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Virus-Like Particles as aVaccine
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Abstract

Vaccinesagainst viraldiseasehavetraditionally relied on attenuated virus strains or inactiva­
tion of infectious virus. Subunit vaccinesbased on viral proteins expressedin heterologous
systemshave been effectivefor some pathogens, but haveofien suffered from poor immu­

nogenicity due to incorrect protein folding or modification. In this chapter we focus on a specific
classofviral subunit vaccine that mimics the overall structure ofvirus particles and thus preserves
the nativeantigenic conformation ofthe immunogenic proteins.Thesevirus-likeparticles (VLPs)
have been produced for a wide range of taxonomically and structurally distinct viruses, and have
unique advantages in terms ofsafety and immunogenicity over previous approaches. With new
VLP vaccinesfor papillomavirusbeginning to reach the market placeweargue that this technology
has now 'come-of-age' and must be considered a viablevaccine strategy.

Introduction
There are many infectiousviruses that remain major threats to publichealth (seeTable1).Where

an effectivevaccineexists,vaccination isusually the most cost-effective long-term protection against
diseaseand spread for most viruses.The principle ofvaccination is to generate sufficient immunity
to protect from infectious disease. Thus the vaccine stimulates the body's natural defensesagainst
disease through use of a benign 'decoy' that mimics the virulent pathogen. The more similar a
vaccine is to the natural disease, the better the immune response to the pathogen on subsequent
exposure. In general, resistance to virus infection depends on the development ofan immune re­
sponse to antigens present on the surfaceofvirionsor virus-infected cells.Therefore identification
ofprotective antigens is the first step in the development ofeffectiveviral vaccines.

Currently many successfulviral vaccines have been developed and are in use. These vaccines
are predominantly based on live attenuated or inactivated viruses. The live attenuated vaccines
such as measles, mumps, rubella, oral polio, smallpox, varicella and yellow fever are a weakened
form ofthe "wild" viruses. These attenuated virus vaccines rely on limited replication ofthe virus
in the host following vaccination. Immune responses induced are similar to those from natural
infections and often these vaccines are effective after a single dose. However, such vaccines may
causesevere reactions in some patients,which are ofien the result ofthe limited replication ofthe
att enuated virus following vaccination. In contrast to attenuated live virus vaccines, inactivated
(or killed) vaccines can not replicate, as their genetic material or overall structure are purposefully
destroyed. These vaccines are safer than live vaccines but generally not as effective,requiring 3-5
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Table 1. Viruses thataremajor health threats

Virus Disease

PharmaceuticalBiotechnology

HIV
RSV
Hepatitis B
Hepatitis C
Epstein Barr Virus
HPV
Measles
Influenza

AIDS
Respiratory Infection
Liver Cancer
Cirrhosis/Cancer
lymphomas, Nasopharyngeal carcinoma
Cervical Cancer
Pneumonia (infants)
Pneumonia

Abbreviations: HIV human immunodefi ciency virus, RSV rous sarcoma virus, HPV human
pappilomavirus.

dosesasantibodytiter falls overtime.Theylacktheself-boostingqualities ofliveattenuatedvaccines
but are saferin the sensethat the inherent dangersassociated with virus replicationare avoided.
Thesevaccines aremadeaswholecellvaccines (suchasInfluenza,polio,rabiesand hepatitisA)or
asfractionalor subunit vaccines such ashepatitisB.Subunit vaccines arebasedon the delivery of
only a limited number of viralproteins,often the majorprotein in the capsidor envelope that is
sufficient to conferprotectiveimmunity. Thesevaccines arean incrementalstepsaferthan inacti­
vatedvaccines becausesubunitvaccines canbepreparedindependent to the cultureof replicating
virus. Indeed, any remainingpossibilityof incomplete inactivation or batch to batch variation
in the safetyof the vaccineis eliminated.However, subunit vaccines havetraditionallysuffered
from one important drawback; often singleproteins when expressed and purifiedin the absence
ofother viral componentsare less immunogenicthan those that areincorporated into infectious
virus.Thisisprobablybecause aproportion of this protein ispresentin a misfoldedconformation
relative to the nativeprotein. Thus,more doseswith higher amounts ofantigen are required to
achievethe samelevel ofprotection.

A majoradvance in subunit immunogenproduction hasbeenassembly ofproteinsasvirus-like
particles (VLPs) usingprotein expression technologyin yeast, insect or mammalian cells. VLPs
are a highly effective type of subunit vaccines that mimic the overallstructure of virus particles
without any requirement that they contain infectiousgeneticmaterial. Indeed, manyVLPslack
the DNA or RNA genomeof the virus altogether, but havethe authentic conformation of viral
capsidproteins seenwith attenuatedvirusvaccines, without anyof the risksassociated with virus
replicationor inactivation.

VLP preparations are all basedon the observation that expression of the capsidproteins of
manyviruses leadsto thespontaneousassemblyofparticlesthat arestructurallysimilarto authentic
virus.':' In practicalterms,the fact that VLPsmimicthe structure ofvirusparticlesusually means
that VLPsshouldelicitstronghumoralresponse and that lowerdoses ofantigenrelative to subunit
vaccines aresufficient to elicitsimilarprotectiveresponse. In addition to their abilityto stimulate
B cell mediated immune responses, VLPshavealsobeen demonstrated to be highlyeffective at
stimulatingCD4 proliferative and =(CTL) responses.l? Thisfeatureof VLPvaccines is likely to
be a major contribution to their effectiveness in the field. It is also becomingincreasingly clear
that preciseprime-booststrategies canbeimportant to howeffectivevaccinationisasastrategyto
control disease.Therefore, the addition of VLPto the 'arsenal' ofvaccine strategies for anydisease
extendsthe typeofprime-boostregimethat canbeemployed.

To date, VLPshavebeen produced for many differentviruses that infect humans and other
animals (seeTable2 and review)," One of the most strikingfeatures of this group is that it is ex­
tremelydiverse in terms of the structure of the individualviruses. It includesviruses that havea
singlecapsidprotein, multiplecapsidproteinsand thosewith andwithout lipidenvelopes. Clearly
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Table 2 Baculovirus derived VLPs thathavebeen tested as vaccines

Proteins
VLP Family Expressed Vaccine Tested In VLP Refs.

Papillomavirus, Papillomaviridae Humans (licensed) 10,11 ,15-20,73

Norwalk and Calciviridae Mice, cats, humans 26,27,74-78
Norwalk-like (Phase I)

viruses, Feline

cal icivirus

Hepat itis Evirus Hepeviridae M ice, cynomologous 28-30
monkeys

Porcine parvovirus, Parvoviridae Pigs, dogs, mink 21-23,79,80,81
mink enteritis

parvovirus, Canine

parvovirus, B19,

adeno-associated

virus

Chicken anemia Circoviridae 1, 2 (chicken Chickens 82-85
virus, Porcine anaemia virus)

circovirus

5V40, jC viru s, Polyomaviridae M ice, rabbits (in vitro) 32,86,87
murine

polyomavirus

Polio virus Picornaviridae 1 (polyprotein) 88
Bluetongue virus, Reoviridae 4 (bluetongue) Sheep (bluetongue) 4,35,42-49,89
Rotavirus 2-3 (rota) Mice, pigs (rota)
Hepatitis C Viru s Flaviviridae 3 M ice, baboons 7,51,53
HIV, SIV, FIV, Retroviridae 2 Mice, guinea pigs 2,3,50,90-96
Visna virus, FeLV,

BLV, Rous

Sarcoma virus
Newcastle Disease Paramyxoviridae Chickens 97
Virus
SARS Coronav irus Coronaviridae 3 Mice (in vitro) 54
Hantaan virus Bunyaviridae 3 Mice 98
Influenza A virus Orthomyxoviridae 2-4 Mice 52,60,61
Infectious Bursal Birnaviridae 1 Chickens 34,52,99,100
Disease virus

Abbreviations: BTV Bluetongue virus, HIV Human immunodeficiency virus, SIV simian immuno-
deficiency virus, FIV feline immunodeficiency virus, FeLV feline leukemia virus, SV40 simian virus
40, rota rotavirus.

not allofthe VLPs that are generated to date are appropriate vaccine targets, some VLPs have been
generated to facilitate in fundamental understanding of virus assembly process, morphogenesis
or architecture ofviruses. However, an important point remains that the structure of the target
virion is not limiting to the successofVLP production. Although various expression systems have
been employed for VLP production, this chapterwill mainly focus on insect cell culture produced
VLPs that are being developed as candidate vaccines. The rationale behind this is that among all
expression systems, insect cells, together with baculovirus expressing system, appear to be one of
the most promising for VLP technology for development ofviral vaccines (Fig. 1).
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Figure 1. Key stages of intracellular assembly of VLPs using the baculovirus system. a)
Baculovirus acts as a vehicle to efficiently deliver DNA, encoding recombinant proteins,
to the nucleus of insect cells. b) Viral DNA is uncoated and replicates in the nucleus. c)
Recombinant protein expression is driven by strong very-late viral promoters. d) Viral mRNA
is used for the synthesis of recombinant proteins. e) VLPs are assembled by the interaction
of proteins w ithin the cytoplasm.

Insect Cells and Baculovirus Expression System as Preferred System
for VLP Production

As stated above, a varietyof protein expression systems are available to express recombinant
proteins and particles. Howevercertain criteriafor generationofVLPs asprophylacticvaccines,
particularlyforhumanviralinfection,mustbeconsidered. In orderforaVLPto bearealisticvaccine
candidate, it needs to beproduced in asafeexpression systemthat iseasyto scaleup to large-scale
production.Table2 shows baculovirus expressed/insect cellproducedVLPsthat havebeendemon­
strated to behighlyimmunogenicand potentialvaccine candidates.Thisinsectcell-based protein
production systemhasmanyadvantages for VLP production. Firstly, extremely largeamountsof
correctlyfolded recombinant proteins can be produced in high-densitycell-culture conditions
in eukaryoticcells. Secondly, baculovirus expression systems havebeen developedfor expression
of multiple foreign proteins simultaneously from a single recombinant virus facilitating capsid
assembly in each infectedcell. Thirdly. asthe insectcellsthat are usedfor vaccine production can
be cultured without the need for manunaliancellderivedsupplements. the risksof cocultureof
opportun istic pathogens is minimized.Fourthly. the baculovirus used for recombinant protein
expression has a narrowhost range that includesonly a fewspecies ofLepidopteraand therefore
represents no threat to vaccinated individuals. Finally the baculovirus system isamenable to scale-up
for largescalevaccine production,"
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VLPsProduced forStructurally Simple Non-Enveloped Viruses
For a number ofnonenvelopedvirusesviral capsidsare formed byonly one or two majorpro­

teins and thus arerelatively easyto manipulate for generationof VLPsbyheterologousexpression
systems. Examplesofthese are the VLPsformed by the expressionofthe major capsidprotein of
Papillomaviruses, Parvoviruses, Calciviruses, Circovirses, Polyomaviruses and Hepatitis E virus
(Table 2). All of these virusesare nonenveloped and have a single, virallyencoded protein that
forms the major structural component of the virion. Papillomavirus VLPs are among the most
completelystudied ofthis collectionof VLPsand are at the most advancedstagewith respectto
production ofa usefulvaccine. VLP ofPapillomavirusesare formed from the over expressionof
the major capsidprotein Ll. lO

•
12These particlesarehighly immunogenic and are ableto stimulate

both humoral and cellmediated immune responses.P'" Human Papillomavirus (HPV) isthe lead­
ingcauseofcervicalcancer.Globally, approximately70%ofallcervicalcancercasesareassociated
with two serotypesofHPY, HPV-16 and HPV-lS. VLPsproduced in insect cellshavebeen used
successfully for Phase I and II human clinicaltrials in largenumbers and wereshown to be highly
efficacious.1S•19 Moreover,GlaxoSmithKline's cervicalcancervaccinecandidate (Cervarix:"') target­
ingHPV 161IS iscurrentlyundergoingPhaseIII clinicaltrialsinvolvingmore than 30,000women
worldwide. In this Phase III randomized, double-blinded trial conducted in multiple centres in
Denmark, Estonia. Finland, Greece. the Netherlands and the Russian Federation. All vaccinees
receivedthe HPV VLPs(HPV-16I1S AS04)asfollows: 15S10-14yearsold healthygirls and 45S
15-25 yearsold young women receivedthe candidate VLP vaccineaccording to a 0,1,6 month
scheduleand anti-HPV antibody titers wereassessed.At month seven 100per cent seropositivity
wasachievedin both groups for HPV 16 and IS although average antibody titers for both HPV
typeswereat least two-foldhigher in 10-14 year-oldgirls.Thevaccinewastolerated byallpatients
and no vaccinerelated seriousadverseeffectswere detected. Further, the follow-upsmdy clearly
demonstrated the sustained efficacy of HPV-16I1S VLPs up to 4.5 years.19,20 In conclusion, the
bivalent HPV vaccineis highly immunogenic and safe and induces a high degreeofprotection
against HPV-16 and HPV-lS infection and associatedcervicallesions.

Thesestudiesarenot onlyan important demonstrationoftheeffectiveness ofHPVVLP vaccine,
and that multi-serotype VLPs are effective, but also highlight the fact that insect cell produced
VLPsarea realisticalternativeashuman vaccines againstviraldisease. It should alsobe mentioned
at this point that a tetravalent (HPV-61III1611S)VLP vaccine, Guardasil'" (Merk),produced in
yeastcellswasapproved by FDA in]une 2006 for use in women aged 9-26.

VLPvaccinesfor variousdiseases causedbyparvovirusinfectionsarealsoat an advancedstage
although asyet none haveundergone such largescaletrials as those reported for HPV. Synthesis
ofmajor structural proteins VP2 ofcanine parvovirus (CPV) and porcine parvovirus (PPV) led
to assembly ofVLPs in insect cells.21

.
22 Vaccinationtrials of CPV VLPs in dogs and PPV VLPS

in pigswerehighly encouraging.i':" In one efficacy assaydogs that receivedaslittle asor 10~or
25~ofCPV VLP werecompletelyprotected fromvirus infection when challengedwith virulent
virus. Furthermoreasinglesubcutaneousdose00 ~sameCPV VLPwith 50~ ISCOM adjuvant
wasableto protect mink againstchallengewith the anti-genically similarvirus,mink enteritisvirus
(MEV),2l Similarlyit has been reported recentlythat a singleimmunization with 0.7~ ofPPV
(porcine starin) VLPs yielded complete protection in targeted animals against infectious PPV
strains.P Indeed microgram doses ofVLPs in gilts were not only highly immunogenic. but were
alsoveryefficientin preventing trans-plancentalvirus transmission and significantly reduced the
number of reproductive failures. In addition, the feasibilityofsafelarge-scale production of the
porcineparvovirusVLPvaccine hasbeenestablishedcomplyingwith the EuropeanPharmacopoeia
requirements,"

Calicivirusstudies haverelied heavilyon the production of proteins in heterologous systems
mainly due to the fact that it is not yet possible to grow the virus in cell culture. Thus, VLP to
Norwalk-like viruses have been extremely useful as sources of diagnostic antigen to monitor
diseaseoutbreaks. Norwalk virus VLP have also been shown to be effective at stimulating IgG,
IgA and humoral responsesin mice.24

•
2s PreliminaryPhaseI trials in humans to test the safetyand
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immunogenicity of insect cell expressed Norwalk virus VLPs has confirmed that they are both
safeand effectively stimulate IgG and IgAresponses.26.27

VLPsfor HepatitisE havebeen assembled usinga truncated form of the viruscapsidprotein."
In immunization studies in mice these VLPswereable to induce systemic and mucosalimmune
responses followingoral adminisrrarion.P" Furthermore, oral administration of the Hepatitis
E VLPs to cynomologousmonkeys induced IgM, IgAand IgG responses and was sufficient to
protect against infection and disease on challengewith virus," Thus there is clearpotential for
the application of theseVLPsas avaccinefor hepatitis E.

VLPpreparationsto Circoviruses and Polyomavirusareat a less advanced stage.VLPformation
hasbeenreported for Circovirusbut asyetno seriousattempt hasbeenmadeatvaccine production.
Vaccination of rabbitswith VLPsfor humanJC virusin the presenceof adjuvantallowedproduc­
tion ofahyperimmuneserumthat effectively neutralizedinfectiousviruspreparadons." However,
in the absenceofadjuvant there wasno response. Thispattern of responseisunusualfor VLPsin
general,which often stimulatestrong immune responses evenin the absenceofadjuvant.Indeed,
VLPs of murine polyomavirus were able to stimulate a strong immune responsein the absence
of adjuvant when administered as a single610 ng dose.32 Intriguingly, these particles appear to
be particularlystablewith no alteration ofparticle morphology or reduction in immunogenicity
even after9 weeksstorageat room ternperature.P

VLPsofStructurally ComplexViral Capsids with Multiple ProteinLayers
Viral particles that contain multiple interacting capsidproteins present more of a technical

challengethan those that are formed by one or two major capsidproteins. Particularly, it is far
more difficultifthe assembling proteins of capsidsareencoded bymultiplediscretemRNAs, but
not processedfrom a singlepolyprotein as in the caseof picornaviruses. This is due the fact that
for efficientassembly of a VLP the interactingcapsidproteins must beexpressed in the vicinity to
eachother, in other words in the samecell Assembly of VLPsbyprocessingof polyproteinshave
been achievedboth for poliovirus" and for InfectiousBursaldiseasevirus" usingthe baculovirus
expressionsystem.More complex assembly of multilayered, multiprotein VLPs have also been
efficiently produced for the members of the Reoviridae. Theseviruseshave capsidsmade up of
concentric layers of different capsidproteins. Co-expressionin insect cellsof2-4 ofthese capsid
proteins, depending on the virus and the particle made,has allowedthe production ofVLP that
are empty of the segmented dsRNA viral genome, but are otherwise indistinguishable from
authentic viral particles.4•35The first member of the Reouiridae for which VLPswere described
is Bluetongue virus (BTV), an insect transmitted animal virus.This remains the systemin this
familyfor which the largestvarietyofdifferentVLPsand recombinant singleantigen subunit im­
munogens made bybaculovirus expression systems has been tested. In addition, the requirement
for efficientco-expression ofviralcapsidprotein in the sameinsectcellin this systemhas resulted
in the development ofbaculovirus multigeneexpression vectors.36.37We will focuson this system
in somedetail asit highlightsboth the effectiveness ofVLP vaccines andsomeof the technological
advances that havebeen madefor the production ofVLP with complexarchitecture.

Bluetongue disease affects mainlysheep and cattle and is classified as an emergingdiseasein
Europe." The disease is causedby bluetongue virus,BTY,which has a multi-layered icosahedral
structure formed by nonequimolar amounts of sevenviral proteins (VP1-VP7). Three of these
structural proteins (VP1,VP4,VP6) aredispensable for the formation of VLPsas they playonly
an enzymaticrole in the virus transcription rnachinery.P The remainingfour structural proteins
(VP2, VP5,VP3 and VP7) areorganisedin two capsids. The inner capsidactsasa scaffold for the
assembly of outer capsidthat is responsible for cellentry and hence contains the majorcandidate
for virus neutralisation."

Expression of all four major structural proteins of BTV was achieved by construcing a
baculovirus that simultaneously expressed all four proteins.YThe advantage of this approach
over co-infection with several baculoviruses each expressing a single protein is that equivalent
conditions are achievedin all infected cells. Thus assembly ofVLP is more efficientasexpression
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Figure 2. Summary of pro ductio n and tes ting of VLPs for Bluetongue virus. A) Left, car toon
showing the multi-laye red structure of BTV VLPs. Right, e lectron micrograph of negatively
stained BTV VLPs. B) Summary of neutra lizing antibody respo nse to VLP vaccination in
Me rino sheep. Sheep were vaccinated with two doses of VLPs with dose ranging from 10 Ilg
to 20 0 ug as indicated. Neuralising antibody titre was followed for 117 days, at which point
the sheep we re challenged w ith virulen t BTV. C) Ta ble showing clinical reaction index (CRI)
and length of Virae mia in sheep vaccinated with va rious doses of VLP an d control. No signs
of bluetongue disease or virae mia we re detected in any of the VLP vacci nated animals .

is controlled at the level of the cell. rather than the level of the culture as is the case with mixed
infections. BTV VLPs (Fig. 2) are structurally indistinguishable from virus particles but lack the
segmented. double-stranded (ds) RNA virus genome normally present in infectious virus."

Antibodies raised to purified BTV VLPs gave high levels of neutralizing antibodies against
the homologous BTV serorype.i In subsequent clinical trials 1 year-old Merino sheep were vac­
cinated with various amounts (10-200 fLg) ofVLPs for BTV serotype 10. All vaccinated animals
developed demonstrable neutralizing antibodies39•40 and when challenged with virulent virus after
four months of vaccination were completely protected from disease. In contrast, unvaccinated
control animals developed typical BT clinical symptoms. Even at doses as low as 10 fLg VLP was
sufficient to protect animals from any signs ofdisease. Further efficacy tests were performed where
VLPs from two different serotypes were combined to vaccina te the same animal. In these animals
VLPs vaccination provided complete protection against the rwo vaccine serorypes and also partial
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protection fromchallenge with relatednonvaccine serotypes.The protectiveefficacyofvaccination
in thesetrialsextendedoveralong(14 month) period.P'Ihis observationraises thepossibilitythat
a broad spectrumvaccine againstall24 BTV serotypes is a possibilitybycombiningVLPsfrom a
relatively smallnumber of serotypes.

The BTV system alsodemonstratesthe efficiency ofVLP vaccines relative to immunization
with subunit vaccines based on dissociated antigens or unassembled recombinant antigens. In
addition the assembled VLPsthe two componentsofthe BTV outer capsid, VP2 and VP5,were
alsopreparedand testedinvaccination studies.While 100~VP2,the majorserotypedetermining
antigen,wasonlypartiallyprotectiveforashort duration (75days) againstvirulentviruschallenge,
50~ ofVP2 combined with 25 ~VP5 wasprotective." In contrast, 10~ VLPs (containing
only 1-2~VP2) affordeda better level of protection for a much longer duration." Thesestud­
iesdemonstrate that assembly of antigensinto VLPsresultsin a more effective immunogenthan
deliveryof separately isolatedproteins.

In addition to BTV, VLP have also been produced for rotavirus, another member of the
Reoviridae. Intriguingly, VLPsformedfrom the twoinnerstructuralproteinsaloneof the rotavirus
capsidhavebeen shown to be effective immunogens in animal modelsY-48Indeed in miceeven
intrarectal immunisationwhichinducesa localmucosalresponse issufficient for protection from
rotavitus infection .v Thedata from these immunogenicityexperiments areencouragingand it is
possible rotavirusVLP mayprovidea viablealternative to the livevitusvaccine for rotavitus.

VLPs from Viruses with LipidEnvelopes
Manypathogenicviruses suchasInfluenza, HIV and HepatitisC aresurroundedbyanenvelope,

a membranethat consists ofalipidbilayerderivedfrom the host cell,insertedwith vitusglycopro­
tein spikes. Theseproteinsarethe targetsofneutralizingantibodiesand areessential components
ofvaccine. Due to the inherent propertiesof lipid envelope, assembly ofVLPs in insectcellsfor
thesevitusesisa different typeoftechnicalchallenge to those produced for vituseswith multiple
capsids. Nevertheless, efficient formationofVLPs of a number of enveloped viruses in insectcells
hasbeen reported.Forexample, VLPsof HepatitisC virus,several retroviruses, SARSCoronavirus
and influenzaA havedemonstratedcorrectassemblyof the the lipidenvelope withtheglycoproteins
inserted.so-ss Indeed,for retroviruses, it hasbeenpossible to producehybridVLPsthat contain the
gagcapsidprotein fromone virus(SIV)and the envelopeprotein from another (HIV)S6 in insect
cells.Although none of the retrovirus derivedVLPsareyetat the stagethat they arebeingusedin
clinicalvaccinetrials,initial experiments in anitnalmodelsarepromising.s7.s8

VLPs for SARSCoronavitus as a basisfor vaccinationwereproduced rapidlyfollowing the
SARSoutbreak in 2002-2003.S4.SSHoweverthe controlofSARS Coronavirusbyepidemiological
measures, continued lackof re-emergence of the virus,and difficulties workingdirectlywith the
virus haveseverely limited the developmentof SARSVLPsas vaccine. Despite this, anti-serum
raisedin miceagainstinsectcellderivedSARSVLPswereableto neutralizea retroviruspseudo­
typed with the SARSSprotein (Fig.3).

The Hepatitis C VLPs(Fig. 1)havebeen tested in miceand baboonsand shownto beeffective
at stimulatingboth cellularand humoralimmuneresponses.?·S3oS9 Inone experiment, 6-8 weekold
female BALBlc micewere immunizedintramuscularly three times,at three weekintervalswith
20~ insect cellderivedHCV VLP, produced byco-expressing HCV coreE1-E2.Because of the
lackofasuitableanimalmodelfor HCV infectionsa recombinantvacciniavitusexpressing HCV
structuralproteins (vvHCV.S)wasusedasa modelsystem.Vaccinated micewerechallenged three
daysafterthe finalimmunizationwithvvHCV.S and then five dayslaterthe ovaries ofinfectedmice
wereharvestedand the vaccinia virustitre determined. Fiveout ofseven vaccinatedanimalshad
no detectablevacciniavirus in the ovaries at this point. The remainingtwo anitnalshad five logs
lowervacciniatitres compared to control mice'? In addition, this studywasable to demonstrate
that the VLPsefficacy wasbasedlargely on its stimulationof CD4+ and CD8+T-cell responses.
A further study in baboonshas demonstrated that the VLPsare welltolerated and can stimulate
broad and long-lastingHCV targeted immuneresponses.P
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Figure 3. Summary of production and testing of VlPs to SARS coronavirus. A) left, cartoon
and right, electron micrograph of VlPs produced by co-expression of E, M and S proteins of
SARS coronavirus . These VlPs were used to raise anti-sera in mice and the ability of these
anti-sera to protect against infection with a SARS 5 protein pseudotyped lentivirus were as­
sessed. B) le90 neutralising antibody dilution for SARS S pseudotyped lentiv irus, using sera
from 3 mice immun ized with SARS VlP, rotavirus VlP and serum obtained from a SARS
convalescent patient.

To date, the most structurally complicated enveloped virus particle that has been used to
generate VLP is influenza.VLPs for InfluenzaA H9N2 and H3N2 havebeen produced byother
groups.PThese studies have shown that expressionof the major structural protein MI alone is
sufficientresult in the budding ofvirus-likevesicles from insect cells.? Also, co-expressionofMl
with M2,HA and NA leadsto the assembly of influenzaVLP and MI-HA and MI-HA-NAVLPs
confer protection from lethal challengewith the same type influenzaA in mice.60•61 VLP produc­
tion was also successfully achieved by co-expressing HA, NA, MI and M2 from influenzavirus
A/Udorn/72 (H3N2) using a single recombinant baculovirus.P To date none ofthese influenza
VLP havebeen tested in humans. However the potential that HA and NA could be incorporated
directly into these VLP from circulating influenza strains without passage in tissue culture has
particular advantage for the control of rapidly changing influenzaA virus.

Future andAlternative Directions
In addition to the use ofVLPs as direct immunogens, the efficiency with which they stimu­

late cellularand humoral responses has made them prime candidates as carrier moleculesfor the
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deliveryof epieopes, DNA and smallmolecules targetingother diseases. Thishas been facilitated
by the excellent structural information that isoften available for virusparticlesallowingrational
designof vaccines whereepitopesareexposedon the surfaceof the VLP. Manyof the VLPsthat
havebeen developedas vaccines in their own right havealsobeen tested as delivery systems for
other molecules. It isnot possible here to providea full accountof this approach, as the literature
on deliveryand display usingVLPsisat leastaslargeas that on VLP production for direct immu­
nization (for reviewseeref 62). Howeverit isnecessary at least to introduce this important area
ofVLP-based vaccine development.The useofVLPs as carriermolecules for epitopes for other
diseases isnot limited to thoseVLPsthat areformedfrom the capsids ofeconomically significant
viruses. The reasonthat manyVLPsmakeexcellent carriermolecules for the delivery of epitopes
in vaccines is most likely because the particulate VLP structure is readily taken up into antigen
presenting cellsand thus is able to prime long lasting CTL responses in addition to antibody
responses.6.63.64 Certainly accumulatedevidence on VLP vaccines suggests that they are efficient
at stimulatingboth cellularand humoral immune responses.H 64-66 Notable work has been done
in this areawith both the hepatitisB coreparticles, human papillomavirus VLPsand parvovirus
VLPsdisplayingT-cellspecific epltopesfromanother protein on their capsid.5.64-66.67 Thesestudies
demonstrate that like bacterialepitope displaysystems VLPs are efficient stimulatorsof MH C
class I and class II responses.v ThusVLPshavegreatpotential asepitopedisplaysystems for other
diseases. Theonly majordrawbackfor this approachisthat the requirementof the capsidprotein
to assemble often constrains the sizeof the foreign sequence that can be tethered to the VLP.
One approach that maybe of use to overcome this constraint would be to link foreignprotein
sequences to capsidproteins in such a waythat they extend the N or C termini of the protein
and extendeither insideor outside to particle/" Ofcourse,this isonlysuitablewhereone or both
termini ofthe protein areexposedon the insideor outsidefaceof the capsid. Sofar, there are no
VLP that we areawareof that havefullyexploitedthe potential of this approachbut it has been
successfully employedfor other protein-basedparticulate structures that are similar to VLPs in
their stimulation of B-cell and T-cell responses and requirement for complexprotein-protein
interactions for particleassembly/"?'

Perspectives: Myths andFacts
Despite the accumulatedevidence of the potential ofVLPs as potent immunogensfor many

viralsystems that wehavediscussed, thereremains someresistance to theVLPapproachasageneral
vaccinationstrategyfor diseases causedbyviruses. In part this isdue to somehigh profiledisap­
pointing resultsfor VLP vaccines in the earlystages of development, for example an ineffective
earlyvaccine for HIV basedon TyVLPS.72 Thisexampleraises a point of cautionfor VLPvaccine
designers. In general. VLPs stimulate efficient cellular and humoral immune responses but, as
with anyvaccine, they relyon the longterm host response to be effective. VLPsdesignedto work
in immunocompromisedindividuals need to overcome the samechallenges to efficient immune
responseasanyother vaccine approach. The notion that VLPsare ineffective vaccines is clearly a
myth that isexplodedbythe imminent release of two newVLP-based HPV vaccines. Indeed, the
accumulateddata from the fieldsuggests that VLPsare more effective thanmanyother types of
subunit vaccines, becausethey are more conformationally authentic and aresaferthanmanylive
viruspreparationsbecause theyareusually freeofviralgeneticmaterial.VLPproduction doesnot
appear to be limited to anyone type of virusor virusfamily, nor is it significantly limited by the
complexityofthe virusparticle."

The use of insect cells as a protein expression system offers excitingopportunities for the
synthesis of conformationally authentic VLPs that are formed from the intracellularassembly
ofmultiple proteins expressed in the samecell. The advantage of this system overothers usedfor
protein expression is its capacityfor industrial scale synthesis of largeand multiple proteins and
the fact that insectcells are the natural replicationreservoirfor manypathogenicviruses. Thusthe
basiccellularmachinerythat normallyprocesses the infectiousformof the virusispresentwithin
the expression system and available to produceauthentic VLPs.
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