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Abstract The monitoring of human physiological data, in both normal and ab-
normal situations of activity, is interesting for the purpose of emergency event de-
tection, especially in the case of elderly people living on their own. Several tech-
niques have been proposed for identifying such distress situations using either 
motion, audio or video data from the monitored subject and the surrounding envi-
ronment. This paper aims to present an integrated patient fall detection platform 
that may be used for patient activity recognition and emergency treatment. Both 
visual data captured from the user’s environment and motion data collected from 
the subject’s body are utilized. Visual information is acquired using overhead 
cameras, while motion data is collected from on-body sensors. Appropriate track-
ing techniques are applied to the aforementioned visual perceptual component 
enabling the trajectory tracking of the subjects. Acceleration data from the sensors 
can indicate a fall incident. Trajectory information and subject’s visual location 
can verify fall and indicate an emergency event. Support Vector Machines (SVM) 
classification methodology has been evaluated using the latter acceleration and 
visual trajectory data. The performance of the classifier has been assessed in terms 
of accuracy and efficiency and results are presented. 

1 Introduction 

The telemonitoring of human physiological data, in both normal and abnormal 
situations of activity, is interesting for the purpose of emergency event detection 
or long term data-storage for later diagnosis or for the purpose of medical explora-
tion. In the case of elderly people living on their own, there is a particular need for 
monitoring their behavior. The goal of this surveillance is the detection of major 
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incidents such as a fall, or a long period of inactivity in a part of their area. Several 
techniques have been proposed for identifying such distress situations using either 
motion, audio or video data from the monitored subject and the surrounding envi-
ronment. This paper presents a human body fall detection platform based both mo-
tion and visual perceptual components. A number of on-body sensors collect the 
movement data and transmit them wirelessly to the monitoring unit, while over-
head cameras track the trajectory and shape of the body and provide information 
regarding the patient’s position and activity. Appropriate classification of the mo-
tion data can give an indication of a fall. Combining the latter with unusual change 
of body’ shape followed by inactivity, an alarm can be triggered and more infor-
mation regarding the severity of the incident can be obtained; in case patient re-
mains still after the fall or moves but the body is detected on the ground then the 
patient requires immediate assistance. 

The rest of the paper is organized as follows; Section 2 discusses related work 
in the context of patient activity and fall detection. Section 3 describes the pro-
posed system architecture and Sections 4 and 5 describe the acquisition of the pa-
tient movement and visual data using sensors and overhead cameras respectively. 
Section 6 presents the data classification using Support Vector Machines and cor-
responding evaluation results and finally Section 7 concludes the paper. 

2 Related Work 

Although the concept of patient activity recognition with focus on fall detection is 
relatively new, there exists related research work, which may be retrieved from 
the literature ([1]-[9]). Information regarding the patient movement and activity is 
frequently acquired through visual tracking of the patient’s position. In [5] over-
head tracking through cameras provides the movement trajectory of the patient 
and gives information about user activity on predetermined monitored areas. Un-
usual inactivity (e.g., continuous tracking of the patient on the floor) is interpreted 
as a fall. Similarly, in 8 omni-camera images are used to determine the horizontal 
placement of the patient’s silhouettes on the floor (case of fall). Success rate for 
fall detection is declared at 81% for the latter work. A different approach for col-
lecting patient activity information is the use of sensors that integrate devices like 
accelerometers, gyroscopes and contact sensors. The latter approach is less de-
pended on the patient and environmental information and can be used for a variety 
of applications for user activity recognition ([1], [3], [7]). Regarding fall detection, 
authors in [2], [6], [9] use accelerometers, gyroscopes and tilt sensors for move-
ment tracking. Collected data from the accelerometers (i.e., usually rotation angle 
or acceleration in the X, Y and Z axis) is used to verify the placement of the pa-
tient and time occupation in rooms and detect abrupt movement that could be as-
sociated with fall. Detection is performed using predefined thresholds [1], [3], [4], 
[6] and association between current position, movement and acceleration [2], [9]. 
To our best knowledge there is no work in the literature that combines both visual 
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and sensor information for a more complete and robust estimation of a patient’s 
fall and can provide some information regarding the severity of the incident (e.g. 
patient has gotten up right after the fall, patient is inactive, etc.). 

3 System Architecture Overview 

The presented system follows the architecture illustrated in Fig. 1. Accelerometers 
data are collected through the sensor attached on the user’s chest and belt and are 
transmitted wirelessly to the monitoring node. Transmission of data is performed 
through J2ME sockets following the client-server architecture. The monitoring 
unit acting as movement data receiver serves as the server whereas each node is 
the client. 

At the same time, camera devices record video frames from the user’s site and 
provide feed to the video tracker. The latter tracks the movement of the patient’s 
body and generates body shape features (i.e. coordinates of a bounding box con-
taining the subject’s body). The data are properly transformed in a suitable format 
for the classifier and the classification phase begins. Based on a predefined classi-
fication model (i.e. train model), the patient status is detected (i.e. emergency 
status when fall detected, normal status otherwise). 

Apart from the indication of a fall incident, an estimation of the severity of the 
incident can be provided based on the patient’s behavior after the fall as recorded 
visually; movement indicated by accelerometers but visual inactivity or soft activ-
ity suggests that patient has not lost consciousness and is trying to recover from 
the fall, both sensor and normal visual activity can indicate that patient has recov-
ered from fall, and no activity at all can indicate higher severity of the incident. 

 

Fig. 1. Platform Architecture and Data interaction between the movement capturing tools and 
monitoring node. 
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4 Patient Movement Data Acquisition 

This section provides information on the acquisition and pre-processing of the pa-
tient movement data. The Sentilla Perk [10] sensor kit has been utilized in our sys-
tem. The latter contains two 2.4 GHz wireless data transceivers (nodes, see Fig. 2) 
using the IEEE 802.15.4 (ZigBee) protocol. It also includes a USB port for inter-
face with a personal computer acting as the monitoring unit. Each node has a low-
power, low-voltage MCU (MicroController Unit), one 3D Accelerometer for X, Y 
and Z axis and additional analog and digital input pins for adding more sensors. 
The Perk nodes are provided in a plastic robust small-sized enclosure (6x3x1.5cm) 
making them more suitable for placing on patient’s body and tolerating falls. 

     

       (a)            (b) 

Fig. 2. The Sentilla Perk node containing a 3D accelerometer that can be attached on user and 
send motion data through the ZigBee wireless protocol. The plastic enclosure can protect the 
node from falls and makes it more suitable for carrying it on patient’s body. A) Actual photo of 
the node, b) illustration indicating two analog-to-digital converter ports for the addition of alter-
native sensors. 

Two Perk nodes can be placed on patient’s body. Preferable positions are close 
to user’s chest and user’s belt or lower at user’s foot. The latter positions have 
proven based on conducted experiments to be appropriate for distinguishing rapid 
acceleration on one of the three axis that is generated during a fall. 

Appropriate J2ME [17] code is developed and deployed on the nodes for read-
ing the accelerometer values and transmitting them wirelessly to the monitoring 
unit. At the latter a Java application built using the Sentilla IDE [10] receives the 
movement data and performs further processing as described in the following sec-
tions. An example of motion data as received by the two sensor nodes is illustrated 
in Fig. 3. The X, Y and Z acceleration values from both sensors are interlaced. 

5 Video Tracking of Human Body 

The goal of the developed body video tracker is to provide across time the frame 
regions occupied by human bodies. The tracker is built around a dynamic fore-
ground segmentation algorithm [12] that utilizes adaptive background modeling. 
This is based on Stauffer’s algorithm [13] to provide the foreground pixels. 
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Stauffer’s algorithm models the different colors every pixel can receive in a video 
sequence by Gaussian Mixture Models (GMM). One GMM corresponds to every 
pixel at given coordinates across time. The Gaussians are three-dimensional, cor-
responding to the red, green and blue components of the pixel color. Their weight 
is proportional to the time a particular Gaussian models best the color of the pixel. 
Hence the weight of a given Gaussian is increased as long as the color of the pixel 
can be described by that Gaussian with higher probability than any other Gaussian 
in the GMM can, and that probability is above a threshold. As a result, a map can 
be built in which every pixel is represented by the weight of the Gaussian from its 
GMM that best describes its current color. This is the Pixel Persistence Map 
(PPM): Regions of the map with large values correspond to pixels that have colors 
that appear there for a long time, hence they belong to background. On the con-
trary, regions with small values correspond to pixels that have colors that appear 
there for a short time, hence they are foreground. This is true as long as the fore-
ground objects have distinct colors from the background. 

 

Fig. 3. Illustration of interlaced from both sensors acceleration data in X, Y and Z axis. The Y 
axis represents the acceleration value (range between -2 and 2) and the X axis the number of 
samples acquired. 

The problem of Stauffer’s algorithm is with foreground objects that stop mov-
ing. In its original implementation, targets/objects that stop moving are learnt into 
the background. This happens as the weights of the Gaussians of the GMM of pix-
els describing the foreground colors and corresponding to immobile foreground 
objects increase with time. To avoid this, the learning rates of the adaptation that 
increase the weights of Gaussians are not constant, neither across space, nor 
across time. Instead, they are spatiotemporally controlled by the states of Kalman 
filters [11]. Every foreground area corresponds to a target being tracked by a Kal-
man filter. The foreground pixels are combined into body evidence blobs, used for 
the measurement update stage of the Kalman filters. The states are used to obtain 
the position, size and mobility of each target, the latter being a combination of 
translation and size change. This information is fed back to the adaptive back-
ground modeling module to adapt the learning rate in the vicinity of each target: 
frame regions that at a specific time have a slow-moving target have smaller learn-
ing rates. The block diagram of the body tracker is shown in Fig. 4. 
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With the feedback configuration of the tracker, the learning of the slow moving 
foreground objects into the background is slowed down long enough for the in-
tended application, i.e. tracking people moving indoors and possibly falling down. 
The tracker results when applied on the visual feed by an overhead camera are il-
lustrated in Fig. 5. 

 

Fig. 4. Block diagram of the body video tracker. Kalman filters spatiotemporally adapt the learn-
ing rates of the adaptive background algorithm, effectively avoiding learning of immobile fore-
ground objects into the background. 

 
 

Fig. 5. Visualization of video tracking performance. The tracker detects the movement of the 
body and correlates it with the movement of a rectangular blob within the visual domain. Upper 
left X, Y coordinates and respective width and height of the blob are reported for each visual 
frame. Frame A corresponds to normal walking, Frame B to captured movement during fall and 
Frame C illustrates detection of body in horizontal position after fall. 

Tracking through overhead cameras has been selected due to the fact that it 
provides a better visual representation of the monitored area and allows the tracker 
to gain a better estimation of the body shape when subject moves, falls and lays 
still after fall. The presented tracker creates and tracks a rectangular blob around 
the detection of the moving body within the frames and reports the upper left cor-
ner coordinates and respective width and height of the blog. As indicated in Fig. 5 
the size of the blob changes during the fall and after it. 
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6 The System in Practice: Classification of Motion and Visual 
Perceptual Components 

This Section provides information regarding the classification method used and 
reports the accuracy of the system in the detection of a patient fall. According to 
our previous research [14], [15] the SVM (Support Vector Machines) classifica-
tion method has been proved to obtain high accuracy in the detection of fall inci-
dents based on movement data. More particularly accuracy rates for the distinction 
of fall against other movement types can reach 98.2%. In previous experiments 
the train model has been built using only acceleration data whereas in the pro-
posed system the train model contains also visual information as described in Sec-
tion 5. The WEKA tool [16] has also been used for the development and evalua-
tion the SVM model. Classification data are provided in the following form: 

Fall_ID X Y Z BBx BBy BBWidth BBHeight 

where X, Y and Z are the acceleration data as retrieved from the sensors, BBx and 
BBy are the upper left coordinates of the bounding box that tracks patient’s body 
and BBwidth and BBheight the width and height of the bounding box respec-
tively. Fall_ID represents the case of fall incident (true or false). 

To evaluate the efficiency and accuracy of the presented platform in the context 
of detecting patient falls, a number of experiments were conducted; a volunteer 
wearing the sensors devices described in Section 4 was recorded walking and fal-
ling in different locations and ways while an overhead camera was capturing vis-
ual frames. Motion data and body shape features are utilized for creating classifi-
cation models. The 10-cross fold validation methodology has been used to verify 
each model’s accuracy and performance. 

Apart from the detection of fall the system is also capable of estimating the se-
verity of the incident: When an estimation of a fall has occurred based on the sen-
sor and visual data the standard deviation of accelerometer values and visual 
bounding box values is calculated for the next 15 seconds. A specific threshold 
has been determined for each value that can determine the severity of the incident 
according to the following table: 

Table 1. Decision matrix for the severity of a fall incident based on standard deviations of 
movement data and body bounding box coordinates after a fall has occurred. 

Motion 
STD 

Bounding Box (X,Y) 
STD 

Severity 

>0.5 > 60 Low. Patient has recovered from fall (gotten up) 
>0.5 <60 Medium. Patient is moving but cannot fully recover 

from fall 
<0.5 <60 High. No activity is recorded; patient has probably 

felt unconscious 
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Table 2. Accuracy evaluation results of the proposed System. Motion and video tracking data of 
four fall experiments have been used. Percentage of correctly classified results, Root Mean 
Squared Error and correctly classified severity of the fall are presented. 

Experiment Correctly Clas-
sified Fall (%) 

Root Mean 
Squared Error 

Interlaced Mo-
tion Data 

Correctly Clas-
sified Severity 

FallA 99.2 0.0112 Yes Yes 
FallB 100.0 0.0072 Yes Yes 
FallC 99.4 0.0082 Yes Yes 
FallD 98.7 0.0121 Yes Yes 
FallA 97.3 0.0242 No Yes 
FallB 98.4 0.0173 No Yes 
FallC 97.1 0.0449 No Yes 
FallD 96.9 0.0534 No Yes 

According to the evaluation results as presented in Table 2, the SVM seem to 
achieve high accuracy rates in all cases. When the motion data from both on-body 
sensors are interlaced accuracy proves to be higher than otherwise. Finally, the se-
verity of each fall incident is correctly estimated in all cases based on the motion 
and video track data after the fall. 

7 Conclusions 

In this paper an enhanced patient fall detection system has been proposed that 
combines both motion and visual information. Accelerometer data obtained 
through wireless sensors in conjunction to body shape features acquired by visual 
tracking are evaluated through a SVM train model. A detection of a fall incident is 
then generated. In addition, combining the motion data and movement of the body 
obtained visually after the fall, the severity of the fall can also be estimated alert-
ing treatment personnel appropriately. 
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