
209

Chapter 6

Power Consumption  
by Video Applications

After discussing video compression, quality, and performance aspects in the previous 
chapters, in this chapter we turn our attention to another dimension of video application 
tuning: power consumption. Power consumption needs to be considered together 
with those other dimensions; tradeoffs are often made in favor of tuning one of these 
dimensions, based on the needs of the application and with a view toward providing the 
best user experience. Therefore, we first introduce the concept of power consumption 
and view its limits on typical modern devices, then we follow with a discussion of 
common media workloads and usages on consumer platforms. After that, we briefly 
introduce various criteria for power-aware platform designs. 

Within this general setup, the chapter deals with three major topics: power 
management, power optimization, and power measurement considerations. In regard 
to power management, we present the standards and management approaches used 
by the operating system and by the processor. For discussion of power optimization, 
we present various approaches, including architectural, algorithmic, and system 
integration optimization. The third topic, power measurement, takes us into the realm of 
measurement methodologies and considerations.

Besides these three main topics, this chapter also briefly introduces several power 
measurement tools and applications, along with their advantages and limitations. 

Power Consumption and Its Limits
In today’s mobile world order, we face ever-increasing desires for compelling user 
experiences, wearable interfaces, wireless connectivity, all-day computing, and--most 
critical--higher performance. At the same time, there’s high demand for decreasing form 
factor, lower weight, and quieter battery-powered devices. Such seemingly contradictory 
requirements present unique challenges: not only do newer mobile devices need 
extensive battery lives but they also are harder to cool, as they cannot afford bulky fans. 



Chapter 6 ■ power Consumption by Video appliCations 

210

Most important, they need to operate in a limited power envelope. The main concern 
from the consumer’s point of view, however, is having a system with better battery life, 
which is cost-effective over the device’s life. Therefore, power limits are a fundamental 
consideration in the design of modern computing devices.

Power limits are usually expressed in terms of thermal design power (TDP), which is 
the maximum amount of heat generated for which the cooling requirement is accounted 
for in the design. For example, TDP is the maximum allowed power dissipation for a 
platform. The TDP is often broken down into the power consumption of individual 
components, such as the CPU, the GPU, and so on. Table 6-1 lists typical TDPs for various 
processor models:

Table 6-1. Typical Power Envelopes

Type TDP (Watts) Comment

Desktop  
server/ workstation

47W–120W High-performance workstations and servers

All-in-one 47W-65W Common usage

Laptop 35W

Ultrabook class 17W Recent areas of focus to decrease TDP

Tablet/Phablet 8W

Smartphone <4W

Although it is important to reduce cost and conserve power for the desktop 
workstations and servers, these platforms essentially are not limited by the availability 
of power. Consumer devices and platforms such as portable tablets, phablets, and 
smartphones, on the other hand, use size-constrained batteries for their power supply. 

A major drawback of these devices is that batteries in tablets often drain down before 
an 8- or 9-hour cross-Atlantic flight is over, and in the case of smartphones, often need 
a recharge every day. As such, today’s market demands over 10 hours of battery life for a 
tablet to enable users to enjoy a long flight and more than 24 hours for a smartphone for 
active use. Additionally, the users of these devices and platforms may choose to use them 
in many different ways, some of which may not be power-efficient. We need, therefore, 
to understand various power-saving aspects for media applications on these typical 
consumer platforms. 

Power is the amount of energy consumed per unit time, and it is typically 
expressed in terms of Joules per second, or watts. The switching power dissipated by 
a chip using static CMOS gates, such as the power consumed by the CPU of a mobile 
computing device with a capacitance C

dyn
, running at a frequency f and at a voltage V, is 

approximately as follows: 

                   P AC V f Pdyn s= +2
 (Equation 6-1)

Here, P
S
 is the static power component introduced mainly due to leakage, and A is 

an activity constant related to whether or not the processor is active or asleep, or under a 
gating condition such as clock gating. For a given processor, C

dyn
 is a fixed value; however, 



Chapter 6 ■ power Consumption by Video appliCations 

211

V and f can vary considerably. The formula is not perfect because practical devices 
as CPUs are not manufactured with 100 percent CMOS and there is special circuitry 
involved. Also, the static leakage current is not always the same, resulting in variations in 
the latter part of the equation, which become significant for low-power devices. 

Despite the imprecision of the equation, it is still useful for showing how altering 
the system design will affect power. Running the processor of a device at a higher clock 
frequency results in better performance; however, as Equation 6-1 implies, at a lower 
frequency it results in less heat dissipation and consequently lower power consumption. 
In other words, power consumption not only dictates the performance, it also impacts the 
battery life.

In today’s technology, the power or energy supply for various electronic devices and 
platforms usually comes from one of three major sources: 

An electrical outlet, commonly known as the “AC power source”•	

A so-called •	 SMPS unit, commonly known as the “DC power source” 

A rechargeable battery•	

A switch mode power supply (SMPS) unit rectifies and filters the AC mains input so 
as to obtain DC voltage, which is then switched on and off at a high frequency—speed in 
the order of hundreds of KHz to 1 MHz. 

The high-frequency switching enables the use of inexpensive and lightweight 
transformers, inductors, and capacitors circuitry for a subsequent voltage step-down, 
rectification, and filtering to output a clean and stable DC power supply. Typically, an 
SMPS is used as a computer power supply.

For mobile usage, rechargeable batteries supply energy to an increasing number 
of electronic devices, including almost all multimedia devices and platforms. However, 
because of the change in internal resistance during charging and discharging, 
rechargeable batteries degrade over time. The lifetime of a rechargeable battery, aka  
“the battery life,” depends on the number of cycles of charge/discharge, until eventually 
the battery can no longer hold an effective charge. 

Batteries are rated in watt-hours (or ampere-hours multiplied by the voltage). 
Measuring system power consumption in watts gives a good idea of how many hours 
a battery will work before needing a recharge. This measure of battery life is usually 
important to consumers of today’s electronic devices.

Media Workloads on Consumer Platforms
One of the main goals in designing a typical consumer electronic device or platform is to 
make it as user-friendly as possible. This implies that an important design consideration 
is how such devices are to be used. Nowadays, rapid integration of multimedia 
functionalities in modern mobile devices has become commonplace.

For example, a smartphone is expected to work not only as a wireless phone and a 
communication device but also should accommodate applications such as calendars, 
clocks, and calculators, combining to function as a productivity device. It should also serve 
as a navigation device with a compass, a GPS, and maps; and it should function as an 
entertainment device, with games and multimedia applications. In addition to these usages, 
as an educational platform the device is used for digital storytelling or a virtual classroom. 



Chapter 6 ■ power Consumption by Video appliCations 

212

Human interaction with these devices calls for high-resolution cameras, high-speed 
wireless connection to the Internet, and voice, touch, and gesture input. On the output 
side, high-fidelity speakers, high-resolution displays, fast processing, and low power 
consumption are common expectations.

However, supporting multiple high-end functionalities often conflicts with the need 
to save power. Increases in battery capacity only partially address the problem, as that 
increase is not sufficient to keep up with the expansion of multimedia integration and 
enhanced user experience. Analyzing and understanding the nature of these multimedia 
workloads will help toward achieving the performance and power optimizations within 
the constraints just mentioned. 

In popular consumer electronics press reviews, power data is often measured and 
analyzed using non-multimedia benchmark workloads, such as Kraken, Sunspider, and 
Octane Javascript benchmarks. Usually these benchmark applications focus on usage of 
the device as a computing platform, leaving unexamined the power consumption of the 
device’s other usages. Yet, often these other applications are not optimized for power, or 
may be optimized to achieve higher performance only on certain platforms and operating 
systems. This fails to recognize the impact of task migration and resource sharing between 
the processing units. With the increasing availability of integrated processor graphics 
platforms, it becomes necessary to include media usages and applications in such analyses. 

In the following section, we discuss some of the common media usages and 
applications.

Media Usages
Multimedia applications are characteristically power-hungry. With the demand for more 
and more features, requirements for power consumption are increasingly raised to higher 
levels. Moreover, some usages may need additional instances of an application, or more 
than one application running at a time. 

Mobile devices used as entertainment platforms have typically run two main types  
of applications: gaming and media. The 2D and 3D video games are the most popular,  
but many other media applications are also in demand on these devices. Among them, 
the following are notable:

Still image capture•	

Still image preview/view finder•	

Wireless display or Miracast: clone mode or extended mode•	

Browser-based video streaming•	

Video recording and dual video recording•	

Video playback•	

Audio playback•	

Internet browsing•	

Videophone and video chat•	

Video conferencing•	



Chapter 6 ■ power Consumption by Video appliCations 

213

Video transcoding•	

Video email and multimedia messaging•	

Video upload to Internet•	

Video editing•	

Augmented reality•	

Productivity applications•	

Most of these usages are implemented via special software applications, and some 
may benefit from hardware acceleration if supported by the platform. 

Intel processors are noteworthy for supporting such hardware acceleration through 
the integrated processor graphics, both serving as a general-purpose computing platform 
and fulfilling needs for special-purpose applications. The integration of graphics units 
into the central processor allows mobile devices to eliminate bigger video cards and 
customized video processors, thereby maintaining a small size suitable for mobile usage.

On many mobile devices, some combinations of multimedia applications are used 
simultaneously. For example, audio playback may continue when a user is browsing the 
Internet, or video playback may be complemented with simultaneous video recording. 
Some of these applications use common hardware blocks for the hardware acceleration 
of video codec and processing tasks; simultaneous operation of such hardware blocks is 
interesting from a system resource scheduling and utilization point of view. 

One example of such complex system behavior is multi-party video conferencing; 
another is video delivery over Miracast Wireless Display. Wi-Fi certified Miracast is 
an industry-standard solution for seamlessly displaying multimedia between devices, 
without needing cables or a network connection. It enables users to view pictures from a 
smartphone on a big screen television, or to watch live programs from a home cable box 
on a tablet. The ability to connect is within the device using Wi-Fi Direct, so separate  
Wi-Fi access is not necessary.1

Figure 6-1 shows a usage model of the Miracast application.

Figure 6-1. Video delivery over Miracast

1For details, see www.wi-fi.org/discover-wi-fi/wi-fi-certified-miracast.

http://www.wi-fi.org/discover-wi-fi/wi-fi-certified-miracast


Chapter 6 ■ power Consumption by Video appliCations 

214

To better understand the power consumption by video applications, let us analyze 
one of the multimedia usages in detail: video delivery over Miracast Wireless Display.2

Wireless Display (WiDi) is an Intel technology originally developed to achieve the 
same goals as Miracast. Now that Miracast has become the industry standard, it has been 
supported in Intel (R) Wireless Display (TM) since version 3.5. The goal of this application 
is to provide a premium-content capable wireless display solution that allows a PC user, 
or a handheld device user, to remotely display audiovisual content over a wireless link to 
a remote display. In other words, the notebook or smartphone receives a video from the 
Internet via the wireless local area network or captures a video using the local camera. 
The video is played on the device using a local playback application. A special firmware 
for Miracast Wireless Display then captures the screen of the device and performs 
hardware-accelerated video encoding so as to send the compressed bit stream via Wi-Fi 
data exchange technology to a Miracast adapter. The adapter performs a decoding of the 
bit stream to HDMI format and sends it to the display device through an HDMI cable 
connection. The end-to-end block diagram is shown in Figure 6-2.

WiDi/ SW Driver Audio Capture

H.264

HDCP
iGPU

Intel CPU

HDCP2 Firmware

PCH

AV Mux

Comms.

AV Demux

Comms.

HDCP2
Decrypt

Audio

H.264

HDCP2
Encrypt

WiDi Firmware

Access Protocol
Router

Wi-Fi

WLAN

Notebook PC Miracast WiDi

HDTV

Internet or
Home Network

Figure 6-2. Miracast Wireless Display end to-end block diagram

2For details, see www-ssl.intel.com/content/www/us/en/architecture-and-technology/
intel-wireless-display.html.

http://www-ssl.intel.com/content/www/us/en/architecture-and-technology/intel-wireless-display.html
http://www-ssl.intel.com/content/www/us/en/architecture-and-technology/intel-wireless-display.html


Chapter 6 ■ power Consumption by Video appliCations 

215

In Figure 6-2, the major power-consuming hardware modules are the CPU, the PCH, 
the video codec in the integrated GPU, the hardware-accelerated content protection 
module, the memory, the local display of the notebook, and the remote HDTV display. 
The Miracast Wireless Display adapter mainly runs the wireless display firmware and 
consumes a smaller amount of power. The typical distribution of power consumption in 
this example is shown in Figure 6-3.

Figure 6-3. Typical distribution of power consumption by components in a Miracast Wireless  
Display application

As can be seen in Figure 6-3, usually the bulk of the power is consumed by the 
display, which in this example consumes about 1.5 times as much power as the 
processor. The Miracast adapter itself consumes a moderate amount—in this example, 
approximately 9 percent of the total power consumed by the application. Due to the 
complex nature of this application, a careful balance should be maintained between 
performance needs and power consumption, so that the appropriate optimizations and 
tradeoffs can be made so as to obtain a satisfactory user experience. 

Another common multimedia application is video playback along with associated 
audio. A detailed analysis of this application is provided in Agrawal et al.3 Here, we just 
note that by performing hardware acceleration of the media playback, the overall power 
consumption is reduced from ~20W to ~5W, while the power consumption profile is also 
changed significantly. Various tasks within the media playback pipeline get a performance 
boost from hardware acceleration, as these are offloaded from the CPU to the special-
purpose fixed-function hardware with better power-performance characteristics.

Analysis of these applications enables identification of the modules that are prime 
candidates for power optimization. For example, some power optimization can be achieved 
by migrating tasks like color-space conversion from the display unit to the GPU. Some 
Intel platforms are capable of such features, achieving a high level of power optimization. 
Various power optimization techniques are discussed in detail later in this chapter.

3A. Agrawal, T. Huff, S. Potluri, W. Cheung, A. Thakur, J. Holland, and V. Degalahal, “Power Efficient 
Multimedia Playback on Mobile Platform,” Intel Technology Journal 15, no. 2 (2011): 82–100.



Chapter 6 ■ power Consumption by Video appliCations 

216

Power-Aware Designs
Power consumption is a function of both hardware and software efficiency. Therefore, 
performance gains or power savings increasingly depend on improving that efficiency. 
This is done typically in terms of performance per watt, which eventually translates to 
performance per dollar. Performance per watt is the quantity of computation that can be 
delivered by a computing system for every watt of power consumed. Today’s platforms 
aim to achieve high scores in this measure by incorporating “power awareness” in the 
design process, as significant consideration is given to the cost of energy in computing 
environments. 

In power-aware designs, typically the power savings are achieved by employing 
a divide-and-conquer policy: the system is divided into several independent power 
domains, and only the active domains are supplied with power. Depending on the active 
state of each domain, intelligent management of power achieves the optimum power 
solutions. Also, optimization within each domain is done with a view to gaining an edge 
in power saving and value proposition of a system. 

Power awareness is important not only in the hardware design but also in the 
applications, so as to maximize the performance per dollar. Toward this end, most 
operating systems provide power-management features. As applications know the 
utilization pattern of various hardware resources and tasks, better power management can 
be achieved if the applications can provide appropriate “hints” to the power-management 
units. Furthermore, power awareness of those applications can yield software-level 
optimizations, such as context-aware power optimizations, complexity reduction, and 
memory transfer reduction. These techniques are discussed later in the chapter in regard 
to power optimization.

Power-Management Considerations
The goal of power management in both computers and computer peripherals, such as 
monitors and printers, is to turn off the power or switch the system to a low-power state 
when it is inactive. Power management in computing platforms provides many benefits, 
including increased battery life, lower heat emission, lower carbon footprint, and 
prolonged life of devices such as display panels and hard disk drivers.4 

Power management happens on various constituent hardware devices that may be 
available in a computer system (aka “the system”); among them are the BIOS, central 
processing unit (CPU), hard disk drive (HDD), graphics controller, universal serial bus 
(USB), network, and display. It is also possible to monitor and manage the power use  
to various parts of memory, such as dynamic random access memory (DRAM) and  
non-volatile flash memory, but this is more complex and less common. Some examples 
of power management are listed in Table 6-2; some of these are discussed in subsequent 
sections of this chapter.

4M. Vats and I. Verma, Linux Power Management: IEGD Considerations (Intel Corporation, 2010).  
Available at www.intel.com/content/dam/www/public/us/en/documents/white-papers/linux- 
power-mgmt-paper.pdf.

http://wwww.intel.com/content/dam/www/public/us/en/documents/white-papers/linux-%0apower-mgmt-paper.pdf
http://wwww.intel.com/content/dam/www/public/us/en/documents/white-papers/linux-%0apower-mgmt-paper.pdf


Chapter 6 ■ power Consumption by Video appliCations 

217

There may be special power-management hardware or software available. Typically, 
hardware power management in the processor involves management of various CPU 
states (aka C-states), such as the core C-states, the module C-states, the package C-states, 
and so on. (Details of the C-states are described in the next section.) On the other hand, 
software power management in the operating system or in the driver involves tasks like 
CPU core offline, CPU core shielding, CPU load balancing, interrupt load balancing, CPU 
frequency governing etc. With the introduction of the integrated graphics processing 
units (iGPU), primarily in Intel platforms, various GPU states are also important 
considerations for power management.

ACPI and Power Management
The Advanced Configuration and Power Interface (ACPI) specification is an open 
standard adopted in the industry for system-level configuration and management of I/O 
devices and resources by the operating system, including power management. Originally 
proposed by Intel, Microsoft, and Toshiba in 1996, the specification effort was later joined 
by HP and Phoenix. The latest ACPI specification version 5 was published in 2011. 

With wider adoption in the industry, it became necessary to support many operating 
systems and processor architectures. Toward this end, in 2013, the standards body agreed 
to merge future developments with the Unified Extensible Firmware Interface (UEFI) 
forum, which is an alliance of leading technology companies, including the original ACPI 
participants and major industry players like AMD, Apple, Dell, IBM, and Lenovo. All 
recent computers and portable computing devices have ACPI support.

Table 6-2. Power Management Features

Device/ Component Power Management Features

BIOS CPU settings (e.g., CPU states enabled, CPU fan throttling), 
platform settings (e.g., thermal high/low watermarks, chassis 
fan throttling, etc.)

CPU HLT (halt instruction in x86 for CPU to halt until next external 
interrupt is fired), Stop clock, Intel SpeedStep (aka dynamic 
frequency scaling)

Display Blanking, dimming, power saver mode, efficient energy use 
as specified in the Energy Star international standard

Graphics Controller Power down to intermediate state, power shutoff

Hard drive/ CD-ROM Spin down

Network/ NIC Wake on LAN

USB Power state transition of devices such as mouse,  
USB drives, etc.; wake on access (e.g., mouse movement)



Chapter 6 ■ power Consumption by Video appliCations 

218

ACPI Power States
To the user, a computer system appears as either ON or OFF. However, the system may 
support multiple power states, as defined in the ACPI specification. ACPI compliance 
indicates that the system supports the defined power management states, but such 
compliance does not promise the most power-efficient design. In addition, a system can 
have power-management features and tuning capabilities without being ACPI compliant.

According to the ACPI specification, the devices of a computer system are exposed 
to the operating system in a consistent manner. As such, for system-level power 
management, the ACPI defines power draw states for the individual devices (known as 
the device states), as well as the overall computer system (known as the global states or 
the system sleep states). The operating system and the devices can query and set these 
states. Important system buses such as the peripheral component interconnect (PCI) bus, 
may take advantage of these states.

Global States

The ACPI specification defines four possible global “Gx” states and six possible sleep “Sx” 
states for an ACPI-compliant computer-system (Table 6-3). However, some systems or 
devices may not be capable of all states.

Table 6-3. ACPI Global States

State Gx Sx Description

Active G0 S0 The system is fully usable. CPUs are active. Devices may 
or may not be active, and can possibly enter a lower power 
state. There is a subset of S0, called “Away mode,” where 
monitor is off, but background tasks are running.

Sleep G1 S1 The system appears to be off. Power consumption is 
reduced. All the processor caches are flushed, and the 
CPU(s) stops executing instructions. The power to the 
CPU(s) and RAM is maintained. Nonessential devices may 
be powered off. This state is rarely used.

S2 The system appears to be off. CPU is powered off. Dirty 
cache is flushed to RAM. Similar to S1, the S2 state is also 
rarely used.

S3 Commonly known as standby, sleep, or Suspend-to-RAM 
(STR). The system appears to be off. System context is 
maintained on the system DRAM. All power is shut to the 
noncritical circuits, but RAM power is retained. Transition 
to S0 takes longer than S2 and S1, respectively.

(contiuned)



Chapter 6 ■ power Consumption by Video appliCations 

219

State Gx Sx Description

Hibernation S4 Known as hibernation or Suspend-to-Disk (STD). The 
system appears to be off. Power consumption is reduced 
to the lowest level. System context is maintained on the 
disk, preserving the state of the OS, applications, and open 
documents. Contents of the main memory are saved to 
non-volatile memory such as a hard drive, and the system is 
powered down, except for the logic to resume.

Soft Off G2 S5 The system appears to be off. System context is not 
maintained. Some components may remain powered, so 
the computer can wake from input from a keyboard, mouse, 
LAN, or USB device. The working context can be restored if it 
is stored on nonvolatile memory. All power is shut, except for 
the logic required to restart. Full boot is required to restart.

Mechanical 
Off

G3 The system is completely off and consumes no power. A full 
reboot is required for the system to return to the active state.

Table 6-3. (contiuned)

Device States

The power capabilities of all device hardware are not the same. For example, the 
LAN adapters will have the capability to wake the system; the audio hardware might 
permit streaming while the system is in standby mode, and so on. Some devices can be 
subdivided into functional units with independent power control. Furthermore, some 
devices, such as the keyboard, mice, modems, and LAN adapters, have the capability 
to wake up the system from a sleep state, while the devices are asleep themselves. Such 
capability is possible by the fact that the hardware for these devices must draw a small 
seeping current and be equipped to detect the external wake event. 

The ACPI specification defines the device-dependent D-states as shown in Table 6-4.

Table 6-4. Device States

Dx Subset of Dx Description

D0 Fully ON and operating.

D1-D2 Intermediate power states. Definition varies by device.

D3 Hot Device is off and unresponsive to bus, but the system 
is ON. Device is still connected to power. D3 Hot has 
auxiliary power enabling a higher power state. A transition 
from D0 to D3 implies D3 Hot.

Cold No power to the device—both the device and system are 
OFF. It is possible for the device to consume trickle power, 
but a wake event is needed to move the device and the 
system back to D0 and/or S0 states.



Chapter 6 ■ power Consumption by Video appliCations 

220

The ACPI defines the states D0 through D3, and provides a subdivision of D3 into D3 
hot and D3 cold. Some devices or operating systems don’t distinguish between D3 hot 
and cold, and treats D3 as having no power to the device. However, Windows 8 explicitly 
tracks D3 hot and D3 cold. The D1 and D2 states are optional, but if they are used 
properly, they would provide better cleanliness when the device is idle. 

Power Management by the Operating System
Modern operating systems customarily offer many power management features. Linux, 
Windows, OS X, and Android all support more intelligent power management using the 
newer ACPI standard, rather than the old BIOS controlled Advanced Power Management 
(APM). However, all major operating systems have been providing stable support for 
basic power-management features such as notification of power events to the user 
space—for example, battery status indication, suspend the CPU when idle, and so on.

In the following sections, we discuss power management by the Linux and 
the Windows operating systems. In the context of Linux power management, three 
important components are mentioned: the X Window, the Window Manager, and the 
Intel Embedded Graphics Driver (IEGD). The Windows power management discourse 
includes the Windows power requirements, power policy, the Windows driver model, 
and the Windows driver framework. There’s also a brief description of device power 
management under Windows 8, followed by a discussion on how to deal with power 
requests.

Linux Power Management
Linux supports both the older APM and the newer ACPI power management 
implementations. APM focuses on basic system and OS power management, with much 
of the power-management policy controlled at the BIOS level; whereas an APM driver 
acts as an interface between the BIOS and the Linux OS, as power-management events 
pass between the BIOS and OS. Devices are notified of these events so they can respond 
appropriately. 

The ACPI provides greater flexibility in power management and platform 
configuration, and allows for platform independence and OS control over power-
management events. In addition to the power-management policies, ACPI supports 
policies for responding to thermal events (e.g., fans), physical movement events (e.g., 
buttons or lids), CPU states, power source (e.g., battery, AC power supply), and the like.

Power-management software manages state transitions along with device drivers 
and applications. Device drivers are responsible for saving device states before putting 
them into their low-power states and then restoring the device state when the system 
becomes active. Generally, applications are not involved in power-management state 
transitions. A few specialized softwares, such as the IEGD for Linux, deal directly with 
some devices in order to handle state transitions. Besides the IEGD, there are a few 
common software technologies in Linux, including the X Window system, the Window 
managers, and several open-source processes such as /sys/power/state and  
/proc/acpi/event, which also provide some part of Linux power management.



Chapter 6 ■ power Consumption by Video appliCations 

221

The X Window

The X Window system is supported by many operating systems, including Linux, Solaris, 
and HP-UX. It provides graphics capabilities to the OS and supports user-level, system-
level, and/or critical standby, suspend, and resume. In the APM implementation, the 
X-server controls the power-management events. In ACPI implementation, the X Window 
system handles the graphics messages as a user process, but the system-wide power-
management events like suspend/resume are handled by a kernel mode driver.

Window Managers

Window managers on Linux are user-level processes that provide the graphical user 
interface and also deliver reliable power management of the operating system. Among 
the many supported windows managers in Linux are two popular window managers, 
GNOME and KDE. In GNOME, power management uses the hardware abstraction layer 
(HAL) and involves open-source platform power management built on an open-source 
messaging interface called DBUS, while KDE3 provides a proprietary power-management 
solution named KPowersave. 

Intel Embedded Graphics Driver 

In the Intel Embedded Graphics Driver (IEGD) power management, a kernel mode 
driver helps the Linux kernel manage the power. It is also responsible for graphics device 
initialization and resource allocation. In order for you to clearly understand the flow of a 
power event, here are the main parts of the Suspend to RAM example.5 

The Suspend to RAM starts when a power-management event occurs in the platform, 
such as when a button is pressed or a window manager option is triggered, and the 
operating system is notified of the event. Usually the Linux operating system employs a 
protocol to communicate an event between a software component and the Linux kernel. 
Using such protocols, the OS (typically via the Window manager) commands the kernel 
to go to a lower power state, at which point the Linux kernel starts the suspend procedure 
by notifying the X-Server driver.

The X display must switch to console mode before going into a lower power state. 
With ACPI implemented in the Linux kernel, this switch happens by the X-Server 
driver’s calling the Leave virtual terminal function, when the IEGD process saves the 
graphics state and registers information. The Linux kernel then freezes all user processes, 
including the X Window process. Now the kernel is ready to check which devices are 
ready for the suspend operation, and it calls the suspend function of each device driver  
(if implemented) in order to put the device clocks to D3 mode--effectively putting all 
devices into a lower power state. At this point only the Linux kernel code is running, 
which freezes all other active processors except the one where the code is running.

5Ibid.



Chapter 6 ■ power Consumption by Video appliCations 

222

Following execution of the kernel-side suspend code, two ACPI methods--namely, 
PTS (Prepare-to-Sleep) and GTS (Going-to-Sleep) are executed, the results of which may 
not be apparent to the Linux kernel. However, before actually going to sleep, the kernel 
writes the address of the kernel wakeup code to a location in the Fixed ACPI Description 
Table (FADT). This enables the kernel to properly wake up upon receiving the restore 
command.

The restore command usually results from a user event, such as a keystroke, mouse 
movement, or pressing the power button, which turns the system on. Once on, the system 
jumps to the BIOS start address, performs housekeeping tasks such as setting up the 
memory controller, and then scans the ACPI status register to get the indication to RAM 
that the system was previously suspended. If video repost is supported, during resume 
operation the BIOS also calls this function to re-execute the video BIOS (vBIOS) code, 
thereby providing a full restart of the vBIOS. 

The system then jumps to the address programmed earlier, as indicated by the ACPI 
register’s status and the FADT. The wakeup address leads to the kernel code execution, 
putting the CPU back into protected mode and restoring the register states. From this 
point, the rest of the wakeup process traverses the reverse path of the suspend process. 
The ACPI WAK method is called, all the drivers are resumed, and user space is restarted. 
If running, the X-server driver calls the Enter virtual terminal function, and the IEGD 
restores the graphics device state and register information. After saving the console mode, 
the X-server driver re-enters the GUI, thereby completing a successful wakeup.

Windows Power Management
Power management in the Windows operating system, particularly Windows 8, has 
significant improvements in this area compared to previous Windows versions.

Power Requirements

In versions earlier than Windows 8, the power requirements involved supporting the 
common ACPI states, such as the S3 and S4 states, mainly on mobile personal computer 
platforms. However, Windows 8 aimed to standardize on a single power requirement 
model across all platforms including desktop, server, mobile laptops, tablets, and phones. 
While one of the goals was to improve the battery life of portable platforms, Windows 
8 applies the smartphone power model to all platforms for quick standby-to-ready 
transitions, and ensures that the hidden applications consume minimal or no resources. 

To this end, Windows 8 defines the requirements listed in Table 6-5.6

6J. Lozano, Windows 8 Power Management. (StarJourney Training and Seminars, 2013.)



Chapter 6 ■ power Consumption by Video appliCations 

223

Power Policy

Power policies (also known as power plans or power schemes) are preferences defined by the 
operating system for the choice of system and BIOS settings that affect energy consumption. 
For each power policy, two different settings are usually set by the operating system 
by default, one with battery power supply, the other with AC power supply. In order to 
preserve battery as much as possible, the settings with the battery power supply are geared 
toward saving power more aggressively. Windows defines three power policies, by default:

•	 Performance mode: In performance mode, the system attempts to 
deliver maximum performance without regard to power consumption.

•	 Balanced mode: In this mode, the operating system attempts to 
reach a balance between performance and power.

•	 Power saver mode: In this mode, the operating system attempts 
to save maximum power in order to preserve battery life, even 
sacrificing some performance.

Table 6-5. Windows 8 Power Requirements

Requirement Type Requirements

System  
Power  
Requirements

1. Maximum battery life should be achieved with minimum 
energy consumption.

2. The delay for startup and shutdown should be minimal.

3. Power decisions should be intelligently made—for example, a 
device that is not in a best position to change the system power 
state should not do so.

4. Capabilities should be available to adjust fans or driver motors 
on-demand for quiet operation.

5. All requirements should be met in a platform independent 
manner.

Device  
Power  
Requirements

6. Devices, especially for portable systems, must be extremely 
power conscious.

7. Devices should be aggressive in power savings:

a. Should provide just-in-time capabilities.

b. Low transition latency to higher states.

c. When possible, the device logic should be partitioned into 
separate power buses so that portions of a device can be 
turned off as needed.

d. Should support connected standby as appropriate for quick 
connection.

Windows  
Hardware  
Certification  
Requirements

8. The Windows HCK tests require that all devices must support 
S3 and S4 without refusing system sleep request.

9. Standby and connected standby must last for days.

10. Device must queue up and not lose the I/O request while in 
D1-D3 states.



Chapter 6 ■ power Consumption by Video appliCations 

224

Users may create or modify the default plans but the power policies are protected by 
the access control list. Systems administrators may override a user’s selection of power 
policies. On Windows, a user may use an applet called “powercfg.cpl” to view and edit 
a power policy. A console version of the applet, called “powercfg.exe,” is also available, 
which permits changing the access control list permissions.

Application software can obtain a notification of the power policy by registering for 
the power plan and can use power policies in various ways:

Tune the application behavior based on the user’s current  •	
power policy.

Modify the application behavior in response to a change in  •	
power policy.

Move to a different power policy as required by the application.•	

The Windows Driver Model 

In the Windows Drive Model (WDM), the operating system sends requests to the drivers 
to order the devices to a higher or lower power state. Upon receiving such requests, a 
driver only saves or restores the state, keeping track of the current and next power states 
of the device, while a structure called Physical Device Object (PDO) performs the work of 
actually increasing or lowering the power to the device. 

However, this arrangement is problematic, as the model requires the drivers 
to implement a state machine to handle the power IRPs (I/O request packets), and 
may result in unwanted complexity due to the time needed to perform a power state 
transition. For example, for a power down request, the driver saves the state of the device 
in memory, and then passes the request down to the PDO, which subsequently removes 
power from the device; only then can it mark the request as completed. However, during a 
power up request that may follow, the driver must first pass the request to the PDO, which 
then restores the power before restoring the device state, and informs the driver to mark 
the request as completed. To overcome this difficulty, the Windows driver framework 
(WDF) was proposed. 

The Windows Driver Framework 

In order to simplify power management within a driver, Windows introduced the concept 
of events in the latest Windows Driver Framework (WDF) driver model. In this model, 
there are optional event handler functions in the driver, whereby the framework calls the 
event handlers at the appropriate time to handle a power transition, thereby eliminating 
the need for a complex state machine.

Windows 8 offers a new, more granular way to address the power needs of functions 
on multifunction devices in the form of a power framework called PoFx. Additionally, 
it introduces the concept of connected standby, allowing a powered-off device to 
occasionally connect to outside world and refresh state or data for various applications. 
The primary benefit is a quick recovery from standby state to ON state, as if the system 
had been awake the whole time. At the same time, the power cost is low enough to allow 
the system to be in standby state for days.



Chapter 6 ■ power Consumption by Video appliCations 

225

Device Power Management in Windows 8

In Windows 8, in response to a query from the plug-and-play (PnP) manager, the  
device drivers announce their device’s power capabilities. A data structure called 
DEVICE_CAPABILITIES is programmed by the driver, indicating the information as shown 
in Table 6-6.

Table 6-6. Device Capabilities Structure

Field Function

Device D1 and D2 Indicates whether the device supports D1, or D2, or both.

Wake from Dx Indicates whether the device supports waking from a Dx state.

Device state Defines the Dx state corresponding to each Sx state.

DxLatency Nominal transition time to D0.

There is latency for the devices when moving from Dx to D0, as the devices require 
a small period of time before they can become operational again. The latency is longer 
for the higher Dx states, so that a transition from D3 to D0 would take the longest time. 
Furthermore, a device needs to be operational before it can respond to new requests—for 
example, a hard disk must spin up before it can be slowed down again. The latency is 
announced by the driver via the DEVICE_CAPABILITIES data structure.

Note ■  a device state transition may not be worthwhile if sufficient time is not spent in 
the lower power state, as it is possible that the transition itself would consume more power 
than when the device had been left in a particular state.

In order to manage the device power, the Windows Power Manager needs to know 
the transition latency of each device, which can vary for different invocations even for the 
same device. Therefore, only a nominal value is indicated by the driver. The Windows OS 
controls the time gap between a query and a set power request, during which time the 
device sleeps. A high value for this time gap would increase the sleep time, while a low 
value would cause the OS to give up on powering down the device.

Dealing with Power Requests

There are kernel mode data structures called I/O request packets (IRPs) that are used by 
the Windows Driver Model (WDM) and the Windows NT device drivers to communicate 
with the operating system and between each other. IRPs are typically created by the I/O 
Manager in response to I/O requests from the user mode. In Windows 2000, two new 
managers were added: the plug-and-play (PnP) and Power manager, which also create 
IRPs. Furthermore, IRPs can be created by drivers and then passed to other drivers.



Chapter 6 ■ power Consumption by Video appliCations 

226

In Windows 8, the Power Manager sends requests--that is, the power IRPs--to the 
device drivers, ordering them to change the power state of the relevant devices. Power 
IRPs use the major IRP data structure IRP_MJ_POWER, with the following four possible 
minor codes:

•	 IRP_MN_QUERY_POWER: A query to determine the capability of 
the device to safely enter a new requested Dx or Sx state, or a 
shutdown or restart of the device. If the device is capable of the 
transition at a given time, the driver should queue any further 
request that is contrary to the transition before announcing the 
capability, as a SET request typically follows a QUERY request.

•	 IRP_MN_SET_POWER: An order to move the device to a new Dx state 
or respond to a new Sx state. Generally, device drivers carry out a 
SET request without fail; the exception is bus drivers such as USB 
drivers, which may return a failure if the device is in the process 
of being removed. Drivers serve a SET request by requesting 
appropriate change to the device power state, saving context 
when moving to a lower power state, and restoring context when 
transitioning to a higher power state.

•	 IRP_MN_WAIT_WAKE: A request to the device driver to enable the 
device hardware so that an external wake event can awaken the 
entire system. One such request may be kept in a pending state at 
any given time until the external event occurs; upon occurrence 
of the event, the driver returns a success. If the device can no 
longer wake the system, the driver returns a failure and the Power 
Manager cancels the request.

•	 IRP_MN_POWER_SEQUENCE: A query for the D1-D3 counters--that is, 
the number of times the device has actually been in a lower power 
state. The difference between the count before and the count after 
a sleep request would tell the Power Manager whether the device 
did get a chance to go to a lower power state, or if it was prohibited 
by a long latency, so that the Power Manager can take appropriate 
action and possibly not issue a sleep request for the device.

For driver developers, one of the difficulties in calling the various power IRPs is 
determining when to call them. The Kernel Mode Driver Framework (KMDF) in Windows 
8 implements numerous state machines and event handlers, including those for power 
management. It simplifies the task of power management by calling the event handlers 
at the appropriate time. Typical power event handlers include: D0 entry, D0 exit, device 
power state change, device arm wake from S0/Sx, and device power policy state change.

Power Management by the Processor
For fine-grained power management, modern Intel processors support several partitions 
of voltage islands created through on-die power switches. The Intel Smart Power 
Technology (Intel SPT) and Intel Smart Idle Technology (Intel SIT) software determine 



Chapter 6 ■ power Consumption by Video appliCations 

227

the most power efficient state for the platform, and provide guidance to turn ON or OFF 
different voltage islands on the processor at any given time. Upon receiving a direction 
to go into a lower power state, the processor waits for all partitions with shared voltage to 
reach a safe point before making the requested state change.

CPU States (C-states)
The CPU is not always active. Some applications need inputs from the system or the user, 
during which the CPU gets an opportunity to wait and become idle. While the CPU is idle 
or running low-intensity applications, it is not necessary to keep all the cores of the CPU 
powered up. The CPU operating states (C-states) are the capability of an idle processor to 
turn off unused components to save power. 

For multi-core processors, the C-states can be applied at a package level or at a core 
level. For example, when a single threaded application is run on a quad-core processor, 
only one core is busy and the other three cores can be in low-power, deeper C-states. When 
the task is completed, no core is busy and the entire package can enter a low-power state.

The ACPI specification defines several low-power idle states for the processor 
core. When a processor runs in the C0 state, it is working. A processor running in any 
other C-state is idle. Higher C-state numbers represent deeper CPU sleep states. At 
numerically higher C-states, more power-saving actions, such as stopping the processor 
clock, stopping interrupts, and so on, are taken. However, higher C-states also have the 
disadvantage of longer exit and entry latencies, resulting in slower wakeup times. For 
a deeper understanding, see the brief descriptions of various C-states of an Intel Atom 
processor, given in Table 6-7.

Table 6-7. Cx State Definitions, Intel Atom Processor Z2760

State Function Description

C0 Full ON This is the only state that runs software. All clocks are 
running and the processor core is active. The processor can 
service snoops and maintain cache coherency in this state. 
All power management for interfaces, clock gating, etc.,  
are controlled at the unit level.

C1 Auto Halt The first level of power reduction occurs when the core 
processor executes an Auto-Halt instruction. This stops the 
execution of the instruction stream and greatly reduces the 
core processor’s power consumption. The core processor 
can service snoops and maintain cache coherency in 
this state. The processor’s North Complex logic does not 
explicitly distinguish C1 from C0.

(continued)



Chapter 6 ■ power Consumption by Video appliCations 

228

Table 6-7. (continued)

State Function Description

C2 Stop Grant The next level of power reduction occurs when the core 
processor is placed into the Stop Grant state. The core 
processor can service snoops and maintain cache coherency 
in this state. The North Complex only supports receiving a 
single Stop Grant.

Entry into the C2 state will occur after the core 
processor requests C2 (or deeper). Upon detection of a 
break event, C2 state will be exited, entering the C0 state. 
Processor must ensure that the PLLs are awake and the 
memory will be out of self-refresh at this point.

C4 Deeper Sleep In this state, the core processor shuts down its PLL and 
cannot handle snoop requests. The core processor voltage 
regulator is also told to reduce the processor’s voltage. 
During the C4 state, the North Complex continues to handle 
traffic to memory so long as this traffic does not require a 
snoop (i.e., no coherent traffic requests are serviced).

The C4 state is entered by receiving a C4 request from 
the core processor/OS. The exit from C4 occurs when the 
North Complex detects a snoop-able event or a break event, 
which would cause it to wake up the core processor and 
initiate the sequence to return to the C0 state.

C6 Deep Power 
Down

Prior to entering the C6 state, the core processor flushes its 
cache and saves its core context to a special on-die SRAM 
on a different power plane. Once the C6 entry sequence has 
completed, the core processor’s voltage can be completely 
shut off.

The key difference for the North Complex logic 
between the C4 state and the C6 state is that since the core 
processor’s cache is empty, there is no need to perform 
snoops on the internal front side bus (FSB). This means that 
bus master events (which would cause a popup from the 
C4 state to the C2 state) can be allowed to flow unhindered 
during the C6 state. However, the core processor must still 
be returned to the C0 state to service interrupts.

A residency counter is read by the core processor 
to enable an intelligent promotion/demotion based on 
energy awareness of transitions and history of residencies/
transitions.

Source: Data Sheet, Intel Corporation, October 2012. www.intel.com/content/dam/www/
public/us/en/documents/product-briefs/atom-z2760-datasheet.pdf.

http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/atom-z2760-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/atom-z2760-datasheet.pdf


Chapter 6 ■ power Consumption by Video appliCations 

229

Performance States (P-states)
Processor designers have realized that running the CPU at a fixed frequency and voltage 
setting is not efficient for all applications; in fact, some applications do not need to run at 
the operating point defined by the highest rated frequency and voltage settings. For such 
applications there is a power-saving opportunity by moving to a lower operating point. 

Processor performance states (P-states) are the capability of a processor to 
switch between different supported operating frequencies and voltages to modulate 
power consumption. The ACPI defines several processor-specific P-states for power 
management, in order to configure the system to react to system workloads in a power-
efficient manner. Numerically higher P-states represent slower processor speeds, as well 
as lower power consumption. For example, a processor in P3 state will run more slowly 
and use less power than a processor running at P1 state. 

While a device or processor is in operation and not idling (D0 and C0, respectively), 
it can be in one of several P-states. P0 is always the highest-performance state, while P1 
to Pn are successively lower-performance states, where n can be up to 16 depending on 
implementation. 

P-states are used on the principles of dynamic voltage or frequency scaling, and are 
available in the market as the SpeedStep for Intel processors, the PowerNow! for AMD 
processors, and the PowerSaver for VIA processors.

P-states differ from C-states in that C-states are idle states, while P-states are 
operational states. This means that with the exception of C0, where the CPU is active and 
busy doing something, a C-state is an idle state; and shutting down the CPU in the higher 
C-states makes sense, since the CPU is not doing anything. On the other hand, P-states 
are operational states, meaning that the CPU can be doing useful work in any P-state. 
C-states and P-states are also orthogonal—that is, each state can vary independently of 
the other. When the system resumes C0, it returns to the operating frequency and voltage 
defined by that P-state. 

Although P-states are related to the CPU clock frequency, they are not the same. The 
CPU clock frequency is a measure of how fast the CPU’s main clock signal goes up or 
down, which may be a measure of performance, as higher performance would generally 
mean using a higher clock frequency (except for memory-bound tasks). However, this is 
backward looking, as you can measure the average clock frequency only after some clock 
cycles have passed. On the other hand, P-state is a performance state the OS would like to 
see on a certain CPU, so P-states are forward looking. Generally, higher clock frequency 
results in higher power consumption.

When a CPU is idle (i.e., at higher C-states), the frequency should be zero (or very 
low) regardless of the P-state the OS requests. However, note that all the cores on a 
current-generation CPU package share the same voltage, for practical reasons. Since it 
is not efficient to run different cores at different frequencies while maintaining the same 
voltage, all active cores will share the same clock frequency at any given time. However, 
some of the cores may be idle and should have zero frequency. As the OS requests a 
certain P-state for a logical processor, it is only possible to keep a core at zero frequency 
when none of the cores is busy and all cores are kept at the same zero frequency. 

While using a global voltage supply for all the cores leads to the situation where 
certain P-state requests cannot be met, separate local voltage supplies for each core 
would be cost-prohibitive. A tradeoff concerning global- and local-voltage platforms is 
to adopt multi-core architecture with different voltage islands, in which several cores 



Chapter 6 ■ power Consumption by Video appliCations 

230

on a voltage island share the same but adjustable supply voltage. An example of this is 
available in Intel’s many-core platform called the single-chip cloud computer. Another 
example is the use of a fully integrated voltage regulator (FIVR), available in some 
processors, that allows per core P-states so that cores can be operated at frequencies 
independent of each other.

Just as the integrated GPUs behave similarly to the CPU, C-states and P-states  
have been defined for the GPU like the CPU C-states and P-states. These are known as  
render C-states (RC-states) and render P-states (RP-states).

Turbo
It is possible to over-clock a CPU, which means running a core at a higher frequency 
than that specified by the manufacturer. In practice, this behavior is possible due to the 
existence of multiple cores and the so-called turbo feature resulting from the power 
budget. Turbo is a unique case in which the frequency and voltage are increased, so 
the turbo state functions as an opposite to the various P-states, where voltage and 
frequency are decreased. The CPU enters turbo state while operating below certain 
parameter specifications, which allows it some headroom to boost the performance 
without infringing on other design specifications. The parameters include the number 
of active cores, processor temperature, and estimated current and power consumption. 
If a processor operates below the limit of such parameters and the workload demands 
additional performance, the processor frequency will automatically dynamically 
increase until an upper limit is reached. In turbo state, complex algorithms concurrently 
manage the current, the power, and the temperature with a view toward maximize the 
performance and the power efficiency.

To better understand a turbo scenario, let us consider an example. Suppose a quad-core 
CPU has a TDP limit of 35W, so that each core has a maximum of 8.75W power budget. 
If three of the four cores are idle, the only operational core can utilize the whole 35W of the 
power budget and can “turbo” up to a much higher frequency than would be possible with 
a less than 9W power budget. Similarly, if two cores are active, they use the same higher 
frequency and share the power budget while the idle cores do not consume any energy. 

A maximum turbo frequency is the highest possible frequency achievable when 
conditions allow the processor to enter turbo mode. The frequency of Intel Turbo Boost 
Technology varies depending on workload, hardware, software, and overall system 
configuration. A request for a P-state corresponding to a turbo-range frequency may or 
may not be possible to satisfy, owing to varying power characteristics. So a compromise 
is made because of many factors, such as what the other cores and the GPU are doing, 
what thermal state the processor is at, and so on. This behavior also varies over time. 
Therefore, as the operating frequency is time-varying and dependent on C-state selection 
policy and graphics subsystem, selecting a P-state value does not guarantee a particular 
performance state.

In general, the P1 state corresponds to the highest guaranteed performance state 
that can be requested by an OS. However, the OS can request an opportunistic state, 
namely P0, with higher performance. When the power and thermal budget are available, 
this state allows the processor configuration where one or more cores can operate at a 
higher frequency than the guaranteed P1 frequency. A processor can include multiple 
so-called turbo mode frequencies above the P1 frequency. 



Chapter 6 ■ power Consumption by Video appliCations 

231

Some processors expose a large turbo range and typically grant all cores the 
maximum possible turbo frequency when the cores seek to turbo. However, not all 
applications can effectively use increased core frequency to the same extent. Differences 
may arise from varying memory access patterns, from possible cache contention, 
or similar sources. So allowing all cores to be at a highest level of turbo mode can 
unnecessarily consume power. In order to combat such inefficiencies, techniques 
have been proposed to efficiently enable one or more cores to independently operate 
at a selected turbo mode frequency.7 One of the techniques periodically analyzes all 
cores granted turbo mode to determine whether their frequency should be increased, 
decreased, or left unchanged based on whether the core has been classified as stalled or 
not over the observation interval.

Thermal States (T-States)
In order to prevent potential damage from overheating, processors usually have thermal 
protection mechanisms, where, in an effort to decrease the energy dissipation, the 
processor throttles by turning the processor clocks off and then back on according to a 
pre-determined duty cycle. The thermal states, or T-states, are defined to control such 
throttling in order to reduce power, and they can be applied to individual processor cores. 
T-states may ignore performance impacts, as their primary reason is to reduce power for 
thermal reasons. There are eight T-states, from 0 to 7, while the active state is T

0
. These 

states are not commonly used for power management.

The Voltage-Frequency Curve
It is important to understand the relationship between voltage and frequency for processors, 
as both CPU and integrated GPU follow such relationship in order to scale. A P-state 
requested by the operating system is in fact a particular operating point on the V-F curve.

As can be seen in Figure 6-4, the voltage vs. frequency curve tends to have an 
inflection point, at which the voltage starts to scale with the frequency.

7 M. K. Bhandaru and E. J. Dehaemer, U. S. Patent No. US 20130346774, A1, 2013. Providing 
energy efficient turbo operation of a processor. Available at www.google.com/patents/
WO2013137859A1?cl=en.

http://www.google.com/patents/WO2013137859A1?cl=en
http://www.google.com/patents/WO2013137859A1?cl=en


Chapter 6 ■ power Consumption by Video appliCations 

232

Up to this point, a minimum voltage, V
min,

 is required to make the circuit operational 
regardless of the frequency change. The maximum frequency F

max
 at the minimum 

voltage V
min

 is the highest frequency at which the processor part can operate at V
min

. 
This is the point where power efficiency is the best, as we see from the power-frequency 
relationship shown in Figure 6-5. Increasing the frequency beyond F

max
 requires increased 

voltage supply for the circuit to be operational. At the voltage-scaling region, the required 
voltage scales are reasonably linear with frequency. This region offers power-reduction 
opportunities, as discussed later.

Figure 6-4. Voltage-frequency relationship of a typical processor

Figure 6-5. Power-frequency relationship and optimization opportunities

Figure 6-5 shows the power vs. frequency relationship and power optimization 
opportunities in a typical processor.

In the V
min

 region, power does not fall as fast as frequency; as dynamic power falls 
with frequency, the leakage power stays constant. On the other hand, in the voltage-scaling 
region, power increases much faster than frequency, as voltage scales are roughly linear 



Chapter 6 ■ power Consumption by Video appliCations 

233

with frequency; dynamic power goes up as V2f and leakage goes up roughly as V3. The 
leakage power depends only on the small amount of leakage current, and it follows almost 
the same pattern as the voltage curve with respect to frequency.

Power Optimizations
Let’s recall the power equation:

  Total power = leakage power + A C
dyn

 V2 f, (Equation 6-2)

Here, A is the activity, C
dyn

 is the dynamic capacitance, V is the voltage, and f is the 
operating frequency. From this equation it is easy to see that, in order to reduce power, 
the following approaches can be taken:

Reduce voltage and frequency•	

Reduce activity and •	 C
dyn

As voltage increases approximately linearly with frequency in the voltage-scaling 
region, the term V2f implies a cubic relationship for the power with respect to the 
frequency (see Figure 6-5). Therefore, reducing the voltage and/or the frequency results 
in a dramatic reduction in the power. The power that is conserved in such a manner can 
be given to other parts of the system so that the overall system operation can benefit.

However, the frequency reduction cannot help below F
max

 at V
min

 (below which 
voltage cannot be reduced, as there is a minimum voltage necessary for operation of the 
circuit). In the V

min
 region, the voltage stays constant, so reduction in frequency can yield 

very little power savings. At this point, only activity and C
dyn

 reduction can provide further 
power optimization. This calls for more efficient algorithms and micro-architecture 
design, as well as dynamically turning off unused portions of the circuit. 

The above power-reduction considerations have given birth to new ideas and 
approaches of power optimization, including various gating optimizations and use of 
special-purpose heterogeneous hardware components, such as the integration of a GPU 
capable of multimedia processing, camera image processing, and so on. Overall, it is 
not a hardware-only problem; it requires careful consideration at the software micro-
architecture level as well.

In general, good power optimization requires incorporation of many approaches, 
all working in harmony toward the goal of saving power and increasing battery life. From 
a systems engineering point of view, optimizations can be made in various individual 
power domains within the system by selectively turning off power to certain idle parts of 
the system. 

Power optimizations can be done at various levels of the system. Typically, power 
optimization is done at the following levels:

Architectural optimization•	

Algorithmic optimization•	

System integration optimization•	

Application level optimization•	



Chapter 6 ■ power Consumption by Video appliCations 

234

In general, power optimization combines all of these approaches. Architectural 
optimizations deal with the optimization opportunities at the processor hardware level 
and try to obtain a suitable hardware-software partitioning. Algorithmic optimizations 
look for power-saving opportunities in system and application algorithms. For example, 
above the hardware and hardware abstraction layer, the graphics execution stack includes 
hierarchical layers of the application, the middleware, the operating system, and the 
graphics driver. Opportunities to save power exist within each layer and are exploited 
using algorithmic optimization. 

Inter-layer optimization opportunities, however, are more complex and addresses 
inefficiencies by employing optimization at the system integration level. For example, 
efficiency can be improved by choosing to use fewer layers and by redefining the 
boundaries of the layers in order to find the most power-efficient places for the 
optimization. Furthermore, at the application level, load sharing between the CPU and 
the integrated GPU may be considered for reuse of power in one unit that is saved from 
the other, by running a task on the most power-efficient device. Discussions of these 
optimization techniques are follows in more detail. 

Architectural Optimization
The techniques for optimizing power efficiency at the processor architecture level include:

Hardware-software partitioning•	

Dynamic voltage and frequency scaling•	

Power gating•	

Clock gating•	

Slice gating•	

Use of low-level cache•	

Hardware-Software Partitioning
There has been a paradigm shift in the approach to optimizing hardware and software 
interaction. The earlier philosophy was to obtain performance by removing execution 
bottlenecks. For example, if the CPU was the bottleneck in a graphics application, then 
the main power and performance tuning approach was to use a better CPU or to tune 
the CPU code to maximize graphics performance. However, processor architects soon 
realized that removing execution bottlenecks alone is not sufficient; it is also prohibitive 
from a power-consumption perspective to run all subparts of the system simultaneously 
at maximum performance, as various components compete for their share of the power 
envelope. 

This realization opened two optimization opportunities: (a) power saved in one 
subpart can be applied to another; and (b) unused power can be applied to turbo 
behavior. Accordingly, considerations of power management for the overall system and 
shifting power between the CPU, graphics, and other subsystem are taken into account. 
As such, the new philosophy of hardware-software interaction aims not only to eliminate 



Chapter 6 ■ power Consumption by Video appliCations 

235

performance bottlenecks but also to continue tuning to increase efficiency and save 
power as well. For example, focus is now given to design goals including:

Reducing CPU processing•	

Optimizing driver codes to use the fewest CPU instructions to •	
accomplish a task

Simplifying the device driver interface to match the hardware •	
interface to minimize the command transformation costs

Using special-purpose hardware for some tasks with a balanced •	
approach for task execution

Fixed-purpose hardware is often implemented with a minimum number of gates that 
switch states or toggle between states to perform certain specific tasks. As dynamic power 
consumption is a function of the number of gates that are switching, and as less switching 
means less dynamic power consumption, it is beneficial to perform the same task on the 
special-purpose fixed function hardware, as opposed to general-purpose hardware that 
may not use the optimum number of switching gates for that particular task. Obviously, if 
the nature of the task changes, the special-purpose hardware cannot be used, as it is often 
not flexible enough to accommodate changes in how it is used. In this case, power saving 
may be achieved by sacrificing flexibility of tasks, and often by migrating workloads 
from general-purpose hardware to fixed-function hardware. Careful design of hardware-
software partitioning is necessary to save power in this manner, and non-programmable 
tasks may be migrated from general-purpose execution units to fixed-purpose hardware. 
For example, video processing algorithms that are run using GPU hardware designed 
explicitly for that task typically consume less power than running those same algorithms 
as software running on the CPU.

Dynamic Voltage and Frequency Scaling
To decrease power consumption, the CPU core voltage, the clock rate, or both can be 
altered, at the price of potentially lower performance, using dynamic voltage and/or 
frequency scaling. Alternatively, higher performance can be achieved at the expense of 
higher power consumption. However, as mentioned in the P-state discussion earlier, with 
the advancement of generations of CPU technology, this process is becoming increasingly 
complex, and there are many contributing factors, such as the load balancing among 
the multiple CPU cores and the GPU, thermal states, and so on. On the other hand, new 
techniques beyond dynamic voltage and frequency scaling are emerging to combat the 
challenges.

Power Gating
Processors can selectively power off internal circuitry by not supplying current to the 
parts of the circuitry that are not in use, and thereby reduce power consumption. This 
can be accomplished either by hardware or software. Examples of this technique include 
Intel Core and AMD CoolCore, where in a multi-processor environment only certain core 
processors (or part of the circuit in those processors) are active at a given time. 



Chapter 6 ■ power Consumption by Video appliCations 

236

Power gating generally affects the design more than clock gating, and may introduce 
longer entry and exit latency from a gated state. Architectural tradeoffs are generally 
considered between the amount of power saved and the latency involved. Another 
important consideration is the area used for power gating circuitry if implemented 
in hardware. For example, in fine-grained power gating, switching transistors may be 
incorporated into the standard cell logic, but it still has a large area penalty and difficult 
independent voltage control per cell. On the other hand, in coarse-grained power gating, 
grid style sleep transistors drive cells locally through shared virtual power networks, and 
save area at the expense of sensitivity.

For quick wakeup from a power gated state, sometimes retention registers may 
be used for critical applications. These registers are always powered up, but they have 
special low-leakage circuits as they hold data of the main register of the power gated 
block, enabling quick reactivation.

Clock Gating
Clock gating is a popular technique for reducing dynamic power dissipation by using 
less switching logic and by turning off unnecessary clock circuitry, thereby saving 
power needed to switch states that are not useful at a given time. Clock gating can be 
implemented in RTL code or can be manually inserted into the design. 

There are several forms of clock gating, ranging from manual to fully automated, that 
may be applied together or separately, depending on the optimization. On the one hand, 
there is the manual clock gating performed by driver software, where a driver manages 
and enables the various clocks used by an idle controller as needed. On the other hand, in 
automatic clock gating, the hardware may detect idle or no-workload states, and turn off 
a given clock if it is not needed. For example, on a particular board, an internal bus might 
use automatic clock gating so that it is temporarily gated off until the processor or a DMA 
engine needs to use it, while other peripherals on that bus might be permanently gated 
off if they are unused or unsupported on that board.

Slice Gating
Current Intel processors such as the fourth-generation core processor architecture 
or later have integrated graphics processing units that have arrays of programmable 
execution units (EUs) in addition to fixed-function hardware for specific tasks. The EUs, 
along with media samplers, are further arranged in slices. For example, some  
fourth-generation core SKUs have 40 EUs distributed between two equivalent slices, each 
containing 20 EUs and located in two different power domains. Figure 6-6 shows the slice 
structure of typical Intel fourth-generation core processor graphics execution units.



Chapter 6 ■ power Consumption by Video appliCations 

237

As hardware-accelerated multimedia tasks require many different assets in the 
graphics hardware, certain media tasks may place different demands on the media 
assets inside the slices, such as the EUs or the media samplers, and on the assets that are 
outside the slices, such as the Video Front End or Video Quality Engine. For some media 
workloads that require relatively little work from slice-based assets, the processor can 
shut down one slice to save leakage power. For example, for some media workloads,  
fewer than 20 EUs are needed, whereupon the driver software may power off one slice 
without affecting the performance. This is slice gating, also known as slice shutdown.  
The advantage of slice gating is that it maximizes power efficiency across a broad range  
of tasks.

Use of Low-level Cache
Memory power can be significantly reduced by using low-level caches and by designing 
algorithms to utilize these caches in an efficient manner. Video applications are typically 
compute-bound and not memory-bound, unless a memory-restricted system is used. 
Therefore, algorithms can take advantage of memory bandwidth reduction approaches, and 
thereby lower power consumption. For example, in the Intel core architecture, the cache 
is arranged in hierarchical levels, where both a low-level cache and a level-three cache are 
used. This enables power optimization, owing to the lower cost of memory access.

Ri
ng

 B
us

, M
em

or
y,

 L
ow

er
-le

ve
l C

ac
he

Command
Streamer

Video Front
End

Ge
om

en
tr

y 
Pi

pe

Video Quality
Engine

Multi-format
Codec

EUs
Media

Sampler

Slice Common

EUs
Media

Sampler

Slice 0

EUs
Media

Sampler

Slice Common

EUs
Media

Sampler

Slice 1

Figure 6-6. Intel fourth-generation core processor graphics execution unit slice structure



Chapter 6 ■ power Consumption by Video appliCations 

238

Algorithmic Optimization
The goal of algorithmic optimization is to reduce execution time by running the tasks fast 
and turning off processing units whenever they are not necessary. This can be achieved in 
many ways, including:

As power consumption is proportional to execution residency, •	
running less code in the CPU translates to less power 
consumption. So, performing code optimization of key software 
modules contributes to algorithmic optimization.

Processing tasks can be offloaded to dedicated power-efficient •	
fixed-function media hardware blocks as supported by the 
platform.

In order to perform various stages in a pipeline of tasks for a given •	
usage, it is generally necessary to expand the data into some 
intermediate representation within a stage. Storing such data 
requires a much larger bandwidth to memory and caches. The 
cost of memory transactions in terms of power consumption can 
be reduced by minimizing the memory bandwidth. Bandwidth 
reduction techniques are, therefore, important considerations for 
algorithmic optimization.

The concurrency available among various stages or substages •	
of the pipeline may be explored and appropriate parallelization 
approaches may be made to reduce the execution time.

The I/O operations can be optimized by appropriate buffering to •	
enable the packing of larger amounts of data followed by longer 
idle periods, as frequent short transfers do not give the modules a 
chance to power down for idle periods. Also, disk access latency 
and fragmentation in files should be taken into account for I/O 
optimization, as they may have significant impact in power 
consumption.

Appropriate scheduling and coalescing of interrupts provide the •	
opportunity to maximize idle time.

All active tasks can be overlapped in all parts of the platform—for •	
example, the CPU, the GPU, the I/O communication, and the 
storage.

Algorithmic optimization should be made with the power, performance, and quality 
tradeoffs in mind. Depending on the requirements of an application, while attempting 
to save power, attention should be paid to maintaining the performance and/or visual 
quality. A few common algorithmic optimization techniques are described in the 
following sections.



Chapter 6 ■ power Consumption by Video appliCations 

239

Computational Complexity Reduction
A computing device or system consumes very little power when it is not actively 
computing, as only the display engine needs to be awake; other compute engines may be 
temporarily in a sleeping state. The idea behind reducing computational complexity is 
to keep the system in a high power or busy state only as long as necessary, and to allow 
the system to return to idle state as often as possible. Improving the performance of an 
application can easily achieve power savings, as it allows the system to go back to idle 
state earlier because the work is done faster.

There are several approaches to computational complexity reduction, including 
algorithmic efficiency, active-duty cycle reduction, minimizing overheads such as 
busy-wait locks and synchronization, reducing the time spent in privileged mode, and 
improving the efficiency of I/O processing. We discuss some of these approaches next, 
but for a thorough treatment of them, see Energy Aware Computing.8

Selecting Efficient Data types

It is possible to optimize an algorithm that is heavy in floating point calculations by using 
integer arithmetic instead. For example, the calculation of discrete wavelet transforms 
using the lifting scheme usually involves a number of floating point operations. But the 
lifting coefficients can be implemented by rational numbers that are powers of 2, so that 
the floating point units in the data path can be replaced by integer arithmetic units.9 This 
leads to power savings, as the hardware complexity is reduced.

Similarly, rearranging the code in a way suitable to take advantage of compiler 
optimization, or in a way where certain data dependency allows a computation to be 
done before entering a loop instead of inside the loop, can yield significant performance 
gain and thereby power savings. In an audio application example,10 show some sine and 
cosine functions being repeatedly called on fixed values inside a busy loop; as the values 
are fixed, the computation can be made before entering the loop. This optimization yields 
about a 30 percent performance gain and also saves power. 

In another example, motion vector and discrete cosine transform calculations were 
done on a vector of pixels instead of using each pixel separately,11 which not only gives a 
5 percent overall performance improvement in a software-only H.263 video encoder, but 
also provides power saving in two ways: by doing the computation faster, and by using 
improved memory access and cache coherency.

8 B. Steigerwald, C. D. Lucero, C. Akella, and A. R. Agrawal, Energy Aware Computing  
(Intel Press, 2012).
9P. P. Dang and P. M. Chau, “Design of Low-Power Lifting Based Co-processor for Mobile 
Multimedia Applications,” Proceedings of SPIE 5022 (2003): 733–44.
10Steigerwald et al., Energy Aware Computing.
11S. M. Akramullah, I. Ahmad, and M. L. Liou, “Optimization of H.263 Video Encoding Using a 
Single Processor Computer: Performance Tradeoffs and Benchmarking,” IEEE Transactions on 
Circuits and Systems for Video Technology 11, no. 8 (August 2001): 901–15.



Chapter 6 ■ power Consumption by Video appliCations 

240

Code Parallelization and Optimization

Removing run-time inefficiency is also the goal of code parallelization and optimization. 
Multithreading, pipelining, vectorization, reducing the time spent in a privileged mode, 
and avoiding polling constructs are common techniques for code parallelization and 
optimization.

A properly threaded application that uses all available resources usually completes 
earlier than a single-threaded counterpart, and it is more likely to provide performance 
and power benefits. In this context, selecting the right synchronization primitives is 
also very important. Some applications, especially media applications, are particularly 
amenable to improvement using multithreading in a multi-core or multi-processor 
platform. In a multithreaded media playback example mentioned by Steigerwald et al.,12 
while almost linear performance scaling was achieved, the power consumption was also 
halved on a four-core processor at the same time, as all the four cores were busy running 
a balanced workload.

Similarly, the same operation on different data can be efficiently performed by using 
vector operations such as single-instruction multiple-data (SIMD) in the same clock 
cycle on a vector of data. Most modern processors support SIMD operations. The Intel 
Automatic Vectorizing Extensions (AVX) support eight 32-bit floating-point simultaneous 
operations in a single processor clock cycle. As Steigerwald et al.13 claims, for media 
playback applications, use of such SIMD operations can result in approximately  
30 percent less power consumption.

In Listing 6-1, note the following Direct3D query structure and the polling construct 
that only burns CPU cycles, resulting in wasted power.

Listing 6-1. Polling Example with Direct3D Query Structure (Power Inefficient)

        while ( S_OK != pDeviceContext->GetData( pQuery, &queryData, 
sizeof(UINT64), 0 ) )
        {
                sleep (0); // wait until data is available
        }
 

It is better to use blocking constructs to suspend the CPU thread. However,  
Windows 7 DirectX is nonblocking. Although a blocking solution using the OS primitives 
would avoid the busy-wait loop, this approach would also add latency and performance 
penalty, and may not be appropriate for some applications. Instead, a software work-around 
may be used, where a heuristic algorithm detects the GetData() call in a loop. In an example 
of such work around,14 up to 3.7W power was reduced without performance degradation. 
Listing 6-2 shows the concept of the workaround:

12 Steigerwald et al., Energy Aware Computing.
13Ibid.
14D. Blythe, “Technology Insight: Building Power Efficient Graphics Software,” Intel Developer 
Forum, 2012.



Chapter 6 ■ power Consumption by Video appliCations 

241

Listing 6-2. Example of an Alternative to the Polling Construct

INT32 numClocksBetweenCalls = 0;
INT32 averageClocks = 0;
INT32 count = 0;
 
// Begin Detect Application Spin-Loop
// ... ...
UINT64 clocksBefore = GetClocks();
if ( S_OK != pDeviceContext->GetData( pQuery, &queryData, sizeof(UINT64),  
0 ) ) {
        numClocksBetweenCalls = GetClocks() - clocksBefore;
        averageClocks += numClocksBetweenCalls;
        count++;
 
        if ( numClocksBetweenCalls < CLOCK_THRESHOLD )
        {
                averageClocks /=count;
                if ( averageClocks < AVERAGE_THRESHOLD )
                {
                        WaitOnDMAEvent( pQuery, &queryData, sizeof(UINT64) );
                        return queryData;
                }
                else
                {
                        return queryBusy;
                } 
        }
        else 
        {
                return queryBusy;
        }
}
else 
{
        return queryData;
}
// End Detect Application Spin-Loop

Memory Transfer Reduction
Limiting data movement and efficient data processing lead to better performance and 
lower power consumption. In this connection, it is more efficient to keep data as close 
to processing elements as possible by using the memory and cache hierarchy, and to 
minimize data transfer from main memory.



Chapter 6 ■ power Consumption by Video appliCations 

242

Reduction of memory transfer can curtail the power consumption, owing to the 
reduced number of memory accesses, even at the expense of a moderate increase in 
computational complexity.15 Bourge and Jung proposed to reduce memory transfer by 
using embedded compression for the predictive pictures in the encoding feedback loop. 
It is possible to use an embedded coding scheme that would keep the reference frame 
in the frame memory in compressed format so as to use about a third of the memory 
compared to regular uncompressed coding method. If a lossless compression is used, 
then the required memory would be halved instead. 

However, by using block-based memory access and by carefully managing 
the computational complexity of the embedded coding scheme, Bourge and Jung 
show that an overall power saving is possible.16 They achieve this by imposing some 
restrictions on the coding scheme, which is a lossy scheme and is capable of obtaining 
better compression ratio and corresponding power saving than a lossless scheme. The 
restrictions include coding each block independently, fixing the compression ratio for 
each block, and jointly storing the luminance and chrominance blocks in memory. 
The end result is that even with an increase in computational complexity, the memory 
transfer, which dominates power consumption, is saved by 55 percent. 

Although this particular scheme resulted in visual quality degradation at higher 
bitrates, using an appropriate lossless scheme may bring about overall power savings 
due to less memory transfer. Most important, owing to such reduction in memory 
transfer, a smaller memory embedded closer to the CPU can be used, leading to less cable 
dissipation during access. In some hardware implementations, it is possible to use low-
cost on-chip memory instead of off-chip SDRAM.

System Integration Optimization
The interaction between various layers in the software stack can be optimized during 
system integration to yield a more power-efficient solution. The operating system, the 
graphics drivers, the middleware such as Intel media software development kit (SDK), 
and the applications can cooperate in such optimization. As these layers are typically 
developed by different companies, it is natural to expect inefficiencies resulting from such 
interactions. To improve the inter-layer efficiency, the following approaches to system 
integration optimization may be considered:

Reducing the number of layers.•	

Improving the understanding of the authors of various layers •	
regarding each other’s capabilities and limitations.

Redefining the boundaries of the layers.•	

However, lacking such radical approaches, and until these become available, system 
integration optimization can still be done at various levels, some of which are as follows. 

15A. Bourge and J. Jung, “Low-Power H.264 Video Decoder with Graceful Degradation,” Proceedings  
of SPIE 5308 (2004): 372–83.
16Ibid.



Chapter 6 ■ power Consumption by Video appliCations 

243

System Operating Point on the P-F Curve
Figure 6-7 shows typical system operating points on the power-frequency curve, 
compared to the minimum operating point (F

max
 at V

min
) and the maximum operating 

point (running at turbo frequency). 

Figure 6-7. Typical system operating point

As seen in Figure 6-7, in the voltage-scaling region of the power curve, tuning the 
system’s operating frequency is important for power saving. It is possible to occasionally 
run the system at a lower frequency and save power as long as performance requirements 
are met. From the power consumption point of view, the best operating point is F

max
 

at V
min

; however, this frequency may not be sufficient for some applications. On the 
other hand, from the performance point of view, the best operating point is in the turbo 
frequency region. Based on the resource utilization profile, it is possible for power-
aware graphics drivers to determine how to tune the frequency of the processor, and it is 
possible to dynamically move between turbo and regular operating frequency. 

As the operating system manages power, some systems offer various power policies 
ranging from low-power usage with low performance to high-power usage with high 
performance. In addition, the BIOS provide some flexibility to set the system frequency. 
End-users may take advantage of these power policies to adjust the system operating 
point to appropriate levels; for example, using the power-saver policy can lower the 
operating frequency and thereby save power.

Intelligent Scheduling
The levels of hardware-software partitioning are generally in the scope of architectural 
optimization. However, system-level optimization should also carefully consider the 
power-saving opportunities that are not covered by architectural design alone. For 
example, scheduling and migrating tasks between a software layer and special-purpose 
hardware units is a way such power-saving opportunities may be made available.



Chapter 6 ■ power Consumption by Video appliCations 

244

The operating system performs the scheduling of tasks for the CPU, while graphics 
drivers can schedule and manage the tasks for the GPU. Intelligent scheduling and 
load sharing between the CPU and the GPU is an active area of research, for which the 
middleware and the application layer may also make significant contributions. It is 
important, then, to find the most efficient place to do the processing; for instance, it may 
not be sufficient to simply multithread a CPU work, and it may be less efficient in terms of 
Joules per operation than operations per second. 

Accomplishing migration of such a task from the CPU to a more power-efficient 
dedicated hardware module requires cooperation from all layers of the execution stack. 
To facilitate the scheduling, sometimes it is necessary to partition a piece of the system 
into several smaller chunks. For example, a shared user mode driver (UMD) that would 
interact with three run-time environments, such as OpenGL run-time, Direct3D 11  
run-time, and Direct3D 9 run-time, may be redefined and divided into three components: 
OpenGL UMD, D3D 11 UMD, and D3D 9 UMD. This would facilitate both specific 
hardware access and interaction with the run-time environments; and it would make the 
system more amenable to power gating.

Similarly, some fixed work repeatedly done by the kernel mode driver for every 
invocation may be moved to the hardware itself. Examples of such system-level 
optimization can be found in the Intel fourth-generation core processor architecture, 
where using such system-level optimizations achieves a 2.25W decrease in CPU power for 
a popular 3D game application.17

Duty Cycle Reduction
By parallelizing the essential active tasks in a system—for example, tasks in the CPU, 
the GPU, the memory, and the I/O subsystem—the overall uncore duty cycle can be 
minimized. This would keep the related power subdomains active only for the required 
operations as needed and only for the minimum period of time, turning them off 
otherwise. The power subdomains include the various sensors, the PLLs, the memory 
interface interconnect buses, and so on, which can be separately controlled to minimize 
power consumption.

Furthermore, in order to run at a more efficient operating point, the duty cycle of 
the processor can be reduced by moving along the voltage-frequency curve, and using 
a higher frequency and higher power consumption for a shorter period of time, before 
going to an idle state for a relatively longer period of time. For the overall duration, this 
would typically result in lower power consumption. Conversely, for the same frequency, 
power can be saved with a lower voltage setting, as power is proportional to the square of 
the voltage. Duty cycle reduction is usually done at the system integration optimization 
level by the graphics kernel mode driver.

Figure 6-8 depicts the effect of a duty cycle reduction algorithm that focuses on using 
a higher frequency for a shorter period to accomplish the task of a video application, 
while the CPU is idle for longer period of time. In this example, the CPU utilization is 
reduced by approximately 20 percent. 

17Blythe, “Technology Insight.”



Chapter 6 ■ power Consumption by Video appliCations 

245

Application-Level Optimization
With the desire to support a plethora of functionalities in mobile computing devices 
comes the use of multiple sensors. A contemporary platform therefore includes light 
sensors, gyroscopes, accelerometers, GPS receivers, and near-field communications. 
By becoming aware of the available system resources and the user environment where 
multiple sensors may be active at a given time, applications can help avoid power misuse 
and can help users determine the priority of the sensors and features for a power-starving 
scenario. 

Context Awareness by the Application
It is possible for a badly written application to burn power unnecessarily that could 
otherwise be saved. On the other hand, if an application is aware of the system resources 
that it runs on, and can sense a change in the system resource availability, it is possible for 
that application to react in a friendly manner to overall power consumption. For example, 
upon detecting low battery and subsequently notifying the user, an application may wait 
for intervention from the user before going to a lower power state. Alternatively, in a more 
active response, it may dim the display by default after sensing a darker ambient light 
condition.

It is the duty of the operating system to allocate system resources for each 
application, as requested by the application. The application’s registering for power-
related events allows the operating system to notify the application of a power event so 
as to enable the application to make an appropriate response. The application can also 
query for system state information using the APIs (application programming interfaces) 
provided by the operating system. For example, depending on whether the system is 

Figure 6-8. Effect of duty cycle reduction on CPU utilization



Chapter 6 ■ power Consumption by Video appliCations 

246

powered by a battery or connected to AC wall power, applications can make various 
power-saving decisions:

Instead of a full system scan as done while on AC power, a virus •	
checker may start a partial scan of the system on battery power.

A media player may decide to trade off video quality to achieve •	
longer playback of a Blu-ray movie.

A gaming application may choose to sacrifice some special effects •	
to accommodate more sections of the game.

In Windows, applications can query the operating system using a unique GUID 
(globally unique identifier) called GUID_ACDC_POWER_SOURCE to obtain the power setting 
information, and use this knowledge when a power event occurs. Similarly, to determine 
the remaining battery capacity, the GUID_BATTERY_CAPACITY_REMAINING can be used. 
And to learn about the current power policy, the GUID_POWERSCHEME_PERSONALITY can be 
used. It is also possible to use the GUID_BACKGROUND_TASK_NOTIFICATION to determine 
whether it is suitable to run a background task at the current state or it is better to wait for 
the active state so as not to perturb an idle state. In Linux, similar approaches also exist, 
where CCBatteryInfo structure can be used to determine the battery state. Furthermore, 
if the application switches contexts, it is possible to lower the power for the application’s 
context that is no longer running.

Applications Seeking User Intervention 
An application may invite favorable user intervention to save power. For example:

An application can monitor battery capacity, and when the •	
battery charge drops to a certain fraction of its capacity--say,  
50 or 25 percent--the application may indicate a warning to the 
user interface to alert the user of the remaining battery capacity.

An application can respond to a power source change from AC to •	
DC by notifying the user of the change and providing an option to 
dim the display.

An application can respond to ambient light level and request the •	
user to adjust the display brightness.

Some of these actions can also be automatically taken by the system, but depending 
on the application, some may require user intervention. In general, user-configurable 
options allow the user to personalize the system, the application, and the experience. 
System and application designers may need to consider various tradeoffs when deciding 
which choices to give to the user and which to implement by default. For example, 
Windows provides the user with three power policies to choose from, or to define 
one’s own settings. These options and settings drive the system-level behaviors that 
significantly impact the power efficiency of the platform.



Chapter 6 ■ power Consumption by Video appliCations 

247

Power Measurement
Now that we have covered different areas of power optimization, let us consider how to 
actually measure the power. In this section, we present the measurement methodology 
and various power-measurement considerations.

The ability to measure and account for power at various levels of the system allows 
system designers or users to understand existing power-management policies or to 
deploy optimized power-management policies as needed. Measuring power can uncover 
power-related problems that result in higher cost for the system. The major motivations 
for measuring power include:

Understanding the impact of an application on power •	
consumption by the system, and potentially finding optimization 
opportunities by tuning the application.

Determining the effect of software changes at the user level, at •	
the driver level, or at the kernel level; and understanding whether 
there is any performance or power regression owing to code 
changes.

Verifying that a debug code was removed from the software.•	

Determining the amount of power savings from power-management •	
features, and verifying that such features are turned on.

Determining the •	 performance per watt in order to drive 
performance and power tuning, thereby obtaining the best 
tradeoff in practical thermally constrained environments.

However, few tools and instructions are available to measure the power consumed 
in a platform. Also, depending on the need for accuracy, different power-measurement 
methods can be used, ranging from simple and inexpensive devices to specialized data 
acquisition systems (DAQs). We present various approaches to power measurement. 

Methodology
Within a computing system, power is measured at various system levels and at the 
motherboard level. In particular, this applies to the CPU package power, memory 
power, and display power measurement. Depending on the type of power supply, such 
measurement is of two types: AC power and DC power.

AC Power Measurement
For the system AC power or wall-power measurement, generally an AC power meter is 
connected between the power source and the system under measurement. The price 
for this measurement equipment may vary, depending on the accuracy and precision 
requirements. Simple, low-cost equipment typically has several drawbacks, including 
small ranges, low and imprecise sampling rates, inability to be used with other devices 
such as AC to DC converters or data acquisition systems, low resolution, and incongruity 



Chapter 6 ■ power Consumption by Video appliCations 

248

for measuring small power changes. On the other hand, they are easy to use and require 
little or no setup time. 

For purposes of system-level and motherboard measurement, AC power 
measurement is not suitable, as these methods cannot provide insight into the system’s 
power consumption.

DC Power Measurement
Although DC power can be measured using scopes and multi-meters, the easiest, most 
accurate, and most precise way of measuring DC power is by using automated data 
acquisition systems (DAQs). DAQs take analog signals as inputs and convert them to 
digital data sequence for further processing and analysis, using specialized software. 
Typically, DAQs can support several input channels, and can interface with the data-
analyzing computer via standard serial or USB ports. They are capable of handling 
very high data rates and can measure tiny voltage differences, making them ideal for 
automated power measurements.

The power dissipated across a resistor can be expressed as follows:

     P=V2/R, (Equation 6-3)

where V is the voltage in volts, R is the resistance in ohms, and P is the power in watts. 
The current through the circuit is determined by the ratio of V to R. To measure the 

power of a black box circuit, it is a common practice to add a very small sense resistor with 
a low resistance, r, in series with the black box, which has a larger resistance, R, so the 
total resistance of the circuit is approximately equal to R. In this case, the power needed 
for the black box can be approximated in a modified version of Equation 6-3:

    × =
´

P
v v

R

D
,  (Equation 6-4)

where DV is the voltage drop across the sense resistor and V is the potential of a channel 
input with respect to ground. 

Since voltage is the potential difference between two points, for each voltage 
measurement two inputs are required: one to represent the ground, or reference 
potential, and the other to represent the non-zero voltage. In a single-ended 
measurement, the reference is provided by the DAQ’s own ground and only the non-zero 
voltage is measured for an input channel voltage. Compared to using separate grounds 
for each channel, single-ended measurements may be less accurate, but they have the 
advantage of using faster sampling or more input channels.

DAQs can take as inputs the general-purpose analog signals in the form of voltage. 
The analog signals may have originally been captured using a sensor before being 
converted to the voltage form, or they may already exist in a voltage form. In the latter 
case, a simple low-resistance sense resistor can act as a sensor. 

In order to measure the power of a certain system or motherboard component, 
typically the appropriate power rails are instrumented so that a sense resistor is 
connected in series on the rail. As current flows through the sense resistor, a voltage drop 
DV is created, which can be measured by the DAQ, as shown in Figure 6-9, where a very 
small sense resistor (e.g., 2 milliohm resistance) is used. 



Chapter 6 ■ power Consumption by Video appliCations 

249

The data can be analyzed and aggregated to give the measured power over a period 
of time, using special software accompanying the DAQ, such as the National Instrument 
LabView. 

Considerations in Power Measurement 
The following factors are generally taken into account while measuring power:

The TDP of the processor part under measurement.•	

The accuracy and precision of the data acquisition system; •	
The ability of the DAQ and associated software for real-time 
conversion of analog voltage signals to digital data sequence, and 
for subsequent processing and analysis.

Ambient temperature, heat dissipation, and cooling variations •	
from one set of measurements to another; to hedge against run-
to-run variation from environmental factors, a three-run set of 
measurements is usually taken and the median measured value is 
considered.

Separate annotation of appropriate power rails for associated •	
power savings, while recording the power consumption on all 
power rails at a typical sampling rate of 1 kHz (i.e., one sample 
every one millisecond), with a thermally relevant measurement 
window between one and five seconds as the moving average.

Recognition of operating system background tasks and power •	
policy; for example, when no media workload is running and the 
processor is apparently idle, the CPU may still be busy running 
background tasks; in addition, the power-saving policy of the 
operating system may have adjusted the high-frequency limit of 
the CPU, which needs to be carefully considered.

Consideration of average power over a period of time in •	
order to eliminate the sudden spikes in power transients, and 
consideration only of steady-state power consumption behavior.

CPU Core 
VCC

Phase 1

The 
DAQ

Small sense resistor (e.g. 2 mΩ)

Figure 6-9. Power measurement setup in a power rail



Chapter 6 ■ power Consumption by Video appliCations 

250

Benchmarks included for both synthetic settings and common •	
usage scenarios; appropriate workloads considered for high-end 
usages so that various parts of the system get a chance to reach 
their potential limits.

Consideration of using the latest available graphics driver and •	
media SDK versions, as there may be power optimizations 
available in driver and middleware level; also, there is a risk of 
power or performance regression with a new graphics driver 
such as potential changes to the GPU core, memory, PLL, voltage 
regulator settings, and over-clock (turbo) settings.

Tools and Applications
Power-measurement tools include both specialized and accurate measurement systems 
such as DAQs, as well as less accurate software-based tools and applications. We consider 
a specialized DAQ system and introduce several software tools with varying capabilities.

An Example DC Power-Measurement System
An example DC power measurement system is based on the National Instruments* 
PXIe 6363 PCI-express based DAQ and the associated LabView Signal Express software 
application for signal analysis. The PXIe 6363 has a signal capture bandwidth of 1.25 
million samples per second and an A/D conversion resolution of 16 bits on every voltage 
input channel. This input voltage is programmable down to ±1V, so that it is easy to zoom 
into the low-voltage signals. Similarly, for today’s low-power devices, newer versions of 
PCIe DAQs with higher-precision input voltages are also available. 

Typically a 2 milli-ohm current sense resistor is used in series with all power rails of 
interest—for example, the CPU package, the memory DIMMs, and the display, for which 
the peak, the average, and the minimum DC power consumption are measured. Also, the 
run-time CPU and GPU frequencies are monitored to determine proper turbo operation. 
The power setup is calibrated automatically on each run for sense resistor and test 
harness variations that may occur due to ambient temperature.

To capture and compute power in watts, it is necessary to measure both voltage and 
current for each power rail. This is accomplished by using current sense resistors in series 
with the incoming power supply on each voltage rail. The voltage drop across the current 
sense resistor is a small amplitude signal that directly correlates to the amount of current 
flowing through the sense resistor. The voltage for each power rail (positive and negative 
wire), and the output of the current sense resistor (positive and negative wire), connects 
directly to the PXIe 6363 via the removable TB-2706 terminal block analog input modules. 

The measured power is logged and plotted using the LabView Signal Express to 
produce a detailed and comprehensive power-performance profile. This application 
captures and processes the voltage and current measurements from the PXIe 6363 DAQ 
modules and computes the power in watts simply by multiplying the measured voltage 
and sense current.



Chapter 6 ■ power Consumption by Video appliCations 

251

This application also supports various statistical measurements, such as moving 
average, peak, average, and minimum power used for detailed signal analysis. Figure 6-10 
depicts a sample of a LabView configuration interface for a power measurement system. 
In this interface, selections can be made for the voltage channels of interest. Figure 6-11  
then shows an example of the LabView interface when a power measurement is in 
progress. The top and bottom windows show voltage, current, or power signals from all 
input channels and a single channel (Channel 0), respectively.

Figure 6-10. LabView data acquisition setup for power measurement



Chapter 6 ■ power Consumption by Video appliCations 

252

Software Tools and Applications
To get the best and most accurate data on how much energy a computer platform is using 
during operation, a hardware power meter is needed. The Networked Data Acquisition 
Unit (NetDAQ) from Fluke, the National Instrument DAQ, and the Yokogawa WT210 are 
examples of such acquisition systems. However, these are expensive and the cost may not 
be justifiable to a regular consumer or an application developer who is only interested 
in a one-time or so power measurement. For these users it makes more sense to select a 
software tool or application that measures power consumption.

The tool and applications are primarily used to identify power issues, with and 
without workloads running, in order to optimize the system’s power consumption. The 
issues typically encountered include: 

•	 CPU/Chipset Power: Such problems are identified by examining 
the CPU C-state residency to determine whether the CPU and the 
chipset power are optimally managed, and to get some insight 
into what is causing any increase in platform power consumption. 
For example, high residency at deep C-states such as C3 may 
indicate frequent C-state transition due to device interrupt or 
software activity.

Figure 6-11. Power data acquisition in progress



Chapter 6 ■ power Consumption by Video appliCations 

253

•	 CPU Utilization: CPU utilization samples are commonly taken 
at every timer tick interrupt--i.e., every 15.6 millisecond for 
most media applications and some background applications. 
However, the timer resolution can be shortened from the default 
15.6 millisecond in an attempt to capture activities within 
shorter periods. For multi-core CPUs, CPU utilization and power 
consumption depend on the active duration, while each core 
may only be active for a partial segment of the total duration for 
which the platform is active. Therefore, CPU core utilization and 
platform utilization should be counted separately. Logically, 
when the activities of two cores overlap, the CPU utilization is 
shown as the sum of two utilizations by most power measurement 
tools. Only few tools, the Intel Battery Life Analyzer among them, 
can actually use fine-grain process information to determine the 
total active duration of both the platform package and the logical 
CPU. By investigating the CPU utilization, inefficient software 
components and their hotspots can be identified, and the impact 
of the software component and its hotspots can be determined to 
find optimization opportunities.

•	 CPU Activity Frequency: Power tools can help identify software 
components causing frequent transition of CPU states. It is 
valuable to determine the frequency of the activity of each 
component and the number of activities that are happening in 
each tick period. Understanding why the frequent transitions 
are happening may help point to power-related issues or 
improvement prospects.

•	 GPU Power: On the modern processors, as most media 
applications run on the GPU, it is also important to understand 
the impact of GPU C-state transitions and GPU utilization. GPU 
utilization largely controls the power consumption of media 
applications. However, there are only few tools that have the 
ability to report GPU utilization; the Intel GPA is one such tool.

In general, there are several tools and applications available for the measurement 
and analysis of power consumption of various components of a computing device. Some 
are especially relevant for analysis of the idle system behavior, while others are suitable 
for media applications. In the next section, we discuss some of these tools, starting with 
the Linux/Android based PowerTop and going into several Windows-based tools. We 
then discuss specific tools for monitoring and analyzing battery life. The Power Virus 
is also mentioned, which is mainly used for thermal testing. However, as new tools are 
constantly being developed, some tools obviously are not covered. 

PowerTop
PowerTop is a software utility developed by Intel and released under GPL license that is 
designed to measure and analyze power consumption by applications, device drivers, 
and kernels running on Android, Linux, or Solaris operating systems. It is helpful in 



Chapter 6 ■ power Consumption by Video appliCations 

254

identifying programs that have power issues and to pinpoint software that results in 
excessive power use. This is particularly useful for mobile devices as a way to prolong the 
battery life.

PowerCfg
PowerCfg is a command line tool in Windows that allows users control the power-
management settings of the system and to view or modify the power policy. It is typically 
used to detect common issues in power efficiency, processor utilization, timer resolution, 
USB device selective suspend, power requests, and battery capacity.

PwrTest
PwrTest is a power management test tool available in the Windows Driver Kit that enables 
application developers and system integrators to obtain power-management information 
such as the various sleep states information (e.g., C-state and P-state information) and 
battery information from the system and record over a period of time. 

Perfmon and Xperf
The Windows Perfmon provides abilities to monitor the performance counters available 
in Windows, including C-state and P-state residencies, which are useful in understanding 
CPU utilization and activity related issues.

The Xperf is a command-line tool that helps developers in system-wide 
performance analysis by monitoring system and kernel events such as context switches, 
interrupt service routines, and deferred procedure calls for a period of time and by 
generating reports for graphical review. It is useful to correlate the events with system 
status in scenarios where the system is idle, running web browsing, or during media 
applications. Xperf generates event trace logs that can be viewed using Xperfview; both 
of these tools are available in the Windows Performance Toolkit.

Joulemeter
Developed by Microsoft Research, Joulemeter is a modeling tool to measure the energy 
usage of virtual machines (VMs), computers of various form factors and power capacity, 
and even individual software applications running on a computer. It measures the impact 
of components such as the CPU, screen, memory, and storage on their total power 
use. One of its advantages is that it can measure the impact of software components, 
such as VMs, that do not have a hardware interface and therefore are not amenable to 
measurement by hardware power meters.



Chapter 6 ■ power Consumption by Video appliCations 

255

The data obtainable from Joulemeter includes the current energy usage for each 
component, such as the base or idle energy usage, CPU usage above the baseline idle, 
monitor, and hard disk. The output data is presented in watts and is updated every second. 
Details can be found in Joulemeter: Computational Energy Measurement and Optimization.18

Intel Power Gadget
To assist end-users, independent software vendors, original equipment manufacturers, and 
the application developers to precisely estimate power consumption without any hardware 
instrumentation of the system, Intel developed a software tool named Intel Power Gadget, 
which is enabled for the second- Generation Intel Core processors. Additional functions of 
the tool include estimation of power on multi-socket systems and externally callable APIs to 
extract power information within sections of the application code.

The gadget includes a Microsoft Windows sidebar gadget, driver, and libraries to 
monitor and estimate real-time processor package power information in watts, using the 
energy counters in the processor. After installation, the gadget can be simply brought up 
to monitor processor power usage while running a workload or when the system is idle. 
An “Options” pop-up window allows setting the sampling resolution in milliseconds and 
the maximum power in watts. The output data, notably the processor package power and 
frequency, is generated in real time and can be logged in a file with a comma-separated 
values (CSV) format. The gadget can be downloaded from Intel’s website.19

Intel Power Checker
The Intel power or energy checker tool determines the power efficiency of a system in 
terms of useful work done with respect to energy consumed during that work. It is an 
easy way for media or game application developers to check the power efficiency of their 
applications on mobile platforms with Intel Core or Atom processors. This tool does not 
require an external power meter, and it is useful for power analysis of any application 
compiled for Intel processors or Java framework applications. 

By default, this tool checks the system capability to provide power consumption 
data and whether a particular driver called EzPwr.sys (part of Intel Power Gadget) is 
installed, which would be necessary if an external power meter device is used. Typically, 
the tool first measures the baseline power without the target application running, while 
unnecessary processes such as operating system updates, Windows indexing service, virus 
scans, Internet browsers, and so on are turned off. In the next step, the target application is 
run, and power is measured again starting from a desired point of the target application’s 
execution. Finally, it measures power again when the target application is completed and 
returned to an idle state. The tool provides analysis on elapsed time, energy consumption, 
and average C3 state residency, and gives the platform timer duration in milliseconds. 
This tool is now part of the Intel Software Development Assistant.20 

18Available from Microsoft Research at research.microsoft.com/en-us/projects/joulemeter/
default.aspx.
19Available from software.intel.com/en-us/articles/intel-power-gadget.
20Available from software.intel.com/en-us/isda.

http://research.microsoft.com/en-us/projects/joulemeter/default.aspx
http://research.microsoft.com/en-us/projects/joulemeter/default.aspx
http://software.intel.com/en-us/articles/intel-power-gadget
http://software.intel.com/en-us/isda


Chapter 6 ■ power Consumption by Video appliCations 

256

Intel Battery Life Analyzer
The Intel Battery Life Analyzer (BLA) is a software tool running on Microsoft Windows 
that is primarily used to monitor the activities of hardware and software platform 
components and determine their impact on battery life. It can identify drivers, processes, 
or hardware components that prevent the platform from entering low-power states. BLA 
has many modules to support the power analysis, including CPU C-state and software 
activity analysis.

The more time the system spends in the deep C-state, the less power it consumes. 
BLA recommends threshold values for C-state residencies, in particular, that the deepest 
C-state residency at idle should be greater than 95 percent for the processor package 
(i.e., socket) containing multiple processor cores and 98 percent per core. Also, C0 and 
C1 states for the package should be less than 5 percent at idle. There are options in the 
BLA tool to set the appropriate C-state threshold values. Copies of the BLA tool can be 
requested via e-mail from Intel.21

Intel Graphics Performance Analyzer
The Intel Graphics Performance Analyzers 2013 (Intel GPA) is a suite of three graphics 
analysis and optimization tools--namely, the system analyzer, the frame analyzer, and the 
platform analyzer—to help game and media application developers optimize their games 
and other graphics-intensive applications. Intel GPA supports the latest generations of 
Intel Core and Intel Atom processor-based platforms running Microsoft Windows 7, 8, 
8.1, or the Android operating system. The system analyzer provides the CPU and the GPU 
performance and power metrics in real time, and allows users to quickly identify whether 
the workload is CPU- or GPU-bound so the user can concentrate on specific optimization 
efforts. The frame analyzer provides ability to analyze performance and power down to 
the frame level. The platform analyzer provides off-line analysis of the CPU and GPU 
metrics and workloads with a timeline view of tasks, threads, Microsoft DirectX, and 
GPU-accelerated media applications in context. The tool is also available from Intel.22

GPU-Z and HWiNFO
GPU-Z is a lightweight system utility from TechPowerUp, designed to provide vital 
information about a video card and/or the integrated graphics processor; it supports 
nVIDIA, ATI, and Intel graphics devices. HWiNFO is free software, available from the 
Internet, that combines the functionalities of CPU-Z and GPU-Z and provides the CPU, 
the GPU, and memory usages, along with other system information.

21Request for BLA tool can be made at batterylifeanalyzer@intel.com.
22Available from software.intel.com/en-us/vcsource/tools/intel-gpa.

http://batterylifeanalyzer@intel.com
http://software.intel.com/en-us/vcsource/tools/intel-gpa


Chapter 6 ■ power Consumption by Video appliCations 

257

Power Virus
Power virus executes specific machine code in order to reach the maximum CPU 
power dissipation limit—that is, the maximum thermal energy output for the CPU. This 
application is often used to perform integration testing and thermal testing of computer 
components during the design phase of a product, or for product benchmarking using 
synthetic benchmarks.

Summary
In modern processors, power considerations go beyond battery life and attempt to dictate 
performance. We reviewed the power-consumption behavior by media applications 
running on mainstream computing devices. 

First, we discussed the requirements and limits of power consumption of typical 
systems, the power equation, and aspects of various sources of power supply. Then, 
we covered how a mobile device is expected to serve as the platform for computing, 
communication, productivity, navigation, entertainment, and education. We also 
surveyed three major topics: power management, power optimizations, and power 
measurement considerations. 

Finally, we learned about several power-measurement tools and applications, and 
their advantages and limitations. In particular, we showed as an example a specific 
DC power measurement system using a DAQ, and several software-based power 
measurement tools. 

While there is no single tool or application suitable for all types of power-measurement 
scenarios, some tools are quite capable of providing important insights into the power 
profiles of video applications, and are useful for this purpose.


	Chapter 6: Power Consumption by Video Applications
	Power Consumption and Its Limits
	Media Workloads on Consumer Platforms
	Media Usages

	Power-Aware Designs
	Power-Management Considerations
	ACPI and Power Management
	ACPI Power States
	Global States
	Device States


	Power Management by the Operating System
	Linux Power Management
	The X Window
	Window Managers
	Intel Embedded Graphics Driver

	Windows Power Management
	Power Requirements
	Power Policy
	The Windows Driver Model
	The Windows Driver Framework
	Device Power Management in Windows 8
	Dealing with Power Requests


	Power Management by the Processor
	CPU States ( C -states)
	Performance States ( P -states)
	Turbo
	Thermal States ( T -States)

	The Voltage-Frequency Curve

	Power Optimizations
	Architectural Optimization
	Hardware-Software Partitioning
	Dynamic Voltage and Frequency Scaling
	Power Gating
	Clock Gating
	Slice Gating
	Use of Low-level Cache

	Algorithmic Optimization
	Computational Complexity Reduction
	Selecting Efficient Data types
	Code Parallelization and Optimization

	Memory Transfer Reduction

	System Integration Optimization
	System Operating Point on the P-F Curve
	Intelligent Scheduling
	Duty Cycle Reduction

	Application-Level Optimization
	Context Awareness by the Application
	Applications Seeking User Intervention


	Power Measurement
	Methodology
	AC Power Measurement
	DC Power Measurement

	Considerations in Power Measurement

	Tools and Applications
	An Example DC Power-Measurement System
	Software Tools and Applications
	PowerTop
	PowerCfg
	PwrTest
	Perfmon and Xperf
	Joulemeter
	Intel Power Gadget
	Intel Power Checker
	Intel Battery Life Analyzer
	Intel Graphics Performance Analyzer
	GPU-Z and HWiNFO
	Power Virus


	Summary




