Skip to main content

Algorithms and Applications for Land Cover Classification – A Review

  • Chapter
  • First Online:
Geospatial Technology for Earth Observation

Abstract

During the last decades the manner how the Earth is being observed was revolutionized. Earth Observation (EO) systems became a valuable and powerful tool to monitor the Earth and had significant impact on the acquisition and analysis of environmental data (Rosenquist et al. 2003). Currently, EO data play a major role in supporting decision-making and surveying compliance of several multilateral environmental treaties, such as the Kyoto Protocol, the Convention on Biological Diversity, or the European initiative Global Monitoring for Environment and Security, GMES (Peter 2004, Rosenquist et al. 2003, Backhaus and Beule 2005).

However, the need for such long-term monitoring of the Earth’s surface requires the standardized and coordinated use of global EO data sets, which has led, e.g., to the international Global Earth Observation System of Systems (GEOSS) initiative as well as to the Global Climate Observation System (GCOS) implementation plan (GCOS 2004, GEO 2005). The evolving EO technologies together with the requirements and standards arising from their exploitation demand increasingly improving algorithms, especially in the field of land cover classification

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Backhaus R, Beule B (2005): Efficiency evaluation of satellite data products in environmental policy. Space Policy 21:173-183.

    Article  Google Scholar 

  • Bandos T, Zhou D, Camps-Valls G (2006). Semi-supervised Hyperspectral Image Classification with Graphs. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'06.

    Google Scholar 

  • Benediktsson JA, Swain PH, Ersoy OK (1990), Neural Networks Versus Statistical Methods in Classification of Multisource Remote Sensing Data. IEEE Trans. Geosci. and Remote Sens. 28: 540-552.

    Article  Google Scholar 

  • Benediktsson JA, Swain PH (1992). Consensus Theoretic Classification Methods. IEEE Trans. Syst., Man and Cyb. 22: 688-704.

    Article  Google Scholar 

  • Benediktsson JA, Kanellopoulos I (1999) Classification of Multisource and Hyperspectral Data Based on Decision Fusion. IEEE Trans. Geosci. and Remote Sens. 37: 1367-1377.

    Article  Google Scholar 

  • Benediktsson JA, Pesaresi M, Arnason K (2003). Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Trans. Geosci. and Remote Sens. 41: 1940-1949.

    Article  Google Scholar 

  • Benediktsson JA, Palmason JA, Sveinsson J (2005). Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 43: 480–491.

    Article  Google Scholar 

  • Benediktsson JA, Chanussot J, Fauvel M (2007) Multiple Classifier Systems in Remote Sensing: From Basics to Recent Developments. In: Haindl M, Kittler J, Roli F (Ed.) Multiple Classifier Systems. 7th International Workshop, MCS 2007, Prague, Czech Republic, May 23-25, 2007, Proceedings. Lecture Notes in Computer Science 4472, Springer.

    Google Scholar 

  • Breiman L, Friedman J, Olshen RA, Stone CJ (1984): Classification and Regression Trees CRC Press.

    Google Scholar 

  • Breiman L (1996) Bagging predictors. Machine Learning 24:123-140.

    Google Scholar 

  • Breiman L (2001) Random forests. Machine Learning, 45: 5-32.

    Article  Google Scholar 

  • Briem GJ, Benediktsson JA, Sveinsson JR (2002) Multiple classifiers applied to multisource remote sensing data. IEEE Transactions on Geoscience and Remote Sensing 40: 2291-2299.

    Article  Google Scholar 

  • Bruzzone L, Carlin L (2006) A multilevel context-based system for classification of very high spatial resolution images. IEEE Transactions on Geoscience and Remote Sensing 44: 2587-2600.

    Article  Google Scholar 

  • Bruzzone L, Chi M, Marconcini M (2006). A Novel Transductive SVMs for semisupervised classification in ill-posed problems. IEEE Trans. Geosci. and Remote Sensing, 44(11):3363-3373.

    Article  Google Scholar 

  • Bryll R, Gutierrez-Osuna R, Quek F (2003) Attribute Bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition 36: 1291-1302.

    Article  Google Scholar 

  • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2:121-167.

    Article  Google Scholar 

  • Cardillo G, Landgrebe D (1966) On pattern recognition. Purdue University, West Lafayette, IN, LARS Tech. Note 101 866.

    Google Scholar 

  • Chang C-C ,Lin C-J (2001): LIBSVM: a library for support vector machines, 2001. Software available at: http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

  • Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002): Choosing multiple parameters for support vector machines. Machine Learning 46:131-159.

    Article  Google Scholar 

  • Chapelle O, Zien A (2005): Semi-Supervised Classification by Low Density Separation. Tenth International Workshop on Artificial Intelligence and Statistics.

    Google Scholar 

  • Chapelle O, Chi M, Zien A (2006). A Continuation Method for Semi-Supervised SVMs. International Conference on Machine Learning.

    Google Scholar 

  • Chi M (2006): Advanced Semi-Supervised Techniques for the Classification of Remote Sensing Data. PhD thesis, University of Trento, Trento, Italy.

    Google Scholar 

  • Chi M, Bruzzone L (2005) A semilabeled-sample-driven bagging technique for ill-posed classification problems. IEEE Geosci. and Remote Sensing Lett., 2(1):69-73.

    Article  Google Scholar 

  • Chi M, Bruzzone L (2007) Semi-Supervised Classification of Hyperspectral Images by SVMs Optimized in the Primal. IEEE Trans. Geosci. and Remote Sensing, 45(6):1870-1880.

    Article  Google Scholar 

  • Chung KM, Kao WC, Sun CL, Wang LL, Lin CJ (2003): Radius margin bounds for support vector machines with the RBF kernel. Neural Computation 15: 2643-2681.

    Article  Google Scholar 

  • Cortes C, Vapnik V (1995) Support Vector Networks. Machine Learning, 20(3):273- 297.

    Google Scholar 

  • Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. The Royal Statistical Society, Series B.

    Google Scholar 

  • Duda RO, Hart PE, and Stork DG (2001) Pattern Classification. 2nd edn. Wiley-Interscience.

    Google Scholar 

  • Esposito F, Malerba D, Semeraro G, Kay J (1997) A comparative analysis of methods for pruning decision trees. IEEE Transactions on Pattern Analysis and Machine Intelligence 19:476-491.

    Article  Google Scholar 

  • Fauvel M, Benediktsson JA, Chanussot J, Sveinsson JR (2008). Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles. IEEE Trans. Geosci. and Remote Sensing, 46:3804-3814.

    Article  Google Scholar 

  • Foody G.M. and Mathur A. (2006) The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM. Remote Sensing of Environment 103: 179-189.

    Article  Google Scholar 

  • Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. Proc. 13th Int. Conference of Machine Learning, Bari, Italy.

    Google Scholar 

  • Friedl MA, Brodley CE (1997) Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment 61: 399-409.

    Article  Google Scholar 

  • Fu KS, Landgrebe DA, Phillips TL (1969) Information processing of remotely sensed agricultural data. IEEE Proceedings 57:639–653.

    Article  Google Scholar 

  • GCOS (2004) Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC, GCOS-92.

    Google Scholar 

  • GEO (2005): Global Earth Observation System of Systems (GEOSS) 10-Year Implementation Plan. Reference Document, available at: http://www.earthobservations.org.

  • Gislason PO, Benediktsson JA, and Sveinsson JR (2006). Random Forests for land cover classification. Pattern Recognition Letters, 27: 294-300.

    Article  Google Scholar 

  • Ham J, Chen YC, Crawford MM, and Ghosh J (2005): Investigation of the random forest framework for classification of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 43: 492-501.

    Article  Google Scholar 

  • Hansen LK, Salamon P. (1990) Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine 12:993-1001.

    Article  Google Scholar 

  • Ho TK (1998) The random subspace method for constructing decision forests. IEEE Transaction on Pattern Analysis. and Machine Intelligence 20:882-844.

    Google Scholar 

  • Hsu CW, Lin CJ (2002) A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Networks, 13: 415-425.

    Article  Google Scholar 

  • Hughes GF (1968) On the mean accuracy of statistical pattern recognition. IEEE Trans. Inform. Theory, IT-14:55-63.

    Article  Google Scholar 

  • Jackson Q, Landgrebe DA (2002) An adaptive method for combined covariance estimation and classification. IEEE Trans. Geosci Remote Sensing, 40(5):1082-1087.

    Article  Google Scholar 

  • Jain AK, Duin RPW, Mao JC (2000) Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22:4-37.

    Article  Google Scholar 

  • Janz A, Schiefer S, Waske B, Hostert P (2007) A user-oriented tool for advanced classification of hyperspectral data using support vector machines. Proc. of the 5th workshop of the EARSeL Special Interest Group on Imaging Spectroscopy, 23-25 Apr., Bruges, Belgium.

    Google Scholar 

  • Joachims T (1999). Transductive inference for text classification using support vector machines. International Conference on Machine Learning, ICML 1999.

    Google Scholar 

  • Keehrti SS and Lin CJ (2003): Asymptotic behavior of support vector machines with Gaussian kernel. Neural Computation 15:1667-1689.

    Article  Google Scholar 

  • Koetz B, Morsdorf F, van der Linden S, Curt T, Allgöwer B (2008) Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data. Forest Ecology and Management 256(3): 263-271.

    Article  Google Scholar 

  • Laur H, Bally P, Meadows P, Sanchez J, Schaettler B, Lopinto E, Esteban D (2002): Derivation of the backscattering coefficient ٱ0 in ESA ERS SAR PRI products. ESA Document ES-TN-RE-PM-HL09, Issue 2, Rev. 5d, 2002.

    Google Scholar 

  • Lin H.-T., Lin C.-J., Weng R. C. (2003): A note on Platt's probabilistic outputs for support vector machines. Technical report, Department of Computer Science, National Taiwan University, URL http://www.csie.ntu.edu.tw/∼cjlin/papers/plattprob.ps.

  • Hyun-Chul Kim, Shaoning Pang, Hong-Mo Je, Daijin Kim, Sung Yang Bang (2003) Constructing support vector machine ensemble. Pattern recognition 36: 2757-2767.

    Article  Google Scholar 

  • Mathur A, Foody GM (2008) Multiclass and Binary SVM Classification: Implications for Training and Classification Users. IEEE Geoscience and Remote Sensing Letters 5:241245

    Google Scholar 

  • Melgani F, Bruzzone L (2004): Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing 42:1778-1790.

    Article  Google Scholar 

  • Naesset E (2002). Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment 80: 88-99.

    Article  Google Scholar 

  • Naesset E (2005). Assessing sensor effects and effects of leaf-off and leaf-on canopy conditions on biophysical stand properties derived from small-footprint airborne laser data. Remote Sensing of Environment 98: 356-370.

    Article  Google Scholar 

  • Pal M, Mather PM (2003) An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment 86:554-565.

    Article  Google Scholar 

  • Pal M, Mather PM (2005) Support vector machines for classification in remote sensing. International Journal of Remote Sensing 26:1007-1011.

    Article  Google Scholar 

  • Pal M and Mather P (2006) Some issues in the classification of DAIS hyperspectral data International Journal of Remote Sensing 27: 2895-2916.

    Google Scholar 

  • Pal M (2005) Random forest classifier for remote sensing classification. International Journal of Remote Sensing. 26:217-222.

    Article  Google Scholar 

  • Peter N (2004): The use of remote sensing to support the application of multilateral environmental agreements. Space Policy 20:189-195.

    Google Scholar 

  • Polikar R. (2006) Ensemble Based Systems in Decision Making. IEEE Circuits and Systems Magazine, 6:21-45.

    Article  Google Scholar 

  • Richards JA (2005): Analysis of remotely sensed data: The formative decades and the future. IEEE Transactions on Geoscience and Remote Sensing 43:422-432.

    Article  Google Scholar 

  • Richards JA, Jia X (2006) Sensing Digital Image Analysis: An Introduction. 4th edn. Springer, New York,

    Google Scholar 

  • Richards JA, Jia X (2008) Using Suitable Neighbors to Augment the Training Set in Hyperspectral Maximum Likelihood Classification. IEEE Geosci. and Remote Sensing Letters 5: 774-777.

    Article  Google Scholar 

  • Rosenqvist A, Milne A, Lucas R, Imhoff M, Dobson C (2003) A review of remote sensing technology in support of the Kyoto Protocol. Environmental Science & Policy 6:441-455.

    Article  Google Scholar 

  • Safavian SR, Landgrebe DA (1991) A Survey of Decision Tree Classifier Methodology. IEEE Transactions on Systems, Man, and Cybernetics 21:660-674.

    Article  Google Scholar 

  • Schapire RE (1990) The strength of weak learnability. Machine Learning 5:197-227.

    Google Scholar 

  • Schölkopf B, Smola A (2002) Learning with Kernels. MIT Press, Cambridge, MA.

    Google Scholar 

  • Sebald DJ, Bucklew JA (2001) Support vector machines and the multiple hypothesis test problem,” IEEE Trans. Signal Processing 49: 2001.

    Google Scholar 

  • Shackelford AK, Davis CH (2003) A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas. IEEE Transactions on Geoscience and Remote Sensing 41:2354-2363.

    Article  Google Scholar 

  • Shahshahani BM and Landgrebe DA (1994) The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Trans. Geosci Remote Sensing, 32(5):1087-1095

    Article  Google Scholar 

  • Steele BM (2000) Combining multiple classifiers: An application using spatial and remotely sensed information for land cover type mapping. Remote Sensing of Environment 74: 545-556.

    Article  Google Scholar 

  • Tadjudin S and Landgrebe DA (2000) Robust parameter estimation for mixture model. IEEE Trans. Geosci Remote Sensing, 38(1):439-445.

    Article  Google Scholar 

  • Turmer K and Gosh J (1996) Anaylsis of Decision Boundaries in Linearly combined neural classifiers. Pattern Recognition Letters 29:341-348.

    Google Scholar 

  • Vapnik VN (1998) Statistical Learning Theory. Wiley & Sons, New York.

    Google Scholar 

  • van der Linden S, Janz A, Waske B, Eiden M., und Hostert P (2007) Classifying segmented hyperspectral data from a heterogeneous urban environment using support vector machines. Journal of Applied Remote Sensing 1.

    Google Scholar 

  • Waske B, Schiefer S, Braun M (2006) Random feature selection for a decision tree classification of multi-temporal SAR data. IEEE Geoscience and Remote Sensing Symp. IGARSS 2006, Denver, Colorado, USA.

    Google Scholar 

  • Waske B, Benediktsson JA (2007) Fusion of Support Vector Machines for Classification of Multisensor Data. IEEE Trans. Geosci. and Remote Sens. 45: 3858-3866.

    Article  Google Scholar 

  • Waske B, van der Linden S (2008): Classifying multilevel imagery from SAR and optical sensors by decision fusion. IEEE Trans. on Geoscience and Remote Sensing 46: 1457-1466.

    Article  Google Scholar 

  • Wu Z (1996) The effective energy transformation scheme as a special continuation approach to global optimization with application to molecular conformation. SIAM Journal on Optimization, 6(3):748-768.

    Article  Google Scholar 

  • Wu T.-F., Lin, C.-J., Weng R. C. (2004) Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research, 5:975-1005.

    Google Scholar 

  • Zambon M, Lawrence R, Bunn A, Powell S (2006) Effect of alternative splitting rules on image processing using classification tree analysis. Photogrammetric Engineering and Remote Sensing 72:25-30.

    Google Scholar 

  • Zhou D, Bousquet O, Lal TN, Weston J, Schölkopf B (2004). Learning with Local and Global Consistency. In Thrun S, Saul L, Schölkopf B (eds) 321-328, Cambridge, MA, USA, 2004. MIT Press.

    Google Scholar 

  • Zhu X, Ghahramani Z, Lafferty J (2003) Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions. The Twentieth International Conference on Machine Learning, ICML 2003.

    Google Scholar 

  • Zhu X (2005) Semi-Supervised Learning Literature Survey. Technical report, 1530, Computer Sciences, University of Wisonsin-Madison.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Waske, B., Chi, M., Atli Benediktsson, J., van der Linden, S., Koetz, B. (2010). Algorithms and Applications for Land Cover Classification – A Review. In: Li, D., Shan, J., Gong, J. (eds) Geospatial Technology for Earth Observation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0050-0_8

Download citation

Publish with us

Policies and ethics