be continuous. In
addition, it is computationally easier to find a consistent estimate of ¢ based on a se-
quence of discrete observations on Y(z). This section considers the following discrete
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Process:
Z,=Y(t), t=12,.... (3.1)

According to (3.1), the autocovariance function of Z, is well defined by
re=cov(Z, Zi) = cov{Y (1), Y(t + 1)} = / e (w,0)dw

since [ [¢(w, 0)| do < co.
Then it can be shown that

oo 00 Qk+)m
r,:/ e P(w,0)dw = Z / e P(w,0)dw

— 00 h—— o0 k—)n

= Z /.ﬂ exp{it(w — 2kn)}Pp(w — 2kn, )dw

k=—00

= /n exp(i‘ca)){ Z d(w — 2kn,0)} dw

-n k=—o00

since .~ ¢(w — 2kn,0) converges uniformly in w € (—n, 7]\ {0} and 0 € O,.
Therefore, the spectral density function of Z; can be defined by

f2(@)=f(0.0)= Y ¢(w— 2kn,0). (3.2)
k=—o0
We now define the following discrete version of the Gauss—Whittle contrast function:

17 (wy) }

Tr—1

1
W@:%@:—Z@wﬂ%W+

2T

s=1

Sy, 0)

where T = [N] < N is the smallest integer part, w, = 27ns/T, and

T
it

E e Z,

t=1

Now, the minimum contrast estimator of 6 can be defined by

2

1
I%(w): nT

07 =arg 5231 W (0). (3.3)

It can be shown that as N — oo
Or — Oy — 0. (3.4)
The derivation of (3.2)—(3.4) is similar to (2.4)—(2.6) of Gao et al. (2001).
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Assume that the solution of (3.3) satisfies
w'(0r)=0. (3.5)
Similar to Appendix C of Gao et al. (2001), one can implement (3.5) in practice.

Example 3.1. In this example, we consider two air pollution data sets provided by
the Environment Protection Authority of New South Wales (NSWEPA) of Australia:
the Lidcombe NO, time series (1) and the Lidcombe ozone time series (2). These
are measurements of maximum daily concentrations and cover the period 2/1/1982—
30/4/1994. Lidcombe is an urban suburb at the centre of Sydney. Lidcombe is chosen
because, at this site of the NSWEPA monitoring network, long series of monitoring
data are available in a fairly complete form. We apply our estimation procedure to
determine the values of the parameters and to detect whether the data sets exhibit
both long-range dependence and intermittency. If we assume that the two data sets are
stationary and Gaussian, then the spectral density of the data set (i) can be defined by

(bi(w’ 0) =

i sin(w/4)
lwlzﬁ'(1+w2)"’< w/4

4
) , W€ (—00,00), (3.6)

where a; €[0,00), fi€(—1/2,1/2) and 0 < 1; < oo for i = 1,2. Note that the form of
¢:(w,0) is the special case of ¢p(w,d) where n(w) = 16.

The plots and the power spectra of the data sets are given in Figs. 1-4. We should
note the singularity at frequency 0 and the power law form of the sample spectra,
indicating the presence of long-range dependence in the data. Applying the estimation
procedure presented in Section 2 and the computational formulae given in (3.1)—(3.5)
to the data sets, we found the solution of (3.5), and the values of the unknown param-
eters in (3.6) were a; = 0.04474, B, =0.2668, n; = 12.571, oy =0.07832, f, =0.3396
and 7, =359.618, respectively. These results confirm that the two data sets exhibit both
long-range dependence (f; > 0) and intermittency (o; > 0), although the intermittency
is relatively less pronounced.

Remark 3.1. This example has described some basic features of the air pollution time
series for a single monitoring station at Lidcombe. The identification of long-range
dependence and intermittency of the time series has facilitated the use of modern
regression analysis to model the dependence of the maximum daily ozone on some
factors such as morning temperature and wind speed. Given the complexity of air
pollution time series, we suggest using nonparametric time series regression smooth-
ing techniques (e.g. Fan and Gijbels, 1996) or semiparametric time series regression
methods (e.g. Hardle et al., 2000) to model the dependence and then to provide better
forecasts.

Another issue is the selection of avenues, as there are many avenues for further
investigations. The characteristics of air quality at the other sites of Sydney could
be investigated in a similar manner. These characteristics can be used to identify the
structural relationships between different monitoring stations and different subregions
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NOx at Lidcombe
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Ozone at Lidcombe
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of the Sydney airshed. For a more reliable forecasting system, it is worthwhile to
investigate a much fuller set of information over all subregions.
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Appendix A

Proof of Theorem 2.1. It now follows from (2.1) and (2.2) that

ELX(s)X(1)] = [ (1 — &)1 — e ")gy(2) dA.

Thus
Y 1 00 N N o e
E[l§(w)]= 2N /_ (/0 /0 (1 —e™)e (1 — e "*)e! dsdt) go(A)d4
o [ 18N = B(@ - D) Par(1)dx (A1)
TJ -0

where B(x) = (e™* — 1)/ix and go(1) = g(4, uo).
Next, using the identity

BN) ~ Bl(w ~ HIN) = (B~ IIN) ~ ¢ BN o (A2)
we have
B @) = s [ W@~ DN P02 02
+ 22;2 / O; W(OAN )Y A2go(A)dA
~ s || W@~ DNWGN) o242 = Buy + Eay ~ B,

where Y/(w)=sin(w/2)/(w/2), the symbol “=" indicates that the terms on the left-hand
side are represented correspondingly by those on the right-hand side.
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Now, by Fejer’s theorem (e.g. Goldberg, 1961, p. 17), we have as N — oo
1 .
Ein — go(@) =g(w, 1), Eoy — o) }1_%(90(/1)/12) =0

and

?

2y(wN)

Epy — lin%)(gg(/l)/lz) =0 (A3)
A
using Condition 2.1(ii).

Therefore, the proof of (2.3) is completed.
Before proving (2.5), we introduce the following notation and identity:

rx(s,t,u,v) = E[X(s)X ()X (u)X(v)] and rx(s,t) = E[X(s)X(?)],
Fx(s,tu,0) — ry(s,Ory(u,v) = ry(s,u)ry(t,v) + ry(s, v)ry(t, u) (A4)

since X (¢) is Gaussian and X (0) = 0.
It follows from (2.1) and (2.2) again that

4’ N2E{I{ () — E[I{ (o)1}

N N N N ) '
= / / / / {[rx (s, t,u, v) — rx (s, )ry(u,v)]}e =T 4 dr dudo
0 0 0 0

N N N N _ _
= / / / / rx (s, 0)rx (1, 0)e U706 g dy ds do
o Jo Jo Jo

N N N N ' ‘
+ / / / / rx (s, u)ry (2, 0)e' =T qr dp ds du. (A.5)
o Jo Jo Jo

Similar to (A.1) and (A.2), we have
1 NN . :
— ry(t,u)e't dr du
N /0 /0 !
N >~ ioN
== [B((A+ w)N) + " B(AN)]

X[B((w — A)N) + €V B(—AN)1A*go(4)dA

and
1NN _
N / / rx(s,0)e ") ds dw
Jo Jo
N > —iwN
=~ = [ BG = oW) + VBN

X[B(—(A + @)N) + e N B(—AN )] A2 go( 1) dA.
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Observe that as N — oo

ivi / b B((A + ®)N)B((w — A)N)A%go(4)dA
w —0o0

—ioN

€
w?

/ WO+ DN W@ — DN go(A)d(N2)

=O(Y*(oN )go(@)) = O(1/N), (A.6)

> 1
| BN a2 — o tim(gn(2) =0 (A7)

and

_]Kz / - B((4 + @)N)B(IN)A*go(2)dA
0* J oo

w?

zo(w(wN )nmo(/lzgo(/l))) — o(1/N) (A.8)

for all w#0.
Analogous to (A.6)—(A.8), we can show that as N — oo

1 [N NN N _ _
V2 / / / / {rx(t,u)ry(s, v) }e =M= 45 d¢ du dv
o Jo Jo Jo

=O(1/N?) + o(1/N) + o(1).
On the other hand, similar to (A.1)—(A.3) we have as N — oo

1 N N N N ) )
e / / / / {rx(t,0)ry (s, u)}eU=H0W=5) 4g dt du dv
0 0 0 0

= (% /_oo |B(wN) — B((» — A)N)lzgo(/l)di)

o0

X (g—r / |B(wN) — B((w + A)N)lzgo(i) d/l) _ gz(w, 1) + o(1)

for all w#0.
Thus, the proof of (2.5) follows from (A.5). Similar to (A.5)—(A.8), we can show

that as N — oo

LA o
ﬁ/ / ry(t,u)e™ " dt du
o Jo

_ N / - A2(B((A+ y)N) + e"B(AN))(B((x — A)N)
2nxy J oo

+ e B(=AN))go(A)dA — 0
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L NN o
N / / ry(s,0)e ™ dsdv
0o Jo

and

= N [T 2B~ yN) + eV BONYB((—x — AIN)
2nxy J_ o
+e "NB(=IN))go(A)dA — 0 (A.9)

for all x#0 and x # y.
Analogously, we have as N — oo

1N N o
— ry(t,v)e™ Y dedo
!

N

o0

- A*(B((A— yIN) + e "VB(AN))(B((x — 2)N)
2nxy J oo

+ eV B(—AN))go(4)dA — 0

1 Ny o
N / / ry(s,u)e ™" ds du
0o Jo

= oo [ B = DN+ B INBG - 5O)
XY J—oo

and

+e *NB(AN))go(A)dA — 0 (A.10)

for all x+#0 and x # y.
Thus, (A.9) and (A.10) imply that as N — oo

E{(Iy (x) — EUy <)DUx (») — Elly ("D}

| [N N N N o o
~ N2 / / / / rx(tu)ry(s,v)e™ e ds dt dudv
o Jo Jo Jo

1 N N N N o ' '
TN / / / / rx (8, 0)ry (s, u)e™ e dsdt dudo — 0
0 0 0 0

for all x#0 and x # y. Thus the proof of (2.6) is completed. [

Proof of Theorem 2.2. Before proving fi, — uo in probability, we show that as
N — oo

oo

|
B - =y [

— 00

dw (A.11)

g(wsluO) 1
{log(g(w,u))+ s } P

for ¢ < ||u— pol| < § with any given &> 0.
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In order to prove (A.11), it suffices to show that for

p(@) = plo.p) = ;5 9(o ) =11+ 0? ) n(w) !
the following

| B@pomdo - [ aw.mpomndo (A12)
holds in probability as N — co. It is easy to see that (A.12) follows from

| @@ - s, mdo -0 (A13)
and

/_O:O(I/f/((w) — E[I§{ (0)]) p(w, p) do> — 0 (A.14)

in probability for & < || — pol| < } with any given & > 0.
The proof of (A.13) follows from (A.3), Condition 2.1(iii) and

o0 o0 l
/_ go(w) p(w)dw :[ Z((a;)’ﬁ:f)) T dow < 00 (A.15)

for & < |1t — poll < }, where go() = g(e, o).
In order to prove (A.14), it suffices to show that as N — oo

0o 2
4’ N’E { / (Ij (w) — E [I§ (w)]) p(a))dw}

— 00

=47°N? / / E{(I} (x) — E[I§ (<)DUn () — EUN (»)]D)} p(x) p(y) dxdy

- Y " NrX(t,u)rX(s,v)eix’“y”e_i’“_iy”dsdtdudv p(x)p(y)dxdy
INNIYSY )
/ / (//// Fx (8, 0)ry (s, u)e™ e~ 'y”dsdtdudv> px)p(y)dxdy

=o(N?). (A.16)

Similar to (A.6)—(A.10), and using (A.15) we can show that (A.16) holds.
We now complete the proof of Theorem 2.2. It follows from (A.12) that in
probability

Ly (w) — L (po) — K, po),

where for u =
1 [ [g(w,pu) g(w, uo) do
K = — —1-1 0
(1 fo) An /_oo { g(, 1) B\ g(@.p) T+a?
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using the fact that for x > 0 and x # 1
x — 1 > log(x).
Thus, for any given ¢ > 0
lim inf  inf (L¥(u) — LY (o)) > 0

N—00 [|u—pol| =&

in probability. This implies that [, — po holds in probability. Thus the proof of
Theorem 2.2 is completed. [

Proof of Theorem 2.3. It follows from
1 N N '

]Y - Y Y(t 1(s—t)u)dsdt
=g [ [ roroe

that

BUY(@)] - d(@.00)= 5 [ [60() — du(@) (G~ 0IN) ()

- % /OO [po(@ + u/N) — do(@)]W*(u) du

— 1 N N > )
Iz {/_oo +/_N+ /N } [po(+/N) — do()]*(u) du

=Civ + Gy + Gy,

where ¢o(w) = ¢p(w, 0).
It is obvious that for all w+#0

—N —N
Cix = / [o(e+ /N — o)W (u) du = O(¢0(w) / u? du)

$o(w)
o[ L)
and
G = / [¢0(C() + u/N) - ¢0(w)]l//2(u)du =0 <¢O(w)/ u_z du)
' N
$o(w)
o[ %2)
as N — oo.

For C,y, a second-order Taylor expansion implies that as N — oo

N
Con = / o0+ uIN) = o)) d

/ {P0(@)/N) + (&) u? /2N*) 3P (u) du _o( <w))
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for all w#0, where ¢ lies between w and w+u/N and ¢”(w) is the second derivative
of ¢o(w) with respect to w.

This completes the proof of (2.9).

In order to prove (2.10), it suffices to show that

E{ly(0) = E[Iy()]}* = ¢*(»,00) + O(1/N?).
Obviously,

4’ N?E{L}(w) — E[Iy()]}

N N N N ) )
= / / / / {rv(s,t,u,v) — ry(s,t)ry(u, v)}e"”(’“s)*'“’("‘”) dsdtdudo.
o Jo Jo Jo

Since {Y(s), —o0o < s < oo} is Gaussian with Y(0) =0, we have
ry(s,tu,v) — ry(s,O)ry(u,v) = ry(t,u)ry(s,v) + ry (& v)ry (s, u). (A.17)
Thus, it follows from (A.17) that

Am2E{I}(w) — E[I} ()]}

| [N N NN _ .
N2 / / / / ry(Lu)ry(s, v)e! TPt 4o 4 du do
o Jo Jo Jo

1 N N N N ) )
tyz / / / / ry(t,0)ry(s,u)e' e ds dr du dv. (A.18)
0 0 0 0

We now look at the first component of (A.18). For all w# 0, we have

1 NN '
N / / ry(tu)e' ¢ dt du
o Jo

1 oo N N . . N
=5 / / / et o (1) dt dudA
—oo JO 0

_ efimN / t//(N(ZCO — z))l//(NZ)(ﬁo(w — Z)d(NZ)

= O (2wN )po(w)) = O(1/N) (A.19)
and
_1__ N —i(s+v)w __ AloN >
N/o /0 ry(s,v)e dsdv=e /_OO Y(NQCw~+x)W(Nx)po(w+x)d(Nx)
= O0(Y(2wN)po(w)) = O(1/N) (A.20)
as N — oo.
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Analogous to (A.19) and (A.20), we can estimate that the second component of
(A.18) is

1 [N N NN ‘ ‘
V2 / / / / ry(t,0)ry (s, u)e' =29 g df du do
o Jo Jo Jo

= ( / W2 (0 — DN )bo(4) dl) ( / W2 (0+ DN )do(4) di) — ¢*(w,00)

as N — oo.
This completes the proof of (2.10). Analogously, we can prove (2.11) and therefore
we complete the proof of Theorem 2.3. [

Proof of Theorem 2.4. Before proving éN — 0 with probability one, we show that as
N —

1 )] d
L(0) — L'(0) = [ ) {log(¢(w,0))+ ‘f;((“; (;’))} 1 +°"w2 (A21)

holds with probability one for é < || — 6y|| < ; with any given 6 > 0.
In order to prove (A.21), it suffices to show that for

00) = 0.0) = 13— dw) ™ = Q6ny o1 oy (T ))A“n_l(w)
the following

[ ton@nio— [~ ¢t 00 (A22)
holds W_lto; probability one as N :)OOO It is easy to see that (A.22) follows from

/ h (E[LY ()] — ¢(w,00))g(w,0)dow — 0 (A.23)
and -

/ Z(Iﬁ(w) — B[} (@))a(e, 0)do — 0 (A24)

with probability one for 6 < ||0— 6| < ﬁ with any given 6 > 0. We first prove (A.23).
It follows from the definition of I} (w) that as N — oo

/ E[LL ()¢, 0) do> — /_ (@, 00)g(w, 0) doo

— 00

using for 6 < [|0 — 0o < 1,
| @@ do <o (A25)

due to Condition 2.1(iii).
Hence, (A.25) implies (A.23). In order to prove (A.24), it suffices to show that as
N — o0

e’} 2
E{/ (1§(w)—E[1§(w)])q(w)dw} :0(-}\%). (A.26)

—0oC
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The proof of (A.26) is similar to that of (A.6) of Gao et al. (2001).

The remainder of the proof of Theorem 2.4(i) is similar to that of Theorem 2.2.
We shall not repeat the details here.

We now prove Theorem 2.4(ii). Note that

oLY(0) _OLy(9)
a0 |y, 00

002

62
[ Ly ()
0=0¢ 0=05

] By — 60),

where 0% — 0| < |0y — 0y|. Since 6 is in the interior of @, Theorem 2.4(i) implies
that 9N is in the interior of @ for large N. Since HN minimizes L,{',(G) it follows that
0Ly (0)/00],_g, = O for large N. Thus for large N

oLY(0) o2
——t = Ly (0)
0=t 002N

Thus, in order to prove that as N — oo
VN(by — 60) —p N(O,I"'(6o)),

it suffices to show that as N — oo
VN / {IY(w) — E[I}(0)]}D(w, 0) dow — N(0,1672I'(0y)), (A.27)
where

e T
ry= - / ;{ log($(, 0))}{-log(¢(w 9))} do

an | (1 +a?)
and
B 1 3¢ (w,0)
D(0.0)= =170
1 0~ (,0) 9~ (w,0) 9~ (w,0)\
_l—i—wz( o’ o’ on )

= (Dy(w, 0), Ds(w, 0), D3(w, 0))".

To prove (A.27), it suffices to show that for any fixed ¢ = (¢1,¢2,¢3)%,

VN / h {I}(w) — E[I} (0)]}H(w,0)dw> — N(0,3%(0y)), (A.28)

as N — oo, where H(w,0) = Z ¢;Dj(w,0) and

j=1
3

2
2oy —an [ 1 0
o (0)-—47r/_oo e (;c, 5, 10g(d>(co,0))) do

in which 0, =«, 6, = f and 0; =y.
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Without loss of generality, we assume that there is a measurable function k(w,6)
such that k(w, ) is symmetric in @ and

3
H(w,0)=Y_¢;Di(w,0) =k (w,0) >0
j=1
Otherwise, one needs only to consider the positive and negative parts of H(w,6)

separately.
Let k(w) = k(w, 0),

N
Gy(w) = % / e Y(t)dt and Ry(u,v) = E[Gyn(1)Gy(—0)].
0

For any function / € L?>(—00,00), define the integral operator £y € L?(—00,00) —
L*(—00,00) by

$Nl:/ Ry (u,v)l(v)do.
Let Ach) be the eigenvalues of Zn. Then it follows from the Karhunen-Loéve
expansion (e.g. Yeh, 1973, Theorem 19.4) that

/ Gy(@)Pdo = AM(GMY, (A.29)
% i=1

where for any N, {G(N) > 1} is a sequence of independent N(0, 1) random variables.

It follows from (A.29) that
my :/ E[|GN(u)|2]du:/ Ry(u,u)du = ZA(N)

- - i=1
and
A% = Var (/ IGN(w)Izda))
=2 / / Ry (u,v)dudv =2 " (A™M). (A.30)
—oo oo i=1
Note that

VN [ @) - Bl @ (.0 do

__1_ > 2 2
-— / (G(@)F ~ E[Gy(@)F]) do. (A31)

In order to prove (A.28), in view of (A.29)—(A.31), it suffices to show that as
N — o0

maxy l(N)

/Zk l(«(N)

=o. (A.32)

460



318 J. Gao et al. | Stochastic Processes and their Applications 99 (2002) 295-321

To prove (A.32), it suffices to show that as N — oo

/ / R%,(u, v)dudv — oo
d

(A33)
ant
ffooo(f_oooo Ry(u,v)l(v)dv)? du
7[5 Ry(u,v) dudy — (A-34)
Similar to (A.19), it can be shown that as N — oo
RN(u, U) = E[GN(U)GN(—U)]
_k@k@) [ (Y ey s
= - (/0 /0 e Je st )dsdt) Po(A)dA
k(wk(v)N? [
— ST [ BV = BN = D)o(2) a2
=N(1+ o(1))B(—=N(u — v))po(v)k(u)k(v),
where B(x) = (e** — 1)/ix.
Thus, as N — o0
/oo /OO R,zv(u,v)dudv
2aN?(1 1)) [ [ [
_2nN (2: o(1)) /_ ) ( /_ ) |B(N(u—v))]2¢(2)(v)k2(v)dv) K2 (u) du
=27N(1 + o(1))/oo da(u)H*(u)du — oo. (A.35)

This implies that (A.33) holds.
Similarly, as N — oo

/OO Ry(u,v)l(v)dudv = ZLNE(—;%(—)(—I—D/OO B(—N(u—0))¢o(v)h(u)h(v)l(v)dv

= 2no(w)(u)H (u)(1 + o(1)).

Therefore, as N — oo

/_Z (/oo Ry (u, v)l(v) du dv)2 du

o0

=47°(1 4+ o(1)) / h ¢ (u)P(u)H?(u) du < oo. (A.36)

Egs. (A.35) and (A.36) imply that (A.34) holds. Therefore, the asymptotic normality
of Theorem 2.4(ii) is proved. [
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Proof of Theorem 2.5. For any fixed o, let

1 N 1 N
and
1 N
C(CO) i \/——2_7[—7 /0 eilth(t)dt.

Similar to (A.19) and (A.20), we have for any fixed w and 4

N N
E[C(w)C(A)]:E;—N /0 /0 e e HME[Y(5)Y(¢)] ds dt

- —27tN/ / g losg—ik </ e“(’_s)d)(x)dx) dsdt
0 0 —00

e—(}t—%—(o)Ni/Z

=S [ W@ NG~ N ) ),

Note that
A(@)A(2) = 3 Re(C(0)C(A) + C(w)C(=1)),
B(w)B(2) = 5 Re(C()C(—1) — C(w)C(2))
and
A()B(2) = 3 Im(C(0)C(=2) — C(0)C(4)).

We now have

EIA@)A(1)] = 5 cos((o + DNJ2) / (@ + N W — DN)(x) d(Nx)
+ 4 cos((0— DNJ2) /_ (@4 xIN WA+ XN ) (x) (V)
E[B(@)B()] = 7 cos((o — INJ2) / (@ + N WG+ )N )b(x) d(Nx)

~ 4 cos(@HDN2) [ (@ N WG XN () d(AR)
and

E[A(w0)B(4)] = 117; sin((w — i)N/Z)/_ V(@ + X)NW((4 + x)N)$(x) d(Nx)

- ﬁ sin((w + /I)N/Z)/ V(0 + x)NW((A — x)N)p(x) d(Nx).
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Thus, by the similar reason as in (A.19) and (A.20) we obtain for any fixed w and A4
E[4(w)B(4)] — 0

and
Var(@) = o [ 0@+ x0M)9) )
1 o0
+ e cos(wN) /_ V(@ + x)NW((w — x)N)$(x) d(Nx)
—~ Sb(0,00)
as N — oo.
Analogously,
1 oo
VarB@) = 5 [ 9@+ 0N d)
= 3me0s(@N) [ (@ -+ DN I(@ — N )$) )
~ 36(0,00)
as N — oo.

Therefore, the proof of Theorem 2.5 follows from the fact that the normalized

coefficients A(w)/\/¢P(w,0y) and B(w)/+/P(w,8y) are Gaussian, and asymptotically

independent.
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