
151

Chapter 12

Platform Configuration
Registers

Platform Configuration Registers (PCRs) are one of the essential features of a TPM.
Their prime use case is to provide a method to cryptographically record (measure)
software state: both the software running on a platform and configuration data used by
that software. The PCR update calculation, called an extend, is a one-way hash so that
measurements can’t be removed. These PCRs can then be read to report their state. They
can also be signed to return a more secure report, called an attestation (or quote). PCRs
can also be used in an extended authorization policy to restrict the use of other objects.

The TPM never passes judgment on the measurements. Internally, it doesn’t know
which measurements are good or bad, or more or less secure or trusted. At the time
of measurement, TPM PCRs just record values. Security or trust comes later, when an
application uses PCR values in an authorization policy, or a remote party asks for a signed
attestation (quote) of the values and judges their trustworthiness.

New for TPM 2.0, TPMs no longer hard-code the SHA-1 algorithm for PCRs. The
algorithm can be changed. Some implementations include banks of PCRs, with each
bank implementing a different algorithm.

A TPM implements a number of PCRs: for example, 24 for a PC TPM. The PCRs
are allocated by convention to the various software layers, from early boot code to the
operating system and applications. They’re also allocated for both the software to be run
(often the even-numbered PCRs) and the configuration files that customize the boot
process (typically the odd-numbered PCRs.)

PCR Value
The primary use case for a PCR is to represent the platform software state, the history of the
critical software (and configurations) that have run on the platform until the present. The
TPM initializes all PCRs at power on, typically to either all zeroes or all ones, as specified
by the TPM platform specification. The caller can’t directly write a PCR value. Rather, a
PCR value is changed through what the TPM calls an extend operation, as described in
Chapter 2. Cryptographically, it is as follows:
 
PCR new value = Digest of (PCR old value || data to extend)
 

Chapter 12 ■ Platform Configuration Registers

152

In words, it takes the old PCR value and concatenates some data to be extended.
The data to be extended is almost always a digest, although the TPM can’t enforce this.
The TPM digests the result of the concatenation and stores the resulting digest as the new
PCR value.

After reboot, a platform begins with trusted software called the core root of trust
measurement (CRTM). The CRTM measures (calculate a digest of) the next software
to be run and extends that digest into an even PCR. It then extends that software’s
configuration data into an odd PCR. This software, perhaps a BIOS, in turn measures
and extends the next software, perhaps a master boot record. The measurement chain
continues through the early OS kernel code and perhaps further. Security-critical
configuration files are also measured.

The net result is that the PCR value represents the history of all measurements
extended into it. Because of the one-way nature of a secure digest, there is no way to undo
a measurement (to extend the PCR back to a desired value).

As a typical example, the PC Client specification allocates the PCRs as shown in
Table 12-1.

Table 12-1.  Example PCR Allocation

PCR Number Allocation

0 BIOS

1 BIOS configuration

2 Option ROMs

3 Option ROM configuration

4 MBR (master boot record)

5 MBR configuration

6 State transitions and wake events

7 Platform manufacturer specific measurements

8–15 Static operating system

16 Debug

23 Application support

The security of this process depends on the security of the CRTM. The CRTM, being
the first software to run, can’t be measured or validated. It’s a root of trust. The platform
manufacturer can protect the CRTM from attack by making it immutable, putting it in
ROM, or otherwise preventing software updates. Because this precludes bug fixes, an
alternate method is to use signed code and have the current CRTM validate the signature
before updating itself.

Chapter 12 ■ Platform Configuration Registers

153

The Linux open source Integrity Measurement Architecture (IMA) integrates boot-time
measurements into the kernel. An IMA policy determines which software elements are
measured. These typically include libraries and executables run under root privilege
during boot, as well as Linux configuration files that determine the boot path. It doesn’t
typically measure user-level applications.

Number of PCRs
In practice, a TPM contains multiple PCRs. The PC Client platform requires 24 PCRs, and
this minimum is expected to be the actual number in PCs. Automotive TPMs may have
many more. The platform TPM specification specifies the PCR attributes, and a platform
software specification standardizes what measurements go into which PCRs.

The platform specifications may set aside several PCRs for user-level applications.
And one PCR (16), the debug PCR, is reserved for testing software. As such, it’s resettable
without a power cycle.

As described in Chapter 11, TPM 2.0 provides for user-defined NV extend indexes,
which are essentially PCRs. They have additional flexibility in that the hash algorithm,
password, and policy can be individually set for each index. The metadata (mainly
algorithm and authorization) is nonvolatile, whereas the actual data values are likely to
be volatile through the use of a hybrid index.

The remainder of this chapter is limited to architecturally defined PCRs.

PCR Commands
PCR commands include the following:

•	 TPM2_PCR_Extend: Likely to be the most-used PCR command.
Extends a digest into a PCR.

•	 TPM2_PCR_Event: Permits the TPM to do the digest and then
extend the digest in one operation. The message is limited to
1,024 bytes.

•	 TPM_PCR_Read: Reads a PCR, which is useful when validating an
event log as described later.

•	 TPM2_PCR_Reset: Resets a PCR, which is useful for some
application-defined PCRs that permit this. Most PCRs can’t be
reset.

•	 TPM_PCR_Allocate: Assigns digest algorithms to PCRs. This is
likely to be done once at most, if the default algorithm is to be
changed.

•	 TPM2_PCR_SetAuthPolicy: Assigns an authorization policy to a
PCR group. It isn’t required in the PC Client.

•	 TPM2_PCR_SetAuthValue: Assigns an authorization value to a PCR
group. It isn’t required in the PC Client.

Chapter 12 ■ Platform Configuration Registers

154

PCRs for Authorization
Authorization is a common use for PCRs. An entity can have a policy that prevents it from
being used unless specific PCRs have specific values. Chapter 14 explains this in detail.
The policy can specify a subset of PCRs and a value for each. Unless the PCRs are in this
state, the policy is not satisfied and the entity can’t be accessed.

USE CASE: SEALING A HARD DISK ENCRYPTION KEY
TO PLATFORM STATE

Full-disk encryption applications are far more secure if a TPM protects the
encryption key than if it’s stored on the same disk, protected only by a password.
First, the TPM hardware has anti-hammering protection (see Chapter 8 for a detailed
description of TPM dictionary attack protection), making a brute-force attack on the
password impractical. A key protected only by software is far more vulnerable to a
weak password. Second, a software key stored on disk is far easier to steal. Take
the disk (or a backup of the disk), and you get the key. When a TPM holds the key,
the entire platform, or at least the disk and the motherboard, must be stolen.

Sealing permits the key to be protected not only by a password but by a policy.
A typical policy locks the key to PCR values (the software state) current at the
time of sealing. This assumes that the state at first boot isn’t compromised. Any
preinstalled malware present at first boot would be measured into the PCRs, and
thus the key would be sealed to a compromised software state. A less trusting
enterprise might have a standard disk image and seal to PCRs representing that
image. These PCR values would be precalculated on a presumably more trusted
platform. An even more sophisticated enterprise would use TPM2_PolicyAuthorize,
and provide several tickets authorizing a set of trusted PCR values. See Chapter
14 for a detailed description of policy authorize and its application to solve the PCR
brittleness problem.

Although a password could also protect the key, there is a security gain even without
a TPM key password. An attacker could boot the platform without supplying a TPM
key password but could not log in without the OS username and password. The OS
security protects the data. The attacker could boot an alternative OS, say from a live
DVD or USB stick rather that from the hard drive, to bypass the OS login security.
However, this different boot configuration and software would change the PCR
values. Because these new PCRs would not match the sealed values, the TPM would
not release the decryption key, and the hard drive could not be decrypted.

Chapter 12 ■ Platform Configuration Registers

155

These are the steps to seal:

1.	 Construct the policy, a TPM2_PolicyPCR, specifying the
PCR values that must be present at the time of the unseal
operation.

2.	 Use either of the following (similar to TPM 1.2 seal)

•	 TPM2_GetRandom() to create the symmetric key
external to the TPM

•	 TPM2_Create(), specifying the symmetric key and
the policy to create the sealed object

or (new TPM 2.0 alternative)•	

•	 TPM2_Create(), specifying just the policy, to let the
TPM create the symmetric key used in the sealed data
object

Use the following to unseal:

•	 TPM2_Load() to load the object

•	 TPM2_PolicyPCR() to satisfy the sealed object policy

·· TPM2_Unseal() to return the symmetric key

USE CASE: VPN KEYS

Similar to the previous use case, a VPN private key can be locked to PCRs. The TPM
permits the use of the VPN to connect to the enterprise intranet only if the software
is in an approved state.

USE CASE: SECURELY PASSING A PASSWORD FROM THE OS
PRESENT TO OS ABSENT ENVIRONMENT

A platform administrator (for example, the IT administrator) wishes to grant the
end user permission to change a BIOS setting, perhaps changing the boot order.
The BIOS needs the administrator password. The administrator must pass the
privileged-access password to the BIOS but doesn’t want to reveal the password to
the end user.

Chapter 12 ■ Platform Configuration Registers

156

The administrator seals the password to the PCR state present while the BIOS is
running (after a reboot). The admin supplies this sealed password to the user at the
OS level. The user can’t unseal the password while the OS is running, but the BIOS
can unseal and use it after a reboot.

These are the steps at the OS level:

1.	 Construct a policy, a TPM2_PolicyPCR specifying that
PCR[2] is all zeroes. This PCR will only have this value very
early in the boot cycle, when the CRTM passes control to the
first part of the BIOS.

2.	 Use TPM2_Create(), specifying the password and the
policy to create the sealed object. The password is supplied
via an encrypted session (see Chapter 17), essentially a
secure tunnel into the TPM.

These are the steps at the BIOS level:

3.	 Use TPM2_Load() to load the object.

4.	 Use TPM2_PolicyPCR() to satisfy the sealed object policy.

5.	 Use TPM2_Unseal() to return the secret.

A typical use of PCRs for authorization would be to tie the use of an entity to the
platform software state, but other uses are possible. For example, a password can be
extended into a PCR, thus unlocking access. When access is no longer desired, the PCR
can be reset (if permitted) or just extended with some other value.

PCRs for Attestation
Attestation is a more advanced use case for PCRs. In a non-TPM platform, remote software
can’t usually determine a platform’s software state. If the state is reported through strictly
software means, compromised software can simply lie to the remote party.

A TPM attestation offers cryptographic proof of software state. Recall that a
measurement can’t be undone. A PCR can’t be rolled back to a previous value. The
attestation is a TPM quote: a number of PCR are hashed, and that hash is signed by a
TPM key. If the remote party can validate that the signing key came from an authentic
TPM, it can be assured that the PCR digest report has not been altered.

We say this is a more advanced use because it’s insufficient to simply validate the
signature and the key’s certificate. The party has to next validate that the digest of the PCR
matches the reported PCR values. This is straightforward.

Next, the party has to read an event log—a log of all software and other states
measured, with their hashes—and validate that the event log matches the PCR values.
This is still not too hard; it just involves some math.

Chapter 12 ■ Platform Configuration Registers

157

The TCG Infrastructure Work Group (IWG) and PC Client Work Group specify the
details of the event log format. The Platform Trust Services (PTS) specification from the
IWG specifies how to report measurements through Trusted Network Connect (TNC).
Standardizing the logging and reporting formats permits standard software to parse and
validate the log against the attestation (quote).

The Integrity Measurement Architecture (IMA) for Linux specifies an event-log
file format. Typical entries looks like this and includes a PCR index, a template hash, a
template name, the file hash, and a hint (untrusted) as to the file name:
 
10 88da93c09647269545a6471d86baea9e2fa9603f ima
a218e393729e8ae866f9d377da08ef16e97beab8 /usr/lib/systemd/systemd
 
10 e8e39d9cb0db6842028a1cab18b838d3e89d0209 ima
d9decd04bf4932026a4687b642f2fb871a9dc776 /usr/lib64/ld2.16.so
 
10 babcdc3f576c949591cc4a30e92a19317dc4b65a ima
028afcc7efdc253bb69cb82bc5dbbc2b1da2652c /etc/ld.so.cache
 
10 68549deba6003eab25d4befa2075b18a028bc9a1 ima
df2ad0965c21853874a23189f5cd76f015e348f4 /usr/lib64/libselinux.so.1
 

The hardest part comes next. Through the TPM signed attestation quote, the party
knows the platform software state. It now has to decide whether that software state is
secure. The party has to match the measurement hashes against a whitelist, potentially
requiring cooperation from third-party software providers.

This is the essence of the Trusted Computing concept. PCRs provide a means to trust
that a list of software modules indeed reflects the software state of a platform. It doesn’t
make any value judgments as to whether that software is secure.

USE CASE: QUOTE

A networking device wants to decide whether to let a client platform connect to a
network. It wants to know whether the platform is running fully patched software.
The device quotes the TPM PCR and validates the result against a whitelist of
patched software modules. If the platform is current, it’s permitted on the network.
If not, it’s routed to a patch server but not otherwise permitted network access.

The StrongSwan open source VPN solution can use the TCG TNC standard,
combining TPM quotes and a policy to gate access to a VPN.1

1http://wiki.strongswan.org/projects/strongswan/wiki/TrustedNetworkConnect.

http://wiki.strongswan.org/projects/strongswan/wiki/TrustedNetworkConnect

Chapter 12 ■ Platform Configuration Registers

158

The Kaspersky antivirus software end user license agreement (EULA) permits the
software to report on the files processed, versions of the software, and more. The license
permits use of the TPM, if present, to authenticate the report.2

PCR Quote in Detail
It’s interesting to examine the quote data in detail. Through this data, the reader can
understand the security properties of the quote. A quote’s structure—the structure that is
hashed and signed—contains these fields:

•	 Magic number TPM_GENERATED: Prevents an attacker from signing
arbitrary data with a restricted signing key and claiming later that
it was a TPM quote. See Chapter 10 for the interaction between
restricted signing keys and TPM_GENERATED.

•	 Qualified name of the signing key: A key could appear strong
but be protected by an ancestor with a weaker algorithm.
The qualified name represents the entire ancestry of the key.

•	 Extra data provided by the caller: This data is typically an
anti-replay nonce, which is proof that the quote is current.

•	 TPM firmware version: Included so that the verifier can decide if it
trusts a particular TPM code version.

•	 TPM clock state: The variable resetCount is of particular
importance for the next use case. For privacy, the clock
information is obfuscated when signing with a key outside the
endorsement hierarchy.3 This isn’t an issue, because the attester
only wants to detect if resetCount changes, not read its actual
value.

The type of attestation structure (a quote, in this case).•	

The selection of PCRs included in the quote.•	

A digest of those selected PCRs.•	

2http://support.kaspersky.com/8752.
3For a detailed explanation of this privacy issue, see the “Other Privacy Considerations” section of
Chapter 9.

http://support.kaspersky.com/8752

Chapter 12 ■ Platform Configuration Registers

159

USE CASE: DETECTING A REBOOT BETWEEN TRANSACTIONS

A platform is performing financial transactions. A monitoring device performs a
quote every 15 minutes to detect changes to the platform software state. However,
an attacker sneaks in between quotes, reboots into compromised software, performs
an unauthorized transaction, and then reboots the platform back to the trusted state.
The next quote will show the same trusted PCR values. However, the resetCount
change tells the monitoring software that two unexpected reboots occurred.

PCR Attributes
Each PCR comes with several attributes. The attributes are defined in the TPM library
specification, but which PCR indexes have which attributes is left to the platform-specific
specification. Generally, most PCR indexes are assigned by convention to specific
software, but a few are unassigned and open for use by applications.

The PCR Reset attribute indicates whether the PCR can be reset using the TPM2_PCR_
Reset command. Typically, the reset value is all zeroes. Most PCRs are not resettable,
because this would permit compromised software to set the PCR value to a known good
state. Some PCRs are resettable only in a certain locality, corresponding to dynamic root
of trust measurement (DRTM) sequences.

The PCR Extend attribute indicates whether the PCR can be extended using the
TPM2_PCR_Extend or TPM2_PCR_Event command. Obviously, a PCR that couldn’t be
extended would be useless, but some can be extended only in some localities.

The PCR Reset attribute via DRTM indicates whether a PCR can be extended
through writes directly to the TPM interface, as opposed to the normal TPM command
format. These are both platform specific and linked to the particular TPM hardware
interface. This attribute typically varies by locality.

All PCRs are reset at reboot when TPM2_Startup is issued with the CLEAR parameter.
Most are typically reset to all zeroes, but some can have other values, such as all ones or a
value related to the locality at which the startup command was issued.

The No Increment attribute is tied to the TPM2_PolicyPCR command. A policy tied
to a PCR is an immediate assertion. The PCR values at the time of the TPM2_PolicyPCR
command are extended into the policy session hash. However, a PCR value could change
after the immediate assertion, which should normally invalidate the policy session. This
invalidation is implemented though a counter that is normally incremented whenever a
PCR is changed. The policy session records the value during TPM2_PolicyPCR and then
checks it when the session is used. If the count values aren’t equal, the TPM knows that a
PCR changed, and the policy session use fails.

Note the word normally in the previous paragraph. The TPM specification provides
the No Increment attribute. PCRs with this attribute, when changed, don’t increment
the counter and thus don’t invalidate policy sessions in use. Most PCRs don’t have this
attribute, but the PC Client specification assigns it to a debug PCR and a few reserved for
applications.

Chapter 12 ■ Platform Configuration Registers

160

USE CASE: NO INCREMENT ATTRIBUTE PCRS FOR VMS

An application-level PCR may be assigned to measure a virtual machine. This PCR
is reset because the VM is instantiated and extended frequently over the lifetime of
the VM. If each extend invalidated a policy session, the TPM2_PolicyPCR command
would be useless.

USE CASE: NO INCREMENT ATTRIBUTE PCRS FOR AUDIT

An application-level PCR may be assigned to secure an audit log. See Chapter 16
for details on this use case. This PCR is reset when the audit log is initialized and
is extended as the log is updated. If each extend invalidated a policy session, the
TPM2_PolicyPCR command would be useless.

PCR Authorization and Policy
As with other entities, a PCR may have an authorization value or policy. The library
specification permits either to be set per PCR or per group of PCRs.

The PC Client TPM has neither. No authorization is required to access the PCR.
The rationale is that authorization would increase the boot time, which is often an
important parameter.

PCR Algorithms
The first requirement that led to TPM 2.0 was the removal of TPM 1.2’s hard-coding of
the SHA-1 hash algorithm. Because PCRs are closely tied to hash algorithms, TPM 2.0
theoretically offers many PCR possibilities through the TPM2_PCR_Allocate command.

The key word is theoretically. PCRs can be allocated in banks, with each bank
corresponding to a hash algorithm. The command permits PCRs to be allocated in any
combination, and a PCR can be assigned to more than one bank and have more than
one algorithm. The TPM2_Extend command must now specify not only a PCR index and a
digest but also an algorithm. If no index exists with that algorithm, the extend operation is
ignored.

So, in theory, software would perform multiple measurements, create multiple
digests, and then extend each digest into the appropriate bank. What does the PC Client
specification do in practice?

That specification requires only one bank with all PCRs in it. The bank defaults to
SHA-1 but can be changed to SHA-256. Although a TPM vendor is free to implement more
complicated combinations, we expect most TPMs to be operated as either purely SHA-1
or purely SHA-256. The supporting software knows the TPM’s algorithm and measures,
digests, and extends accordingly.

Chapter 12 ■ Platform Configuration Registers

161

Further, we expect that TPMs won’t change algorithms very often. If fact, the most
likely scenario is that it’s shipped with SHA-256 and remains SHA-256 forever, or that
it’s shipped with SHA-1 and then updates to SHA-256 once as the support software is
simultaneously updated.

Summary
PCRs have two basic uses. Their value may be reported in a signed attestation quote,
permitting a relying party to determine the platform software’s trust state. They may be
used in a policy to authorize the use of other objects based on PCR values. Whereas
TPM 1.2 PCRs were hard-coded to use the SHA-1 algorithm, TPM 2.0 PCRs can use other
hash algorithms.

	Chapter 12: Platform Configuration Registers
	PCR Value
	Number of PCRs
	PCR Commands
	PCRs for Authorization

	PCRs for Attestation
	PCR Quote in Detail
	PCR Attributes
	PCR Authorization and Policy
	PCR Algorithms

	Summary

