
Towards Predicate Answer Set Programming
via Coinductive Logic Programming

Richard Min, Ajay Bansal, Gopal Gupta

Department of Computer Science

The University of Texas at Dallas, Richardson, Texas, U.S.A.

Abstract Answer Set Programming (ASP) is a powerful paradigm based on logic
programming for non-monotonic reasoning. Current ASP implementations are re-
stricted to “grounded range-restricted function-free normal programs” and use an
evaluation strategy that is “bottom-up” (i.e., not goal-driven). Recent introduction
of coinductive Logic Programming (co-LP) has allowed the development of top-
down goal evaluation strategies for ASP. In this paper we present this novel goal-
directed, top-down approach to executing predicate answer set programs with co-
LP. Our method eliminates the need for grounding, allows functions, and effec-
tively handles a large class of predicate answer set programs including possibly in-
finite ones.

1 Introduction

Answer Set Programming (ASP) [1,2] is a powerful and elegant way for incorpo-
rating non-monotonic reasoning into logic programming (LP). Many powerful and
efficient ASP solvers such as Smodels [3,4], DLV, Cmodels, ASSAT, and No-
MoRe have been successfully developed. However, these ASP solvers are re-
stricted to “grounded version of a range-restricted function-free normal programs”
since they adopt a “bottom-up” evaluation-strategy with heuristics [2]. Before an
answer set program containing predicates can be executed, it must be “grounded”;
this is usually achieved with the help of a front-end grounding tool such as Lparse
[5] which transform a predicate ASP into a grounded (propositional) ASP. Thus,
all of the current ASP solvers and their solution-strategies, in essence, work for
only propositional programs. These solution strategies are bottom-up (rather than
top-down or goal-directed) and employ intelligent heuristics (enumeration,
branch-and-bound or tableau) to reduce the search space. It was widely believed
that it is not possible to develop a goal-driven, top-down ASP Solver (i.e., similar
to a query driven Prolog engine). However, recent techniques such as Coinductive
Logic Programming (Co-LP) [6,7] have shown great promise in developing a top-

Please use the following format when citing this chapter:

Min, R., Bansal, A. and Gupta, G., 2009, in IFIP International Federation for Information Processing,
Volume 296; Artificial Intelligence Applications and Innovations III; Eds. Iliadis, L., Vlahavas, I.,
Bramer, M.; (Boston: Springer), pp. 499–508.

R. Min, A. Bansal and G. Gupta 500

down, goal-directed strategy. In this paper, we present a goal-directed or query-
driven approach to computing the stable model of an ASP program that is based
on co-LP and coinductive SLDNF resolution [8]. We term this ASP Solver coin-
ductive ASP solver (co-ASP Solver). Our method eliminates the need for ground-
ing, allows functions, and effectively handles a large class of (possibly infinite)
answer set programs. Note that while the performance of our prototype implemen-
tation is not comparable to those of systems such as S-models, our work is a first
step towards developing a complete method for computing queries for predicate
ASP in a top-down, goal driven manner.

The rest of the paper is organized as follows: we first give a brief overview of
Answer Set Programming, followed by an overview of coinductive logic pro-
gramming and co-SLDNF resolution (i.e., SLDNF resolution extended with coin-
duction). Next we discuss how predicate ASP can be realized using co-SLDNF.
Finally, we present some examples and results from our initial implementation.

2 Answer Set Programming (ASP)

Answer Set Programming (ASP) and its stable model semantics [1-4] has been
successfully applied to elegantly solving many problems in nonmonotonic reason-
ing and planning. Answer Set Programming (A-Prolog [1] or AnsProlog [2]) is a
declarative logic programming language. Its basic syntax is of the form:

 L0 :- L1, … , Lm, not Lm+1, …, not Ln. (1)

where Li is a literal and n ≥ 0 and n ≥ m. This rule states that L0 holds if L1, … ,
Lm all hold and none of Lm+1, …, Ln hold. In the answer set interpretation [2],
these rules are interpreted to be specifying a set S of propositions called the an-
swer set. In this interpretation, rule (1) states that Lo must be in the answer set S if
L1 through Lm are in S and Lm+1 through Ln are not S. If L0 = ⊥ (or null), then the
rule-head is null (i.e., false) which forces its body to be false (a constraint rule [3]
or a headless-rule). Such a constraint rule is written as follows.

 :- L1, … , Lm, not Lm+1, …, not Ln. (2)

This constraint rule forbids an answer set from simultaneously containing all of
the positive literals of the body and not containing any of the negated literals. A
constraint can also be expressed in the form:

 Lo :- not Lo, L1, … , Lm, not Lm+1, …, not Ln (3)

A little thought will reveal that (3) can hold only if Lo is false which is only possi-
ble if the conjunction L1, … , Lm, not Lm+1, …, not Ln is false. Thus, one can ob-
serve that (2) and (3) specify the same constraint.

The (stable) models of an answer set program are traditionally computed using the
Gelfond-Lifschitz method [1,2]; Smodels, NoMoRe, and DLV are some of the

Towards Predicate Answer Set Programming 501

well-known implementations of the Gelfond-Lifschitz method. The main diffi-
culty in the execution of answer set programs is caused by the constraint rules (of
the form (2) and (3) above). Such constraint rules force one or more of the literals
L1, … , Lm, to be false or one or more literals “Lm+1, …, Ln” to be true. Note that
“not Lo” may be reached indirectly through other calls when the above rule is in-
voked in response to the call Lo. Such rules are said to contain an odd-cycle in the
predicate dependency graph [9,10]. The predicate dependency graph of an answer
set program is a directed graph consisting of the nodes (the predicate symbols) and
the signed (positive or negative) edges between nodes, where using clause (1) for
illustration, a positive edge is formed from each node corresponding to Li (where
1 ≤ i ≤ m) in the body of clause (1) to its head node L0, and a negative edge is
formed from each node Lj (where m+1 ≤ j ≤ n) in the body of clause (1) to its head
node L0. Li depends evenly (oddly, resp.) on Lj if there is a path in the predicate
dependency graph from Li to Lj with an even (odd, resp.) number of negative
edges. A predicate ASP program is call-consistent if no node depends oddly on it-
self. The atom dependency graph is very similar to the predicate dependency
graph except that it uses the ground instance of the program: its nodes are the
ground atoms and its positive and negative edges are defined with the ground in-
stances of the program. A predicate ASP program is order-consistent if the de-
pendency relations of its atom dependency graph is well-founded (that is, finite
and acyclic).

3 Coinductive Logic Programming

Coinduction is a powerful technique for reasoning about unfounded sets, un-
bounded structures, and interactive computations. Coinduction allows one to rea-
son about infinite objects and infinite processes [11,12]. Coinduction has been re-
cently introduced into logic programming (termed coinductive logic
programming, or co-LP for brevity) by Simon et al [6] and extended with negation
as failure (termed co-SLDNF resolution) by Min and Gupta [8]. Practical applica-
tions of co-LP include modeling of and reasoning about infinite processes and ob-
jects, model checking and verification [6,7,13], and goal-directed execution of an-
swer set programs [7,13]. Co-LP extends traditional logic programming with the
coinductive hypothesis rule (CHR). The coinductive hypothesis rule states that
during execution, if the current resolvent R contains a call C’ that unifies with an
ancestor call C encountered earlier, then the call C’ succeeds; the new resolvent is
R’θ where θ = mgu(C, C’) and R’ is obtained by deleting C’ from R. Co-LP al-
lows programmers to manipulate rational structures in a decidable manner. Ra-
tional structures are: (i) finite structures and (ii) infinite structures consisting of fi-
nite number of finite structures interleaved infinite number of times (e.g., a
circular list). To achieve this feature of rationality, unification has to be necessar-
ily extended with the “occur-check” removed and bindings such as X = [1 | X]

R. Min, A. Bansal and G. Gupta 502

(which denotes an infinite list of 1’s) allowed [7, 14, 15]. SLD resolution extended
with the coinductive hypothesis rule is called co-SLD resolution [6,7]. Co-SLDNF
resolution, devised by us, extends co-SLD resolution with negation. Essentially, it
augments co-SLD with the negative coinductive hypothesis rule, which states that
if a negated call not(p) is encountered during resolution, and another call to not(p)
has been seen before in the same computation, then not(p) coinductively succeeds.
To implement co-SLDNF, the set of positive and negative calls has to be main-
tained in the positive hypothesis table (denoted χ+) and negative hypothesis table
(denoted χ-) respectively. Note that nt(A) below denotes coinductive “not” of A.

Definition 3.1 Co-SLDNF Resolution: Suppose we are in the state (G, E, χ+, χ-).
Consider a subgoal A ∈ G:
(1) If A occurs in positive context, and A’ ∈ χ+ such that θ = mgu(A,A’), then

the next state is (G’, Eθ, χ+, χ-), where G’ is obtained by replacing A with .
(2) If A occurs in negative context, and A’ ∈ χ- such that θ = mgu(A,A’), then

the next state is (G’, Eθ, χ+, χ-), where G’ is obtained by replacing A with
false.

(3) If A occurs in positive context, and A’ ∈ χ- such that θ = mgu(A,A’), then the
next state is (G’, E, χ+, χ-), where G’ is obtained by replacing A with false.

(4) If A occurs in negative context, and A’ ∈ χ+ such that θ = mgu(A,A’), then
the next state is (G’, E, χ+, χ-), where G’ is obtained by replacing A with .

(5) If A occurs in positive context and there is no A’ ∈ (χ+ ∪ χ-) that unifies
with A, then the next state is (G’, E’, {A} ∪ χ+, χ-) where G’ is obtained by
expanding A in G via normal call expansion using a (nondeterministically
chosen) clause Ci (where 1≤ i ≤ n) whose head atom is unifiable with A with
E’ as the new system of equations obtained.

(6) If A occurs in negative context, and there is no A’ ∈ (χ+ ∪ χ-) that unifies
with A, then the next state is (G’, E’, χ+, {A} ∪ χ-) where G’ is obtained by
expanding A in G via normal call expansion using a (nondeterministically
chosen) clause Ci (where 1≤ i ≤ n) whose head atom is unifiable with A and
E’ is the new system of equations obtained.

(7) If A occurs in positive or negative context and there are no matching clauses
for A, and there is no A’ ∈ (χ+ ∪ χ-) such that A and A’ are unifiable, then
the next state is (G’, E, χ+, {A} ∪ χ-), where G’ is obtained by replacing A
with false.

(8) (a) nt(…, false, …) reduces to , and (b) nt(A, , B) reduces to nt(A, B)
where A and B represent conjunction of subgoals.

Note (i) that the result of expanding a subgoal with a unit clause in step (5) and (6)
is an empty clause (), and (ii) that when an initial query goal reduces to an empty
(), it denotes a success with the corresponding E as the solution.

Definition 3.2 (Co-SLDNF derivation): Co-SLDNF derivation of the goal G of
program P is a sequence of co-SLDNF resolution steps (of Definition 3.1) with a
selected subgoal A, consisting of (i) a sequence (Gi, Ei, χi+, χi-) of state (i ≥ 0), of
(a) a sequence G0, G1, ... of goal, (b) a sequence E0, E1, ... of mgu's, (c) a sequence

Towards Predicate Answer Set Programming 503

χ0+, χ1+, ... of the positive hypothesis table, (d) χ0-, χ1-, ... of the negative hypothe-
sis table, where (G0, E0, χ0+, χ0-) = (G, ∅, ∅, ∅) is the initial state, and (ii) for
step (5) or step (6) of Definition 3.1, a sequence C1, C2, ... of variants of program
clauses of P where Gi+1 is derived from Gi and Ci+1 using θi+1 where Ei+1 = Eiθi+1
and (χi+1+, χi+1-) are the resulting positive and negative hypothesis tables. (iii) If a
co-SLDNF derivation from G results in an empty clause, that is, the final state of
(, Ei, χi+, χi-) is reached, then the co-SLDNF derivation is successful; a co-
SLDNF derivation fails if a state is reached in the subgoal-list which is non-empty
and no transitions are possible from this state.

Note that due to non-deterministic choice of a clause in steps (5) and (6) of co-
SLDNF resolution (Definition 3.1) there may be many successful derivations for a
goal G. Thus a co-SLDNF resolution step may involve expanding with a program
clause with the initial goal G = G0, and the initial state of (G0, E0, χ0+, χ0-) = (G,
∅, ∅, ∅), and Ei+1 = Eiθi+1 (and so on) and may look as follows:

 C1,θ1 C2,θ2 C3,θ3

 (G0, E0, χ0+, χ0-) → (G1, E1, χ1+, χ1-) → (G2, E2, χ2+, χ2-) → ...

The declarative semantics of negation over the rational Herbrand space is based on
the work of Fitting [12] (Kripke-Kleene semantics with 3-valued logic), extended
by Fages [9] for stable model with completion of program. Their framework based
on maintaining a pair of sets (corresponding to a partial interpretation of success
set and failure set, resulting in a partial model) provides a good basis for the de-
clarative semantics of co-SLDNF. An interesting property of co-SLDNF is that a
program P coincides with its comp(P) under co-SLDNF.

The implementation of solving ASP programs in a goal-directed (top-down) fash-
ion (just like Prolog) has been discussed in Gupta et al [7] for propositional an-
swer set programs. Here, we show how it can be extended for predicate answer set
programs.

4 Coinductive ASP Solver

Our current work is an extension of our previous work discussed in [7] for
grounded (propositional) ASP solver to the predicate case. Our approach pos-
sesses the following advantages: First, it works with answer set programs contain-
ing first order predicates with no restrictions placed on them. Second, it eliminates
the preprocessing requirement of grounding, i.e., it directly executes the predicates
in the manner of Prolog. Our method constitutes a top-down/goal-directed/query-
oriented paradigm for executing answer set programs, a radically different alterna-
tive to current ASP solvers. We term ASP solver realized via co-induction as
coinductive ASP Solver (co-ASP Solver). The co-ASP solver’s strategy is first to

R. Min, A. Bansal and G. Gupta 504

transform an ASP program into a coinductive ASP (co-ASP) program and use the
following solution-strategy:

(1) Compute the completion of the program and then execute the query goal
using co-SLDNF resolution on the completed program (this may yield a
partial model).

(2) Avoid loop-positive solution (e.g., p derived coinductively from rules
such as { p :- p. }) during co-SLDNF resolution: This is achieved during
execution by ensuring that coinductive success is allowed while exercis-
ing the coinductive hypothesis rule only if there is at least one interven-
ing call to ‘not’ in between the current call and the matching ancestor
call.

(3) Perform an integrity check on the partial model generated to account for
the constraints: Given an odd-cycle rule of the form { p :- body, not p. },
this integrity check, termed nmr_check is crafted as follows: if p is in
the answer set, then this odd-cycle rule is to be discarded. If p is not in
the answer set, then body must be false. This can be synthesized as the
condition: p ∨ not body must hold true. The integrity check (nmr_chk)
synthesizes this condition for all odd-cycle rules, and is appended to the
query as a preprocessing step.

The solution strategy outlined above has been implemented and preliminary re-
sults are reported below. Our current prototype implementation is a first attempt at
a top-down predicate ASP solver, and thus is not as efficient as current optimized
ASP solvers, SAT solvers, or Constraint Logic Programming in solving practical
problems. However, we are confident that further research will result in much
greater efficiency; indeed our future research efforts are focused on this aspect.
The main contribution of our paper is to demonstrate that top-down execution of
predicate ASP is possible with reasonable efficiency.

Theorem 4.1 (Soundness of co-ASP Solver for a program which is call-consistent
or order-consistent): Let P be a general ASP program which is call-consistent or
order-consistent. If a query Q has a successful co-ASP solution, then Q is a subset
of an answer set.

Theorem 4.2 (Completeness of co-ASP Solver for a program with a stable
model): If P is a general ASP program with a stable model M in the rational Her-
brand base of P, then a query Q consistent with M has a successful co-ASP solu-
tion (i.e., the query Q is present in the answer set corresponding to the stable
model).

The proofs are straightforward and follow from soundness/completeness results
for co-SLDNF [8] (along with Theorem 5.4 in Fages [9] that “an order-consistent
logic program has a stable model”). The theorems can also be proved for unre-
stricted answer set programs, for queries extended with the nmr_check integrity
constraint.

Towards Predicate Answer Set Programming 505

5 Preliminary Implementation Results

We next illustrate our top-down system via some example programs and queries.
Most of the small ASP examples1 and their queries run very fast, usually under
0.0001 CPU seconds. Our test environment is implemented on top of YAP Prolog2
running under Linux in a shared environment with dual core AMD Opteron Proc-
essor 275, with 2GHz with 8GB memory.
 Our first example is “move-win,” a program that computes the winning path
in a simple game, tested successfully with various test queries (Fig 5.1). Note that
in all cases the nmr_check integrity constraint is hand-produced.

%% A predicate ASP, “move-win” program
%% facts: move
move(a,b). move(b,a). move(a,c). move(c,d). move(d,e).
move(c,f). move(e,f).
%% rule: win
win(X) :- move(X,Y), not win(Y).
%% query: ?- win(a).

Fig. 5.1 Predicate-dependency graph of Predicate ASP “move-win”.

 The “move-win” program consists of two parts: (a) facts of move(x,y), to al-
low a move from x to y) and (2) a rule { win(X) :- move(X,Y), not win(Y). } to
infer X to be a winner if there is a move from X to Y, and Y is not a winner. This
is a predicate ASP program which is not call-consistent but order-consistent, and
has two answer sets: { win(a), win(c), win(e) } and { win(b), win(c), win(e) }. Ex-
isting solvers will operate by first grounding the program using the move predi-
cates. However, our system executes the query without grounding (since the pro-
gram is order consistent, the nmr_check integrity constraint is null). Thus, in
response to the query above, we’ll get the answer set { win(a), win(c), win(e) }.

The second example is the Schur number problem for NxB (for N numbers with B
boxes). The problem is to find a combination of N numbers (consecutive integers
from 1 to N) for B boxes (consecutive integers from 1 to B) with one rule and two
constraints. The first rule states that a number X should be paired with one and
only one box Y. The first constraint states that if a number X is paired with a box
B, then double its value, X+X, should not be paired with box B. The second con-

1 More examples and performance data can be found from our Technical Report,
 available from: http://www.utdallas.edu/~rkm010300/research/co-ASP.pdf
2 http://www.dcc.fc.up.pt/~vsc/Yap/

not

win(X) move(X,Y)

R. Min, A. Bansal and G. Gupta 506

straint states that if two numbers, X and Y, are paired with a box B, then their
sum, X+Y, should not be paired with the box B.

%% The ASP Schur NxB Program.
box(1). box(2). box(3). box(4). box(5).
num(1). num(2). num(3). num(4). num(5). num(6).
num(7). num(8). num(9). num(10). num(11). num(12).

%% rules
in(X,B) :- num(X), box(B), not not_in(X,B).
not_in(X,B) :- num(X),box(B),box(BB),B ≠ BB,in(X,BB).

%% constraint rules
:- num(X), box(B), in(X,B), in(X+X,B).
:- num(X), num(Y), box(B), in(X,B), in(Y,B), in(X+Y,B).

The ASP program is then transformed to a co-ASP program (with its completed
definitions added for execution efficiency); the headless rules are transformed to
craft the nmr_check.

%% co-ASP Schur 12x5 Program.
%% facts: box(b). num(n).
box(1). box(2). box(3). box(4). box(5).
num(1). num(2). num(3). num(4). num(5). num(6).
num(7). num(8). num(9). num(10). num(11). num(12).

%% rules
in(X,B) :- num(X), box(B), not not_in(X,B).
nt(in(X,B)) :- num(X), box(B), not_in(X,B).
not_in(X,B) :- num(X),box(B),box(BB),B\==BB, in(X,BB).
nt(not_in(X,B)) :- num(X), box(B), in(X,B).
%% constraints
nmr_chk :- not nmr_chk1, not nmr_chk2.
nmr_chk1 :- num(X),box(B),in(X,B),(Y is X+X),num(Y),in(Y,B).
nmr_chk2 :- num(X),num(Y),box(B),in(X,B),in(Y,B),

 (Z is X+Y), num(Z), in(Z,B).
%% query template
answer :- in(1,B1), in(2,B2), in(3,B3), in(4,B4),

in(5,B5), in(6,B6), in(7,B7), in(8,B8), in(9,B9),
in(10,B10), in(11,B11), in(12,B12).

%% Sample query: ?- answer, nmr_chk.

First, Schur 12x5 is tested with various queries which include partial solutions of
various lengths I (Fig. 5.1; Table 5.1). That is, if I = 12, then the query is a test: all
12 numbers have been placed in the 5 boxes and we are merely checking that the
constraints are met. If I = 0, then the co-ASP Solver searches for solutions from
scratch (i.e., it will guess the placement of all 12 numbers in the 5 boxes provided
subject to constraints). The second case (Fig 5.2; Table 5.2) is the general Schur
NxB problems with I=0 where N ranges from 10 to 18 with B=5.

Towards Predicate Answer Set Programming 507

Fig. 5.2 Schur 5x12 (I=Size of the query). Fig. 5.3 Schur BxN (Query size=0).

Table 5.1 Schur 5x12 problem (box=1..5, N=1..12). I=Query size

Schur 5x12 I=12 I=11 I=10 I=9 I=8 I=7 I=6 I=5 I=4
CPU sec. 0.01 0.01 0.19 0.23 0.17 0.44 0.43 0.41 0.43

Table 5.2 Schur BxN problem (B=box, N=number). Query size=0, with a minor tuning.

Schur BxN 5x10 5x11 5x12 5x13 5x14 5x15 5x16 5x17 5x18
CPU sec. 0.13 0.14 0.75 0.80 0.48 4.38 23.17 24.31 130

The performance data of the current prototype system is promising but still in
need of improvement if we compare it with performance on other existing solvers
(even after taking the cost of grounding the program into account). Our main strat-
egy for improving the performance of our current co-ASP solver is to interleave
the execution of candidate answer set generation and nmr_check. Given the query
?- goal, nmr_check, the call to goal will act as the generator of candidate answer
sets while nmr_check will act as a tester of legitimacy of the answer set. This
generation and testing has to be interleaved in the manner of constraint logic pro-
gramming to reduce the search space. Additional improvements can also be made
by improving the representation and look-up of positive and negative hypothesis
tables during co-SLDNF (e.g., using a hash table, or a trie data-structure).

6 Conclusion and Future Work

In this paper we presented an execution strategy for answer set programming ex-
tended with predicates. Our execution strategy is goal-directed, in that it starts
with a query goal G and computes the (partial) answer set containing G in a man-
ner similar to SLD resolution. Our strategy is based on the recent discovery of
coinductive logic programming extended with negation as failure. We also pre-
sented results from a preliminary implementation of our top-down scheme. Our

140.00
140

120

100

80

60

40

20

0
5x10 5x11 5x125x13 5x14 5x155x16 5x17 5x18

Schur 5X12
C

pu
 S

ec

C
pu

 s
ec

Schur BXN in CPU seconds

Schur BxN

120.00

100.00

80.00

60.00

40.00

20.00

0.00
I=12 I=11 I=10 I=9 I=8 I=7 I=6 I=5 I=4 I=3 I=2 I=1

R. Min, A. Bansal and G. Gupta 508

future work is directed towards making the implementation more efficient so as to
be competitive with the state-of-the-art solvers for ASP. We are also investigating
automatic generation of the nmr_check integrity constraint. In many cases, the in-
tegrity constraint can be dynamically generated during execution when the ne-
gated call nt(p) is reached from a call p through an odd cycle.

References

1. Gelfond M, Lifschitz V (1988). The stable model semantics for logic programming. Proc.
of International Logic Programming Conference and Symposium. 1070-1080.

2. Baral C (2003). Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press.

3. Niemelä I, Simons, P (1996). Efficient implementation of the well-founded and stable
model semantics. Proc. JICSLP. 289-303. The MIT Press.

4. Simons P, Niemelä I, Soininen, T (2002). Extending and implementing the stable model
semantics. Artificial Intelligence 138(1-2):181-234.

5. Simons P, Syrjanen, T (2003). SMODELS (version 2.27) and LPARSE (version 1.0.13).
http://www.tcs.hut.fi/Software/smodels/

6. Simon L, Mallya A, Bansal A, Gupta G (2006). Coinductive Logic Programming. ICLP'06.
Springer Verlag.

7. Gupta G, Bansal A, Min R et al (2007). Coinductive logic programming and its applica-
tions. Proc. ICLP'07. Springer Verlag.

8. Min R, Gupta G (2008). Negation in Coinductive Logic Programming. Technical Report.
Department of Computer Science. University of Texas at Dallas.
http://www.utdallas.edu/~rkm010300/research/co-SLDNF.pdf

9. Fages F (1994). Consistency of Clark's completion and existence of stable models. Journal
of Methods of Logic in Computer Science 1:51-60.

10. Sato, T (1990). Completed logic programs and their consistency. J Logic Prog 9:33-44.
11. Kripke S (1985). Outline of a Theory of Truth. Journal of Philosophy 72:690-716.
12. Fitting, M (1985). A Kripke-Kleene semantics for logic programs. Journal of Logic Pro-

gramming 2:295-312.
13. Simon L, Bansal A, Mallya A et al (2007). Co-Logic Programming. ICALP'07.
14. Colmerauer A (1978). Prolog and Infinite Trees. In: Clark KL, Tarnlund S-A (eds) Logic

Programming. Prenum Press, New York.
15. Maher, MJ (1988). Complete Axiomatizations of the Algebras of Finite, Rational and Infi-

nite Trees. Proc. 3rd Logic in Computer Science Conference. Edinburgh, UK.

