
289

Chapter 18

Context Management

In general, we don’t prevent things unless there is a good reason for that.
Put another way, we try to allow anything that doesn’t cause a security
problem.

David Wooten,
During an e-mail exchange about context management

TPMs, for all their tremendous capability, are very limited in their memory, largely to
reduce cost. This means objects, sessions, and sequences must be swapped in and out of
the TPM as needed, much like a virtual memory manager swaps memory pages to and
from disk drives. In both cases, the calling application thinks it has access to many more
objects and sessions (in the TPM case) or much more memory (in the virtual memory
case) than can actually be present at any given time.

For a system where only a single application sends commands to the TPM, these
swapping operations can be performed by the application itself.1 However, when multiple
applications and/or processes are accessing the TPM, two components of the TSS stack
are required: the TPM Access Broker (TAB) and the resource manager (RM).

This chapter describes the high-level architecture of the TAB and RM. Then it
describes the features and commands of the TPM that support swapping objects,
sessions, and sequences in and out of TPM memory, the details of how different
swappable entities are handled by the related commands, and some special cases.

TAB and the Resource Manager: A High-Level
Description
The TAB and RM were first described in Chapter 7 as layers in the TSS. This section
provides some insights into the internals of the TAB and RM.

The TAB and RM transparently isolate TPM applications and processes from the
messiness of arbitrating multiprocess access to the TPM and swapping objects, sessions,
and sequences in and out of TPM memory as needed. The TAB and RM are closely

1Even in this case, the use of an RM is advantageous because it relieves the application of the
burden of performing the swapping.

Chapter 18 ■ Context Management

290

related and typically integrated into the same software module. Depending on system
design, they may reside in the top layer of a TPM device-driver stack, or they may be
integrated as a daemon process sandwiched between the TSS system API layer above and
the TPM device driver below.

TAB
The TAB’s responsibility is fairly simple: arbitrate multiple processes accessing the TPM.
At a minimum, all processes must be guaranteed that, between the time their command
byte stream begins to be transmitted to the TPM and the time the response byte stream
is fully received from the TPM, no other processes communicate with the TPM. Some
examples of multiprocess collisions that could occur in the absence of a TAB are as follows:

Process A’s command byte stream begins to be transmitted to •	
the TPM, and before it’s done, process B’s command byte stream
starts being transmitted. The byte stream sent to the TPM will be
a mix of command bytes from both processes, and the TPM will
probably return an error code.

Process A sends a command, and Process B reads the response.•	

Process A’s command byte stream is transmitted, and then, while •	
its response is being read, Process B’s byte stream starts being
transmitted.

Process A creates and loads a key exclusively for its own use. •	
Process B context saves (using the TPM2_ContextSave command)
the key and then, sometime later, context loads it (using the
TPM2_ContextLoad command) and uses it for its own purposes.

A TAB can be implemented in a couple of different ways: either with a TPM lock or
without one.

In the lock architecture, a software method of sending a “lock” down to the TAB
could be designed. This would signal the TAB that no other process would be allowed
access to the TPM until the process that locked it is completes. This would have the
advantage of allowing a TAB to complete multiple commands to the TPM without
interruption. And interestingly enough, this architecture would eliminate the need for an
RM, assuming you could make it work. An application could claim a lock on the TPM and
send commands to the TPM while managing all TPM contexts itself (this management
includes cleaning up after itself by evicting all objects, sequences, and sessions before
releasing the lock). The Achilles heel of this architecture is that the application might fail
to release the lock, starving all other applications. There could be some sort of timeout
mechanism, but that would place artificial limits on the time that an application could
exclusively use the TPM. This in turn would force applications to do some fairly complex
management of corner cases related to TPM contexts since they couldn’t depend on the
lock being active long enough to complete their TPM operations. This approach was
initially considered by the TCG TSS working group and rejected after some very wise
advice from Paul England of Microsoft.

Chapter 18 ■ Context Management

291

The simpler lock-less architecture allows the transmission of a TPM command
and reception of its response atomically without interruption from any other processes’
interactions with the TPM. This reduces the time that the process exclusively accesses
the TPM to the time it takes to send a command and receive a response. This architecture
requires an underlying RM because competing applications cannot be in the business of
managing each other’s objects, sessions, and sequences. For example:

1.	 Process A happens to be the only application accessing the
TPM for a while, and during this time it starts three sessions
and loads three keys.

2.	 Then process B decides it’s ready to talk to the TPM and wants
to create a session and a key. If the TPM has only three session
slots and three object slots, process B must first unload at least
one of process A’s sessions and one of its objects.

3.	 This forces process B to manage process A’s TPM contexts—
an untenable position in terms of inter-process isolation
(security) and software complexity. Without a central RM,
applications must manage all TPM contexts themselves. It’s
almost impossible to make this work, and it guarantees that
processes can mess with each other’s TPM contexts.

Hence the need for an RM.

Resource Manager
The RM is responsible for transparently handling all the details of swapping objects,
sessions, and sequences in and out of the TPM. Very highly embedded, single-user
applications may choose to handle these tasks themselves, but, as discussed previously,
most systems are multiuser and require an RM. As an analogy, imagine if all PC
applications had to manage memory swapping in and out of memory and the hard disk
themselves instead of relying on the operating system to do this. The RM performs a
similar function for processes that access TPMs.

Resource Manager Operations
At the risk of stating the obvious, if a transient entity is used in a command, it must be
loaded into TPM memory. This means that an RM must parse the command byte stream
before the command is sent to the TPM and take any actions required to ensure that
all transient objects used by that command are loaded into the TPM. This includes all
sessions referenced in the authorization area and all objects, sessions, and sequences
whose handles are in the command’s handle area.

Chapter 18 ■ Context Management

292

The basic operations that an RM must perform are as follows2:

Virtualize all object and sequence handles sent to and received •	
from the TPM. Because more of these can be active than can be in
the TPM’s internal memory, they must be virtualized.3

Maintain tables to keep track of contexts for objects and •	
sequences.

Maintain a virtual-to-TPM handle mapping for objects and •	
sequences that are loaded in the TPM.

For commands being sent to the TPM:•	

Capture all command byte streams before they’re sent ··
to the TPM.

Check for any handles in the authorization area or handle ··
area. If these handles represent objects, sequences, or
sessions, ensure that the saved contexts for these are loaded
into the TPM so that the command can successfully execute.
For objects and sequences, replace the virtual handles in the
command byte stream with the real handles returned from the
load commands before sending the command to the TPM.

Note■■   Session handles do not need to be virtualized, because they are constant for the
lifetime of the session: that is, when a session is reloaded, it keeps the same handle. The
“why” of this is discussed later. For now, it’s sufficient to understand the difference between
objects and sequences, which get new handles every time they’re context loaded, and
sessions, which do not. 

For responses from the TPM:•	

Capture these responses before they are returned to higher ··
layers of software.

Virtualize any object or sequence handles in the responses, ··
and replace the handles returned by the TPM in the response
byte stream with these virtualized handles.

It must either proactively guarantee that commands will never •	
fail due to being out of memory in the TPM or reactively fix the
problem when the required contexts can’t be loaded into the TPM.

2For a reference implementation of a resource manager see the Test/tpmclient/ResourceMgr
directory in the SAPI library and test code. The location for this was described in Chapter 7.
3TPM handle virtualization is not to be confused with OS level virtualization of hardware
or operating systems.

Chapter 18 ■ Context Management

293

There are two possible ways to implement the proactive •	
approach:

The simplest proactive approach requires that, after ··
completion of each TPM command from software layers
above the RM, all objects, sessions, and sequences must be
context saved and removed from TPM internal memory.
This is inherently a simpler approach, but it does cause more
commands to be sent to the TPM. For example, after a load
command for an object, the object is unloaded even though
it might be used in the next command.

The second proactive approach is to examine the ··
command’s handle and session area before executing it, to
find all the objects, sequences, and sessions that must be
loaded into the TPM. Next, enough of the objects, sequences,
and sessions currently loaded into the TPM are evicted that
the required ones can be context loaded. Then the required
ones that aren’t already loaded into the TPM are loaded.

Note■■  A hardware-triggered command, _TPM_Hash_Start, is discussed later in this
chapter. This command implicitly, and transparently to the RM, evicts an object or session.
This imposes some special requirements on the second type of proactive approach. 

The reactive approach takes actions after a command fails when •	
the response code indicates that the TPM was out of memory.
When this type of error code is received, the RM must remove
objects, sessions, or sequences until enough memory is freed to
load the objects, sessions, and sequences required for the current
command. Then the original command must be replayed.

Note■■   From hard-earned experience, the reactive approach is extremely difficult to code
and even harder to debug. I highly recommend one of the proactive approaches. I tried the
reactive approach and it didn’t end well, resulting in a recoding effort. Enough said. 

The RM must properly handle object, sequence, and session •	
contexts across reset events, as described in the previous section.

The above covers the basic requirements. Others for handling corner cases and
some more esoteric functionality are detailed in the “TSS TAB and Resource Manager
Specification”.

Now let’s examine the TPM features that support RMs.

Chapter 18 ■ Context Management

294

Management of Objects, Sessions, and
Sequences
Because the TPM has limited internal memory, objects, sessions, and sequences
need to be dynamically swapped in and out of memory. As an example, the reference
implementation of a TPM 2.0 implemented by the Microsoft simulator only allows room
for three object slots. An object slot is internal TPM memory for an object or sequence.
There are also three session slots. Hence the need for virtualization of transient entities
(here, the term transient entities describes transient objects, sessions, and sequences).
This section describes the TPM capabilities and commands that are used to accomplish
this virtualization.

TPM Context-Management Features
The TPM capabilities used to manage transient entities are capability properties that can
be queried, special error codes, three TPM commands, and some special handling for
TPM2_Startup and TPM2_Shutdown. These capabilities are used by the caller or, preferably,
a dedicated RM to virtualize and manage transient entities.

TPM Internal Slots
TPM internal memory for transient entities consists of slots. A maximum number of slots
are available for loaded objects and sequences (MAX_LOADED_OBJECTS), and a similar
maximum for loaded sessions (MAX_LOADED_SESSIONS). Both of these maximums can be
queried using the TPM2_GetCapability command. The RM can query these maximums
and use them to manage the loaded contexts. Or it can rely on error codes returned by
the TPM. Because of a special case related to _TPM_Hash_Start, some RMs require a
combination of these.

Special Error Codes
Special error codes are used to tell the RM that the TPM is out of memory, meaning
no slots are available, and the RM must do something: TPM_RC_OBJECT_MEMORY (out of
memory for objects and sequences), TPM_RC_SESSION_MEMORY (out of session memory),
or TPM_RC_MEMORY (out of memory in general).

These error codes are returned by commands that need to use object, sequence, or
session slots in the TPM. For example the TPM2_Load command tries to load an object,
and if there is no memory, TPM_RC_OBJECT_MEMORY or TPM_RC_MEMORY may be returned.
The commands that explicitly use object or sequence slots are TPM2_CreatePrimary,
TPM2_Load, TPM2_LoadExternal, TPM2_HashSequenceStart, TPM2_HMAC_Start, and
TPM2_ContextLoad (when the context being loaded is an object or sequence context).

Additionally, three commands implicitly use an object slot. TPM2_Import uses one
slot for scratchpad memory; the slot is freed after the command completes. Likewise, any
command that operates on a persistent handle uses one slot for scratchpad operations

Chapter 18 ■ Context Management

295

and frees the slot after completion. Both types of commands return one of the above error
codes if no slots are available. In response, the RM must evict a transient entity and retries
the command.

The third command that implicitly uses an object slot is kind of strange: _TPM_Hash_Start.
This command is typically triggered by hardware events, and it doesn’t return an error
code if no slots are available. Instead, it kicks an object out and provides no indication
of which object was evicted. This means the RM and/or calling applications had better
make sure one of the following is true during any time period when this command
could be triggered by hardware:4

One slot is available. The RM can use the •	 TPM2_GetCapability
command and query the MAX_LOADED_OBJECTS property. Based on
the response, the RM can offload an object to free a slot. 5

The contexts for all objects or sequences that currently occupy the •	
TPM’s slots are saved. Otherwise, an object will be evicted with no
ability to be reloaded.

The contexts for all objects or sequences that currently occupy the •	
TPM’s slots are unneeded. In this case, it doesn’t matter if one is
evicted with no chance of being reloaded.6

The commands that explicitly use session slots are TPM2_StartAuthSession,
TPM2_ContextLoad (when the context being loaded is a session context), and all commands
that use sessions (except for those that use sessions for password authorization).

TPM Context-Management Commands
The TPM commands that enable transient entity management are TPM2_ContextSave,
TPM2_ContextLoad, and TPM2_FlushContext. These commands have different effects
depending on the type of transient entity being operated on.

TPM2_ContextSave saves the context of a transient entity and returns the entity’s
context. The returned context is encrypted and integrity protected. This is done in a
manner that only allows the context to be loaded on the exact same TPM that saved it; a
saved context can’t be loaded into a different TPM. It is important to note that saving the
context saves it into system memory, which may be volatile. Some other mechanism is
required if the saved context needs to preserved across events that might erase memory
contents, such as hibernation or sleep. For the PC, in the case of hibernation, the system
saves all memory contents to some form of nonvolatile storage, such as a disk drive; for a
sleep event, the memory remains powered on, which preserves the memory contents.

4This argues in favor of the simplest proactive approach to RM design, described earlier in this
chapter. In that case, for the most part, none of these mitigations is required. There is still a small
vulnerability: the time window from the time the RM completes the command to the time it is done
evicting objects and sessions. If the _TPM_Hash_Start is triggered in this time window, an object or
sequence context will be lost.
5The best way to do this would be for the process that’s going to trigger the _TPM_Hash_Start
command to send a request to the RM to free up an object slot.
6Since the RM really has no way to do this, the OS would have to have some way of ensuring this.

Chapter 18 ■ Context Management

296

After the context is saved, if the entity is an object or a sequence, the entity still
resides in the TPM and has the same handle. The saved context is a new copy of the
object or sequence context.

A session, however, is handled differently. When a session’s context is saved by the
TPM2_ContextSave command, it is evicted from TPM memory. A session’s context handling
is unique: the context can either be evicted and in system memory, or it can be loaded on
the TPM, but not both. Regardless of where the session’s context resides, it always has the
same handle and it’s always “active” until its context is flushed by the TPM2_FlushContext
command or a command is sent using the session with the continueSession flag cleared.

The reason for this special handling of sessions’ handles is to prevent multiple copies
of sessions and, hence, session replay attacks. A small piece of session context is retained
inside the TPM after the context is saved.

For objects, sequences, and sessions, TPM2_FlushContext removes all of the transient
entity’s context from the TPM. In the case of an object or a sequence, the object—which
still resides in the TPM after the TPM2_ContextSave command—is completely removed,
but the saved context can still be reloaded. In the case of a session, the remaining session
context is removed, which means the session is no longer active, the session context
cannot be reloaded, and the session handle is freed for use by another session.

TPM2_ContextLoad is used to reload a saved context into the TPM.7

For an object or sequence, the context is loaded and a new handle is created for the
object. An object or sequence context can be reloaded multiple times, returning a new
handle each time. This means multiple copies of an object or sequence can reside in the
TPM at any given time.8

For a session, the TPM2_ContextLoad command reloads the session and returns the
same session handle. Also, a session’s context can only be reloaded once after its context
was saved in order to prevent session replay attacks.

Special Rules Related to Power and Shutdown Events
TPM Restart, TPM Reset, and TPM Resume are described in detail in Chapter 19. There
are some special context-handling rules related to these events. This section describes the
high-level “why” of these rules and then the details of the rules themselves.

A TPM Reset is like a cold power reboot, so session, object, and sequence contexts saved
before a TPM Reset can’t be reloaded afterward. Because TPM2_Shutdown(TPM_SU_CLEAR)
was performed or no TPM2_Shutdown at all was executed, none of the information required to
reload saved contexts was saved.

7It should be noted that although the names are similar, the TPM2_Load and TPM2_ContextLoad
commands are quite different. TPM2_Load performs the initial load of an object after creation by
TPM2_Create. This load command can’t be used for sessions, nor can it be used to load an object’s
or sequence’s saved context. TPM2_ContextLoad loads a transient entity after its context has been
saved by the TPM2_ContextSave command. The similar names and overlap in functionality (in the
case of objects) has tripped up many an unwary developer, including me at times.
8Having multiple copies of an object or a sequence loaded in the TPM serves no useful purpose and
uses up more of the limited slots available in the TPM. The quote by David Wooten at the beginning
of this chapter resulted from a discussion about this. Even though it serves no useful purpose,
it doesn’t pose a security risk, so the TPM allows it in the interest of internal TPM firmware
simplicity.

Chapter 18 ■ Context Management

297

A TPM Restart is used to boot after the system hibernated, and a TPM Resume is
used to turn on your computer after a sleep state has been entered. For both of these
cases, because TPM2_Shutdown(TPM_SU_STATE) was executed, saved session, object, and
sequence contexts can be reloaded; the one exception is that objects with the stClear bit
set cannot be reloaded after a TPM Restart.

The detailed rules are as follows:

Any type of TPM reset removes transient entities from the TPM. •	
If the transient entity’s context wasn’t saved, there is no way to
reload the entity.

As for the case of the context being previously saved, if:•	

·· TPM Resume occurs: Saved contexts can be context loaded.

•	 TPM Restart occurs and the object has the stClear bit cleared:
The object’s saved context can be context loaded.

·· TPM Reset or a TPM Restart occurs with the object’s stClear
bit set: The saved object’s context can’t be context loaded.

For a session, if the session’s context was saved:•	

The context can be context loaded after a TPM Resume or ··
TPM Restart.

The context can’t be context loaded after a TPM Reset.··

State Diagrams
Because of all these complicated rules, some diagrams may help to illustrate both the
normal handling and the special rules related to TPM Reset, TPM Restart, and TPM
Resume (see Figure 18-1).

Figure 18-1.  TPM state diagram for objects and sequences

Chapter 18 ■ Context Management

298

Some notes about this diagram:

Even though the word •	 objects is used, this refers to both objects
and sequences.

The •	 Load and ContextLoad arcs can be performed multiple times.
Each instance results in a new copy of the object in the TPM with
a new handle. Other than the handle, this object is identical to the
other copies. Having multiple copies loaded in the TPM serves no
useful purpose, as noted earlier.8

The •	 ContextSave arc can occur multiple times. Each instance
results in a new copy of the object’s context.

For sequences, the diagram is the same except for the following: •	
a sequence’s context must be saved after each SequenceUpdate.
Otherwise a ContextSave followed by a ContextLoad would result
in a bad hash or HMAC computation.

The state diagram for sessions is relatively simple compared to objects and
sequences (see Figure 18-2). The important differences to note are as follows:

Objects and sequences can exist both on and off the TPM •	
simultaneously, whereas sessions can’t.

Objects can be flushed and then reloaded. Sessions, when •	
flushed, are terminated, and their saved contexts can’t be
reloaded.

Unlike objects and sequences, active sessions always keep the •	
same handle.

Sessions can be “active” whether loaded in the TPM or not. •	
They only become inactive when they are terminated
(Session Ended state).

Chapter 18 ■ Context Management

299

Summary
This concludes the discussion of context management. The TPM provides all the
functionality needed to implement a resource manager. Although there are probably
many ways to design a resource manager, at a high level, the simplest proactive approach
is recommended.

Figure 18-2.  TPM state diagram for sessions

	Chapter 18: Context Management
	TAB and the Resource Manager: A High-Level Description
	TAB
	Resource Manager
	Resource Manager Operations

	Management of Objects, Sessions, and Sequences
	TPM Context-Management Features
	TPM Internal Slots
	Special Error Codes
	TPM Context-Management Commands

	Special Rules Related to Power and Shutdown Events
	State Diagrams

	Summary

