A quasi-likelihood approach to estimating
parameters in diffusion-type processes

C. C. HEYDE

Abstract

Estimation of parameters in diffusion models is usually handled by maximum likelihood and
involves the calculation of a Radon—Nikodym derivative. This methodology is often not available
when minor changes are made to the model. However, these complications can usually be avoided
and results obtained under more general conditions using quasi-likelthood methods. The basic ideas
are explained in this paper and are illustrated through discussion of the Cox—Ingersoll-Ross model
and a modification of the Langevin model.

COX-INGERSOLL-ROSS MODEL; LANGEVIN MODEL; INFERENCE; PARAMETER ESTIMATION; DIFFUSION PROCESSES

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60J60

1. Introduction

The standard method of estimation for parameters in the drift coefficient of a
diffusion process involves calculation of a likelihood ratio (Radon—Nikodym
derivative) and thence the maximum likelihood estimator(s). This is less than
straightforward for more complicated models, and indeed it is often not available
at all because of the non-existence of the Radon—Nikodym derivative. New
methods of quasi-likelihood, however, allow estimators to be obtained straight-
forwardly under very general conditions. They can deal, in particular, with the
situation in which the Brownian motion in a diffusion is replaced by a general
square-integrable martingale. The approach, which is based on selection of an
optimal estimating function from within a specified class of such functions,
involves assumptions on only the first two conditional moments of the under-
lying process. Nevertheless, the quasi-likelihood estimators will ordinarily be
true maximum likelihood estimators in a context where the Radon—Nikodym
derivative is available. Furthermore, they will generally be consistent, asymptoti-
cally normally distributed, and can be used to construct minimum-size asymptotic
confidence zones for the unknown parameters among estimators coming from
the specified class. The purpose of this paper is to illustrate the value of
the methodology through a general discussion and application to the
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Cox—Ingersoll-Ross model for interest rates and to a modification of the
Langevin model for dynamical systems.

Since the general theory of quasi-likelihood is not widely known we shall begin
with a sketch of the basic principles. For a detailed discussion of the general
framework see Godambe and Heyde (1987). Various amplifications are provided
in Heyde (1988) and Serensen (1990). For a particularly accessible introduction
see Heyde (1989).

It should be noted that the term ‘quasi-likelihood’ also appears in the literature
with a rather different interpretation from that given here (e.g. Wedderburn
(1974), McCullagh and Nelder (1989)). A discussion of the relationship between
these interpretations is provided in Lin and Heyde (1993).

2. General principles

The general framework is as follows. We are given a sample {Z,, t € T}, say, T
being discrete or continuous, taking values in r-dimensional Euclidean space,
and the set of probability measures {Py} for {Z,} is a union of families of
models, each being indexed by a characteristic § belonging to an open subset of
p-dimensional Euclidean space. The object is the efficient estimation of # in
situations where a likelihood function may not be available.

Attention is focused on the class ¥ of zero-mean square-integrable estimating
functions G7(0) = Gr({Z,,t € T},0) which are vectors of dimension p for which
EGr(6) =0 for each P, and for which the p-dimensional matrices
EG1(0) = (E0G1,(6)/06;) and EG(0)Gr(0) are non-singular, the prime denoting
transpose. The expectations are always with respect to Py. Within ¢, estimators 67
are found by solving the estimating equation G(d7) = 0.

Quasi-likelihood theory is focused on suitably chosen subsets of 4 and involves
choice of the estimating function G to maximize, in the partial order of non-
negative definite (n.n.d.) matrices, the information criterion

&(Gr) = (EGr)' (EGGy) ™ EGr

which is a natural generalization of Fisher information (see e.g. Godambe and
Heyde (1987)). (Here and below we omit the argument 6 for simplicity.)

Definition. Suppose that G € # C 4. If
&(G") - &(Gr)

is n.n.d. for all G € # we say that G7 is a quasi-score estimating function within
H.
The estimator 67 obtained from G7(07) = 0, which is termed a quasi-likelihood

estimator, has, under broad conditions, certain minimum variance and minimum
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size asymptotic confidence zone properties for 6, at least within the class #.
Indeed, the basic properties are those of the maximum likelihood estimator but
restricted to the class .

The theory does not require a parametric setting, let alone the existence of a
likelihood score function Uy (derivative of the log-likelihood with respect to 6),
but if Uy exists a judicious choice of # will usually produce it as the quasi-score
estimating function. If Uy € #, as can ordinarily be arranged in exponential
family problems, then Uy is the quasi-score estimating function within # and
can easily be calculated. Godambe (1960) showed that Uy is the quasi-score
estimating function within .

It is not usually practicable to find a quasi-score estimating function directly
from the use of the definition. However, the following proposition (Heyde (1988))
provides for ready derivation.

Proposition 1. Let # C %. Then G € # is a quasi-score estimating function
within # if
(1) (EG1)'EG;Gy = Cr

for all Gy € A, where Cr is a fixed matrix. Conversely, if # is convex and G is a
quasi-score estimating function then (1) holds.

3. The application

The models which we shall consider in this paper can all be written in the
semimartingale form

(2) dX, = dA,(0) + dM,(6)

where the finite variation process {4,} can be interpreted as the signal and the
local martingale {M,} can be interpreted as the noise. The local martingale has a
natural role to play in inference as it represents the residual after fitting of the
signal. Then, the quasi-score estimating function based on the family of local
martingale estimating functions

T
H = {J a,(0)dM ,(6),{a,} non-anticipating}
0
is easily seen from Proposition 1 to be
T
(3) JO (E(dM,(0)|7,-)) (d(M(6)),)"dM (6)

where {#,} is a filtration of past-history o-fields, (M(6)), is the quadratic
characteristic and the + denotes the Moore—Penrose generalized inverse which

is, for a matrix A, the unique matrix 4" possessing the properties AA"4 = A,
ATAA T = AT, 474 =44".
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Now (3) can be rewritten as

T
|, B @17y @son) @ao) - ax)
from which it is clear that the quasi-score estimating function is unaffected if the
local martingale noise {M,(6)} is replaced by another whose quadratic character-
istic is the same. The precise distributional form of the noise does not need to be
known. In the commonly met situation where M,(6) = oW, with ¢ > 0 and W,
being standard Brownian motion, the results are robust to the extent that {M,(6)}
could be replaced by any local martingale {Z,(6)}, for example one with inde-
pendent increments, for which (Z), = 0%t without changing the estimators.

In the particular case of a diffusion process the components on the right-hand
side of the representation (2) can be written as

(4) dA,(0) = a(t, X,,0)dt,  dM,(0) = b'*(1, X,)dW,

where @ and b are known vector and matrix functions respectively and {W,} is
standard Brownian motion. Then, an appropriate Radon—Nikodym derivative of
the measure induced by the process {X;,0 < ¢t < T} with parameter 6 with respect
to the corresponding measure for parameter 6, can be calculated and is given

(5) exp {JOT C(t, X,)dX, — JOTD(I, X,)dt}

b(t,x)C(t,x) = a(t,x,0) — a(t, x,0)
D(t,x) = (a(t,x,0,)) C(t,x) + 3 (C(t,x))'b(1, x)C(1, x)

(e.g. Basawa and Prakasa Rao (1980), p. 219).

From (5) it is easily checked that the likelihood score function (derivative of the
logarithm of the Radon—Nikodym derivative with respect to 6) is given by (3).
This means that the quasi-likelihood estimator is the maximum likelihood esti-
mator for the model (4). However, as indicated above, the quasi-likelihood
estimator is available much more generally.

The explanation for the quasi-score corresponding to the likelihood score
for the model (4) is not hard to discern. A likelihood score is a martingale
under modest regularity conditions and all square integrable martingales living
on the same probability space as the Brownian motion in the noise term of the
model (4) can be described as stochastic integrals with respect to the Brownian
motion (see e.g. Theorem 5.17 of Lipster and Shiryaev (1977)). The likelihood
score will be one such martingale and will therefore be included in the relevant
family # over which optimization takes place and it solves the optimization
problem.
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As a concrete illustration of the methodology we shall discuss the stochastic
differential equation

(6) dX, = a(B — X,)dt + o/ X, dW,
where Xy > 0, @ > 0, 3 > 0, 0 > 0. This form was proposed by Cox, Ingersoll and
Ross (1985) as a model for interest rates and it has been widely used in finance.
In considering the model (6) we shall be concerned with the estimation of
0 = (o, B)'. The parameter o can be regarded as known whenever Brownian
motion and continuous sampling are involved. Indeed, o can be calculated with
probability 1 on the basis of knowledge of a path of the process on any finite time
interval. This follows from the definitions of the quadratic variation process and
stochastic integrals with respect to Brownian motion (e.g. Rogers and Williams
(1987), Chapter IV, Section 4) from which one obtains that, writing
¢ = min (T,27"1),
N 2 2 "
nlLI’IQlQ ;(Xt:(i)l — th_,.)) =0 J() X, dt as.
and
e m _ oy _ [
r}ingo;Xtﬁ")(ti“ —t;)= Jo X, dt as.

For the model (6) the Radon—Nikodym derivative of the measure based on
(o, 3) with respect to that based on (o, 3y)’ is easily seen from (5) to be

T
exXp {‘72 JO Xfl[a(/@ - X,) — a(By — X,)]dX,

1 2 r —1r 2 2 2 2
-30 Jo X, [ (B-X,)" = ap(By — X)) ]dt}

and differentiating the logarithm of this likelihood ratio with respect to 6 = (a, 3)'
gives the likelihood score

T/(B-X,
) or=a ] (7 )

which is also the quasi-score given by (2).
If we modify the model to the form

dX, = o(B — X,)dt + o, v)\/ X, dW,

where o(a, ) reflects a possibly rate-dependent noise, then the likelihood ratio
does not exist in general. Indeed, when o(ay, A) # o(a,, A) the supports of the
distributions of the two processes are disjoint. The quasi-likelihood methodology,
however, is unaffected by this change. The quasi-score estimating function
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continues to be given by (7) and the asymptotic properties of the estimators are
also unaffected.

From (7), the maximum likelihood/quasi-likelihood estimators G, 3y are given
by

T A ~
L (Br — X)X7'[dX, — ar(By — X,)de] = 0

T ~
|, ¥, ~ ar(hr - X =0
and putting
T T T
Iy = J xlax,,  Jp= J X 'd, Kp= J X,dt,
0 0 0
we find that
ar = (IrT— Jp(X7 — Xo))/(JrKp — T?)
Br = (IrKy — T(X7 — X)) /(I T = Jo(X1 — X0)).

For the model with 2a8 > o° there is a strictly positive stationary ergodic
solution to (6) at T — oo whose distribution has gamma density
F(2aﬁ/02,2a/02) (see e.g. Kloeden and Platen (1992), p. 38). Suppose X, has
this density; then

(8) EX, =5, EX7 =2a/(2a8 - %).
Using the ergodic theorem we obtain
T
(9) T 'Jp=T" J Xl 2 ExZ),
0
r a.s
(10) T'Kp=1" L X,dt =2 EX

and, since
T
Ir = J X, 'dX, =log X;' X7 +L0*Jr
0

using It6’s formula,
7' “5 L Exy)

as T — oo. These results readily give the strong consistency of the estimators ar,
BT. Asymptotic normality of TV z(dT - ﬁT — ) can be obtained by applying
Theorem 2.1, p. 405 of Basawa and Prakasa Rao (1980).

All these results continue to hold under substantially weakened conditions on
the noise component in the model. For example, they hold if { ,} is replaced by a
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square integrable martingale with stationary independent increments {Z,} for
which (Z), =t. The details involve straightforward applications of the mar-
tingale strong law and central limit theorem and are omitted.

The formulation via (2) and (3) has to be used with care for problems with
multiple sources of variation. Suppose for example that the Langevin stochastic
differential equation (e.g. Kloeden and Platen (1992), pp. 104—105) is augmented
with jumps coming from a Poisson process and becomes

(11) dX, = 6X,dt + dW, + dN,,

N, being a Poisson process with intensity A. Then, the process may be written in
semi-martingale form as

dX, = (6X,+ \)dt + dM,
where {M,} is a martingale given by
(12) M,=W,+ N, - \t.

Using (11) and (12) in (3), the quasi-score estimating function based on noise
{M,}is

T
L (X, 1)dM,,

leading to the estimating equations

T (T (T
J X,_dX,:OTJ det-i—)\TJ X,dt
0 0 0

-~ T ~
XTZHTJ X%dt+>\TT
0

These, however, are the maximum likelihood estimating equations for the
model

dX, = (0X, + N)dt + dW,,

1.e. a version of (11) in which N, has been replaced by its compensator Az. In this
model the entire stochastic fluctuation is described by the Brownian process and
this is only realistic if A <« 1.

This problem, first noted by Serensen (1990), can be circumvented and the true
maximum likelihood estimators for 6, A\ obtained if we treat the sources of
variation separately. We replace (11) by the equations

dX¢ = 60X, dt +dW,  XS=X,- N,
dX, — dX¢ = dN, = \dt + (dN, — i)

which focus on the continuous and discrete components respectively. Then, using
separate quasi-score estimating functions based on the martingales {W,} and
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{N, — At} respectively, we obtain estimating equations

T (T
J X,_de:()Tj X2dt
0 0

Np= AT

leading to maximum likelihood estimators 0~T, XT.

Models of the above kind are quite common and the general message is to
identify relevant (local) martingales which focus on the individual sources of
variation. It is then possible to obtain quasi-score estimating functions for each,
and to combine them, provided the appropriate sample information is available.
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