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Remarks on efficiency in estimation for branching processes
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SUMMARY

This paper is concerned with efficiency in the estimation of the mean 6 of the offspring
distribution of a supercritical Galton—Watson branching process on the basis of a sample of
n consecutive generation sizes. First, a direct comparison is made between the maximum
likelihood estimator and the simple ratio of generation sizes estimator. Next, a new defini-
tion of asymptotic efficiency of an estimator is given, generalizing that of Rao (1973).
It is shown that, for offspring distributions belonging to the class of power series distribu-
tions, the maximum likelihood estimator is efficient in this new sense. The paper concludes
with some remarks on the implications of this theory in the estimation of the growth rate
in a pure birth process.

Some key words: Asymptotic efficiency; Birth processes; Branching process estimation; Galton—
Watson processes; Maximum likelihood estimation.

1. INTRODUCTION

Let{Z,=1,Z,,...,Z,} be a sample of consecutive generation sizes from a so-called super-
critical Galton-Watson process with 1 < 6 = E(Z,) < o and 02 = var (Z;) < co. We shall
discuss the estimation of 6 on the basis of this sample. Our starting point will be a comparison
of two estimators that have previously been proposed for €, namely the maximum likeli-
hood estimator 6, = (¥, —1)¥,-%, where ¥, = Zy+... + 2, (Harris, 1948; Heyde, 1970)
and the simple ratio estimator 4, = Z,Z; ', (Nagaev, 1967 ; Heyde, 1974). We shall then dis-
cuss the efficiency of estimation of 0 for a particular class of offspring distributions. We do
this by proposing a generalization of Rao’s concept of efficiency (Rao, 1973, p. 348). This
theory is of special interest since a random norming turns out to be appropriate and this
highlights the inadequacy of direct, constant norming, generalizations of classical theory
to the Markov case. The paper concludes with some remarks on the estimation of the growth
rate in a pure birth process.

2. COMPARISON OF MAXIMUM LIKELIHOOD AND RATIO ESTIMATORS

For the purposes of this section we shall suppose for convenience that pr(Z, = 0) = 0,
so that Z, — oo almost surely as n - co. If pr(Z, = 0) > 0, it is well known that Z, - o0
almost surely on the nonextinction set and the results which we shall obtain hold con-
ditionally on nonextinction.

The estimate & has been studied by Jagers (1973) and in an unpublished thesis of J. P.
Dion. It is known that .

Y y(0,~0) > N(0,0%) (1)
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50 C. C. HEypE
in distribution, while for § we have, from a result due to Biihler (1969),
Zt (0, —0) > N(0,0?) (2)

in distribution. Further, it is well known that §-"Z, - W almost surely with W non-
degenerate and almost surely positive (Harris, 1963, p. 13) and, from Theorem 3 of Heyde
(1970), 6—Y,, > W [(6 — 1), so that Z,, Y1 — (0 — 1) 61 and (2) can be rewritten as

(0—1)t0-2YE (8, —6) > N(0,02) (3)

in distribution. We can thus conclude that in an obvious, albeit not entirely standard, sense
the asymptotic efficiency of d, relative to that of f,is1—6-1.

The random normings in (1) and (3) can be replaced by constant normings without diffi-
culty. Note that R Yn_s

Y, 1(0,—-0)= ;1 (Z2;-0Z;_,) = _;1 s

where the 7,’s are independent and identically distributed, each with the distribution of
Z,—6. Also, -
Zn—l(gn -0)=2,-0Z,_, = gl gin’

where the §,,’s are independent and identically distributed, each with the distribution of
Z,—0 and are, furthermore, independent of Z, ;. A minor adjustment to the proof of

Theorem 17-2 of Billingsley (1968) yields the limits in distribution
o YO—1)"263h, —6) > W-EN(0,1), o-10-304(f,—0) > W-EN(0, 1),

where in each case the W% is independent of the N (0, 1); see also Jagers (1973).

The estimators §, and @, of course do not exhaust the possibilities for simple estimators
of f. Another example is 6} = Z}», From the almost sure limit §-*Z, - W we readily
deduce that 6 is strongly consistent for 6. Furthermore, from the iterated logarithm ana-
logue given in Theorem 2 of Heyde & Leslie (1971) it is a straightforward matter to show
that almost surely n(0) —60) — 6log W as n — co. Although the asymptotic properties of
0% are not directly comparable to those of 8, and 6, it is clearly substantially inferior,
providing basically a linear rate of convergence in contrast to a geometric one.

3. THE GENERAL ASYMPTOTIC EFFICIENCY QUESTION

It is, of course, useful if a more objective analysis than that of §2 can be given for the per-
formance of estimators. To that end we propose a definition of asymptotic efficiency which
generalizes that of Rao (1973, pp. 348, 349).

Suppose that we have a sample X, ..., X, of consecutive observations from some stochas-
tic process whose distribution depends on a single parameter 0, /€ ® < R. Let L, (6) be the
likelihood function associated with X, ,..., X, and suppose that L, (0) is differentiable with
respect to 0 and that E{(dlog L, [df)*} < oo for each n. We write #, for the o-field generated
by X, ..., X, and suppose that, taking L, = 1, we have almost surely forn > 1

dlogL, dlogL,
plghals ) - i

A sufficient condition for (4)is that, if P (X, ..., X,,) = L,(0)is the joint probability function

of X, ..., X,, then
?Pn(Xl,...,Xn)
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can be differentiated under the summation sign; there is a corresponding definition and
requirement in the continuous case. The condition (4) is precisely that

{dlogLn/dH = 3wy Fpn > 1}
i=1

is a zero mean martingale.
Next, we set

n dlogL, dloglL _)2
T(0) = E k__ k-1
n(0) kz;‘l {( ao do

This is a form of conditional information which reduces to the standard Fisher information
in the case where the X,’s are independent. We can think of

2 2
z [(dlong_dlong_l) %-1] -z [(dl;ng)

do ae
as the information contained in X, ..., X, which is not contained in X, ..., X}_,, for given
Xy Xpqe

Foa) (5)

do

dlog L, _\2
%c_l]—(—g—“) — B | %)

DEerFINITION. We shall say that a consistent estimator T, of 0 is asymptotically efficient if

doy T, —o-po) 170) M} 50 (6)

\ do

in probability as n — oo for some B which does not involve the observations.

In the standard case of independent and identically distributed observations, this
definition reduces to that of Rao (1973). Furthermore, the motivation behind the general
definition is the same as for the independence case. Under the conditions we have imposed

{dlogLn(ﬁ)/dﬁ . ui}
i=1

is a martingale and a Central Limit result for martingales gives that

101820 _ () [ $ Boal ) 4

converges in distribution to N (0, 1) under certain regularity conditions. This result, together

with (6), will ensure that
IX(6) (T, — 6) - N{0, 82(6)}

in distribution. Interestingly, the random norming I 3(0) in (6) and (7) gives rise to much
more general Central Limit results than are provided by the constant norming

If the condition (6) is strengthened to convergence in the mean of order two, then equiva-
lent forms are

ZIE(u%)}%.

(2

corr [13(0) (T, — 6), 41, (0)}+ ﬂg%g_n(ﬁ)] o, (8)

or alternatively,

5{(1,-0) DO [ (B 1,00) 1, - 0 B 1,00 (PELOF s
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52 C. C. HEYDE

A detailed discussion of the general properties of asymptotically efficient estimators will
be given elsewhere.

To check asymptotic efficiency via the definition (6), the vital piece of information is a
suitably tractable expression for dlog L, (0)/df. For the branching process application we
shall consider the class of offspring distributions depending on a single parameter which we

can write in the form
Pr(lek)=pk(0) (k=0$1>"')a

where 6 = E(Z,). We shall further suppose that the following three conditions are

satisfied:
(i) the set S of &’s for which p, () is positive is independent of 4, 1 < 6 < o0;

(ii) for all &, (d/d0)p,(0) exists for all 1 < 6 < o0}

@ X ... ﬁ pr(Z, = k;|Zy=k;_y) (ky=1) can be differentiated under the
kieS kneS i=1
summation signs.

In this situation, since

pr(Z, =ky,.... 2, =k,) = .I__IIPI' (Zy = k| Zy = k),

we have
dlogL,(6) =r d
a0 - izlaplog QZ;_y, Zy), (10)
where Q(k;_,, k;) = pr(Z; = kilZo = k;_y).
Now,

Qs g, k) = X7 D, Dj, -+ P, v

where the sum is over jy, ..., Jy, €8, J1+... +Ji,_, = k;, so that

dQ(k; 4, k;) , (fiidlogp;,

To proceed further we consider the class of Galton—-Watson processes whose offspring
distributions are power series distributions. That is, the class where

p; = aA{fA)} T (j=0,1,...;A > 0),
where a; > 0 and f(A) = Za;A’. For this class we readily find that

0 = AN}, o = {(d]d6)log A}
and
(@/d6)p; = o7%(j—0) p;. (12)

Power series distributions are in fact characterized by the property (12). Details and refer-
ences concerning the class of power series distributions may be obtained from Ord (1972,
Chapter 6) and Johnson & Kotz (1969, Chapter 2). Examples are the geometric, binomial,
Poisson, negative binomial and logarithmic distributions. An exception, notable from the
point of view of the theory of the Galton—Watson process, is the distribution with linear
functional probability generating function; for fixed b, f(s) = 1 —b(1 —p)1+bs(1 —ps)~.
Here = b(1—p)—2.
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Using (12) in (11) we find that

(2]d0)log Q(Z;_y, Z;) = 0~4Z;—0Z;_y), (13)
so that
dlog L,(0) _

—2 e o — .
d@ o 1‘,§1 (Z‘L 0Z1~1)

— (Y, —1—0F, ) = ¥ u, (14)
say. Notice that, for each 7, -
E(u)|F ) = B(Zy|Z; ) - 0Z;_, = 0,
which is the martingale property and
E(}|F;1) = B{(Z;— 02 1)*|Z; 4} = 02 2,

so that
L(6) = 0%, , (15)
and hence
dlog L (6 A
e A ) (16)

It is then clear that the maximum likelihood estimator 8, is asymptotically efficient in the
case of power series distributions, (6) being satisfied with £(6) = 1.

Of course if there was another asymptotically efficient estimator 7;, of 6 for which (6)
was satisfied with a #(6) < 1, then this estimator would be preferred to 8, since, in view of
(1), we would have I}(0)(T,—0) > N{0,%®0)}, while IX(6) (8, —0)—~ N(0,1), both in
distribution.

It certainly does not seem possible to establish the nonexistence of such a 7), which is
better than 6, unless {I,,(9) (én —0)%} is uniformly integrable or equivalently, as » — oo,

B{L,,(0) (6, —0)%} > 1

using Theorem 5-4 of Billingsley (1968), since I,(0) (4, — 0)2 - x2 in distribution as a conse-
quence of (1). In fact, we need even more conditions. If, indeed, {,(0) (0 —0)?%} is uniformly
integrable and {7} } satisfies (6) strengthened to convergence in the mean of order two, then

E{L(0)(T,—0)%}— B*(0) (17)
E{L,(0) (T, — 0)2} — 28(6) B{(T, — 6) L,(6) (D,, — 0)} + B%(6) ~ 0. (18)

and

Furthermore, if 7, is unbiased for 6 and the right-hand side of

:jg

0= 3 o 3 Tylky, k)

kleS kne T

Q(k;—1, ;)

I

1
can be differentiated under the summations, then from (11), (12) and (15),
1= B{T, 1,(0) 0~ 0)} = B{(T,~0) L,(6) (0~ O} (19)

We thus obtain from (17) and (18) that £(6) = 1 and hence I;%(@) (z, - én) — 0 in the mean
of order two.
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Notice that the alternative conditions (8) and (9) provide a method of assessing an esti-
mator by computing an appropriate correlation or analogue. For example, when

- 9 = Znanl
we have, using (19),

E{I}(0) (8, — 0) 13(6) (0, — O E{L,(0) (B, — 0)} B{L,(6) (0, — 0)} 1t
= [B{1,(0) (6, — 0) B{L,(6) (0, — 03],
and, using Theorem 5-3 of Billingsley (1968),
lim inf E{I,(6) (0, - 6)%} > 6(6 — 1)1
since I3(6) (6, - 0) > N {0,60(6 — 1)71} in distribution, while
lim inf E{I,(0) 0, — )3 > 1,
since I3(9) (4, — 6) - N(0, 1) in distribution, so that
lim sup B{I}(d, — 0) I2(0) (6,,— 0)}/[E{L,(6) (B, — 6)% E{L,(0) (6,,— 6)5} 1} < (6—1)t6-%.

4. ESTIMATION OF THE GROWTH RATE IN A PURE BIRTH PROCESS
Let X, be the population size at time ¢ in a pure birth process with rate parameter A.
That is, X, is a Markov process for which
1Ak +o(h) (G=1+1),
Pr(Xppp =X =14) = {1=Ah+o(h) (j=1),
o(h) otherwise,
1=1,2,...; A >0. Suppose that pr(X,=gq) =1, where ¢ is a fixed positive integer.
Various sampling schemes have been considered for the estimation of A in this model and
the reader is referred to the recent work of Keiding (1974) for references and details. We
shall here discuss the case where the process is sampled at equidistant time points 0,7, ..., k7.

Then, as is well known (Harris, 1963, pp. 103—4), the observations form a Galton—~Watson
process Z, = X, with geometric offspring distribution

Pr(Z,=i|Zy=1)=e*(1—e )it (i=1,2,...)
and pr (Z, = 0|Z, = 1) = 0. This is a power series distribution for which we have
E(Z,|Zy = 1) = e, var(Z,|Z,=1) = e*"(e’"—1).

Furthermore, it is clear from results quoted above that the maximum likelihood estimator
of Ais R
Ak‘r =71 IOg {(X‘r +...+ Xk'r)/(XO +...+ X(k—l)‘r)}‘

Also, from Keiding (1974), subject to a minor correction made in (21) below, almost surely
Xer = A, (20)

7(X0+ +X(k—1)-r)% (XkT_A) —>N(Oa 1_6_/\7) (21)
in distribution.
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Writing L, (A) for the likelihood function, we find in this case that
dlog L, (A)  T1e

dX T et (Yk-r_q_eATYZk——l)T)

T~ AT A N
= 1—e A7 Y(k—-l)f (eT kr—e 1),

while L(A) = 73(1 —e~*7)~1 Y, _;y,. Then,

dlog L,(A)

L e

} - 7'(1 — e—/\r)—% Y(i_l)f {xkr N T—l(e-r(':\k‘r—-/\) -1 )}
-0

in probability, using (20) and (21). This gives the asymptotic efficiency of A,,, for fixed
7. Nevertheless one can, not unexpectedly, obtain a more efficient estimate if the process
is observed continuously. Let

t
0

If the process starts with ¢ individuals at time zero and is observed continuously up to time
¢, the maximum likelihood estimator of A is (X; — ¢) S; ! and for ¢ = k7, the efficiency of this
estimator with respect to A,, as k — o0 is (1 —e~27)2(A7)~2¢?" from Keiding (1974) with
modification as in (21) above.
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