
173

Chapter 6

Addressing Application
Bottlenecks: Shared Memory

The previous chapters talked about the potential bottlenecks in your application and the
system it runs on. In this chapter, we will have a close look at how the application code
performs on the level of an individual cluster node. It is a fair assumption that there will also
be bottlenecks on this level. Removing these bottlenecks will usually translate directly to
increased performance, in addition to the optimizations discussed in the previous chapters.

In line with our top-down strategy, we will investigate how to improve your
application code on the threading level. On this level, you will find several potential
bottlenecks that can dramatically affect the performance of your application code;
some of them are hardware related, some of them are related to your algorithm. The
bottlenecks we discuss all come down to how the threads of your code interact with the
underlying hardware. From the past chapters you already have an understanding of how
this hardware works and what the important metrics and optimization goals are.

We will start with an introduction that covers how to apply Intel VTune Amplifier
XE and a loop profiler to your application to gain a better understanding of the code’s
execution profile. The next topic is that of detecting sequential execution and load
imbalances. Then, we will investigate how thread synchronization may affect the
performance of the application code.

Profiling Your Application
Profiling the code is the first step toward gaining an understanding of what parts of your
application are critical. As usual there are several options for performing this profiling
and each option provides different insights into your application and the code it executes.
Information of particular interest here is how much time the application spends in each
part of the code. This analysis is useful because of the two insights it provides:

1.	 You get a detailed breakdown of the application runtime.

2.	 It tells you exactly what the points of interest are for code
optimizations.

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

174

During the optimization work you will focus on the so-called hotspots that
contribute most to the application runtime, because improving their performance will be
most beneficial to overall runtime.

You have already seen a tool called PowerTOP in Chapter 4 that gives insight into
what is currently running on the system. However, it does not show what exactly the
running applications are executing. That is what the Linux tool suite perf is for.1 It
contains several tools to record and show performance data. One useful command is
perf top, which continuously presents the currently active processes and the function
they are currently executing. Figure 6-1 shows how the output of the interactive tool might
look for a run of the HPCG benchmark.2 The first column indicates what percentage of
CPU time the function (listed in column 4 of a line) has consumed since the last update
of the output. The second column shows in which process or shared library image the
function is located. The perf tool also supports the recording of performance data and
analyzing it offline with a command-line interface. Have a look at its documentation for a
more detailed explanation.

Figure 6-1.  Output of the perf top commmand with functions active in the HPCG
application

Although perf is a good start to monitor an application while it is running, most
of the performance analysis needs to be done postmortem (i.e., after the application
executed and performance data was collected). In this way it is possible to inspect the
performance data and focus on a particular performance aspect or code region, without
having to run the application all the time. This sets the stage for more visual and more
powerful tools like Intel VTune Amplifier XE.

Using VTune Amplifier XE for Hotspots Profiling
Intel VTune Amplifier XE provides a unified graphical user interface (GUI) that supports
the collection and analysis of performance data. It helps you configure the data collector
and set up the application for a collection run. After the collection, you can then work with

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

175

the data. VTune Amplifier XE supports both event-based sampling using the processor’s
built-in performance monitoring units (PMUs) and sampling based on instrumentation
of the binary code. In contrast to the Intel Trace Analyzer and Collector (see Chapter 5),
the focus of VTune Amplifier XE is on shared-memory and intra-node analysis. The
performance data is associated with the source code at all times, so you can easily
determine which source line of the application contributed to the performance data.

The most important place to start is with the hotspots analysis to dissect the compute
time of the application and relate that information to the application code. This gives a
good overview of where the application spends the most compute time. The individual
hotspots will be the focus areas of the optimization work to get the biggest bang for the
buck. As a side benefit, the hotspots analysis also provides a first insight into how well the
code executes on the machine. (We revisit this topic in Chapter 7.)

Hotspots for the HPCG Benchmark
As a first example, let’s have a look at the HPCG benchmark. For educational purposes,
we pretend that HPCG is an MPI-only code by compiling HPCG without OpenMP.
We then try to identify OpenMP candidate loops to add multithreading to the code
to make our assumed MPI-only a hybrid MPI/OpenMP code. Of course, in reality the
OpenMP directives are already in the code, so we can double-check if we came to same
parallelization strategy as the authors of HPCG.

It is a fair assumption that HPC codes are loopy codes that process bulk data in
several key loops that will consume most of the compute time. Hence, we need to get a
better understanding of the application code by looking at where the code spends time
and how this time is spent in the hotspots. We also need to check if the time is spent in
loop structures. To do that, we configure an analysis project in the VTune Amplifier XE
GUI and run the following command in VTune Amplifier XE using the Advanced Hotspot
method:
 
$ mpirun -np 48 ./hpcg.x 

Note■■   On most clusters it may not be possible to run the GUI. VTune Amplifier XE also
supports data collection and analysis on remote systems and from the command line.
If Remote (SSH) collection is selected in the project configuration, you can add the hostname
and credentials for a remote system. You can also use the Get Command Line button in
the GUI to get a command line that is ready for cut-and-paste to the cluster console or
job script. After the collection has finished, you can copy the resulting data to your local
machine for analysis within the GUI. For a command-line analysis, you do not need to create
a project. You will see examples of how to use this feature later on in this section. You can
find out more about collecting performance data and analyzing it with the command-line
interface in the VTune Amplifier XE user’s guide.3

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

176

Running this on our example machine gives us the result shown in Figure 6-2. The
code executed for 383 seconds and consumed about 18,330 seconds of CPU time, out
of which 10,991 seconds (almost 60 percent) is attributed to execution of a function
called ComputeSYMGS_ref. Function ComputeSPMV_ref contributes another 5,538
seconds (30 percent) to the compute time. That makes up about 90 percent of the total
CPU compute time. Thus, these two functions will be of interest when we’re looking for
optimization opportunities.

Figure 6-2.  Hotspot and parallelism summary of the HPCG benchmark

So, the next step is to dig deeper into these functions to find out more about what
they do and how they do it. We click on one of the hotspots or the Bottom-up button and
VTune will show a screen similar to the one in Figure 6-3. Here all relevant functions
are shown in more detail, together with their relevant execution time, their containing
module (i.e., executable file, shared object, etc.), and the call stack that leads to the
invocation of a hotspot. Of course, we will find our two suspect functions listed first and
second, as in the Summary screen. As we are interested in finding out more about the
hotspot, we change the filter to the Loops and Functions mode to let the tool also show
hot loops. You can enable this mode by changing the Loop Mode filter to Loops and
Functions in the filter area at the bottom of the GUI.

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

177

You might be surprised to see that the order of the hotspots now seems to have
changed. The functions ComputeSYMGS_ref and ComputeSPMV_ref are now at the tail of
the ranking, which can be seen by scrolling down to the bottom of the upper pane of the
screen shot in Figure 6-3. The new top hotspots are loops at several locations in these
functions. The hottest loop is at line 67 in the function ComputeSPMV_ref and consumes
13 percent of the total compute time. This is a good candidate for parallelization, isn’t it?
We cannot tell without reading the source code, so we open the source code of the loop
by double-clicking the line noting this loop within the VTune Amplifier XE GUI.
Listing 6-1 shows the pertinent code of this hotspot.

Listing 6-1.  Top Hotspot of the HPCG Benchmark

61 for (local_int_t i=0; i< nrow; i++) {
62 double sum = 0.0;
63 const double * const cur_vals = A.matrixValues[i];
64 const local_int_t * const cur_inds = A.mtxIndL[i];
65 const int cur_nnz = A.nonzerosInRow[i];
66
67 for (int j=0; j< cur_nnz; j++)
68 sum += cur_vals[j]*xv[cur_inds[j]];
69 yv[i] = sum;
70 }
 

As you can see, the code consists of two nested loops. VTune Amplifier XE identified
the inner loop as the hotspot. Which loop should we select as the target for OpenMP
parallelization? In this case, as in many others, the solution will be to parallelize the outer
loop. But how do we know how many iterations these loops are executing?

Figure 6-3.  Hotspots (loops and functions) for the HPCG benchmark

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

178

Compiler-Assisted Loop/Function Profiling
Unfortunately, the hotspot analysis does not provide all the data that might be important
to make sound decisions for our optimization work. Knowing about the CPU time for a
particular hotspot only indicates how much time the code has spent there. It does not tell
us how many times a hotspot or parts of it have been executed. For a loop hotspot that we
consider for optimization, it will be important to know how many times the loop structure
has been encountered from the surrounding code. In addition, we will be interested
in the trip count of the loop—that is, how many iterations it executes. The minimum,
maximum, and average number of trips through the loop suggest whether a loop
might be amenable for certain optimizations, such as parallelization through OpenMP
constructs. Hence, we need to complement the hotspots analysis with additional profiling
to make sure we have all these bits of information ready to make an informed decision for
optimizing the code.

Intel Composer XE ships with a compiler-assisted function and loop profiler that
supplies the information we are interested in. To make use of these features requires a
recompilation of the code with special command-line flags to augment the compiled
code with code to monitor function calls and loop execution at runtime. The profiling
can be enabled through the command-line arguments -profile-functions, -profile-
loops, and -profile-loops-report. For example, the new command line to compile the
HPCG benchmark might start with:
 
$ icc -profile-functions -profile-loops=all -profile-loops-report=2 ...
 

With these settings, the application will record runtime information for functions
and loops, including trip counts for all loops. There are several caveats to keep in mind
when using this feature, though. First, it only works with single-threaded, single-process
applications. Second, it may add considerable overhead to the runtime of the application.
The penalty depends on the code structure; many fine-grained functions and loops in
the code will add more overhead than fewer large functions and loops. To reduce the
overhead, you may try one or more of the command options listed in Table 6-1.

Table 6-1.  Additional Command-Line Options for the Compiler-Assisted Profiler

Flag Effect

-profile-loops=inner Only profile inner loops

-profile-loops=outer Only profile outer loops

-profile-loops-report=1 Report execution of loops, but no trip count

The loop profile for the HPCG example is given in Figure 6-4. When we compare
Figure 6-4 with the hotspot profile shown in Figure 6-3, we can see that the hotspots and
the loop profile do not match. This is no surprise; the loop profile was collected in
single-rank mode—that is, with only one MPI process executing. In addition, a loop with
a small trip count can exceed loops with large numbers of iterations if the loop body
is large and demands a lot of compute time. Nevertheless, the loop profile contains an
accurate itemization of the loops and their trip counts.

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

179

With the loop hotspots and the loop profile, we can now make an informed decision
about which of the two loops in ComputeSPMV_ref to parallelize. The hotspot analysis
told us that the inner loop is the hot loop. However, the loop profile tells us that the loop
in line 67 has been encountered 429 million times with a minimum and maximum trip
count of 1. It is easy to see that any parallelization would have done a very poor job on
this loop. But there is also the highlighted outer loop showing up in the loop profile. It has
been encountered 687 times with minimum and maximum trip count of 17,576 and 1.1
million, respectively. Also, the average trip count of about 625,572 iterations tells us that
this loop will be an interesting candidate for parallelization. Of course, one still needs to
check that there are no loop dependencies that would prevent parallelization. Inspecting
the loop body, we can see that this loop can be executed in parallel. Although it is a good
idea to check for loop-carried dependencies and data dependencies (Chapter 7) instead
of blindly adding OpenMP parallelization pragmas to loops, tools such as Intel Inspector
XE4 or Valgrind5 can be a great help in detecting and resolving issues introduced by
multithreading.

EXERCISE 6-1

Run a hotspot analysis for your application(s) and determine the minimum,
maximum, and average trip counts of its loops. Can you find candidates for
parallelization?

Figure 6-4.  Function and loop profile for the HPCG benchmark

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

180

Sequential Code and Detecting Load Imbalances
In a parallel program, the slowest thread determines the speed of the whole team working
in parallel. All the faster threads will have to wait until the slowest straggler thread
catches up and finishes its tasks. As a matter of fact, one of the challenges of parallel
programming is that of ensuring all threads receive an equal share of the computational
load. Please note that by “computational load” we are referring to the total number
of cycles spent per thread for the parallel work. For instance, if the loop body takes a
different amount of time to execute different iterations, the threads should not receive
equal shares of the loop’s iterations (for example, through static scheduling). Sequential
portions of your application can be seen as a special form of load imbalance, as other
threads and cores will be idle while the sequential code is executing in the master thread
of the application.

The hotspots analysis for a particular parallel region of code in your application
is a useful tool for detecting such load imbalances. VTune Amplifier XE indicates such
problems through various elements in the analysis GUI. First, the tabular view (or grid)
at the top contains, in column “User Time by Utilization,” a color code to visualize the
quality of parallel execution relative to the number of cores in the system. Red indicates
that the hotspot was not using the machine properly and exposes too low an average
degree of parallelism. Yellow stands for medium, whereas green suggests an ideal parallel
execution. These color codes should not be taken as the only source of information,
though; red or yellow hotspots always need closer investigation. Although load
imbalances typically show up as a lower degree of parallelism, the red and yellow color
codes can also be indicating too low a number of threads executing in parallel, owing to
locks, lower number of threads requested, or sequential regions in the hotspots. In case
you deliberately execute the application with a lower target thread count (for example,
only the physical cores of a system with Intel Hyper-Threading Technology enabled), you
can manually adjust the intervals for green, yellow, and red in the Summary tab of the
VTune Amplifier XE GUI.

The second GUI element that uses color coding as a visual guide to performance
data is the timeline view in the bottom part of the GUI. VTune Amplifier XE shows a
horizontal bar for each of the threads in the application and provides insights into their
behavior over time. A non-active thread is marked as light green, but once it consumes
cycles its color turns to brown. The red color signals overhead, such as time spent
waiting for a lock to be released or threads waiting to join a barrier. A load imbalance can
easily be detected by looking at when the threads start and stop executing instructions
compared to other threads of an OpenMP region, which are indicated by brackets at the
top of the thread timeline.

Figure 6-5 shows the performance data and timeline that we collected for a run of the
MiniFE application. We used the following command line to produce the performance
data on a single node (eight MPI ranks with six OpenMP threads each):
 
$ export OMP_NUM_THREADS=6
$ mpirun -np 8 amplxe-cl -collect hotspots --result-dir miniFE-8x6 -- \
 miniFE.x -nx=500
 

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

181

Using this command line to collect performance data, VTune Amplifier XE produced
eight different results databases (miniFE-8x6.0 to miniFE-8x6.7), each of which
contains the performance data for one of the eight MPI ranks. Figure 6-5 only shows the
performance data for the first MPI rank. The other seven MPI ranks expose the same
performance characteristics, and thus we can restrict ourselves to the one MPI rank
in this case. For other applications, it will be required to check all MPI ranks and their
performance data individually to make sure there are no outliers in the runtime profile.

Let us have a look at the timeline view at the bottom of Figure 6-5. The timeline
shows several threads active over time. There are some particular areas of interest.
First, we can observe that only one thread is executing for about 40 seconds before
multithreading kicks in. We can also spot a second sequential part ranging for about
56 seconds in total, from 54 seconds to 110 seconds in the timeline. Zooming in and
filtering the timeline, we can find out that the code is doing a matrix initialization in the
first 40 seconds of its execution. About one-third of the compute time in this part is also
attributed to an MPI_Allreduce operation. A similar issue leads to the sequential part that
begins at 54 seconds of the execution. While this is not a true load imbalance in the code,
because OpenMP is not active in these parts of the application, its exposure is similar to
a load imbalance. From a timeline perspective, a load imbalance will look similar to what
we see in Figure 6-5. In our example, finding a parallelization scheme to also parallelize
the sequential fractions may boost application performance, owing to the amount of time
spend in these parts of the application.

The general approach to solving a load imbalance is to first try to modify the loop
scheduling of the code in question. Typically, OpenMP implementations prefer static
scheduling that assigns equally large numbers of loop iterations to individual worker
threads. While it is a good solution for loops with equal compute time per iteration, any
unbalanced loop will cause problems. OpenMP defines several loop scheduling types
that you can use to resolve the load imbalance. Although switching to fully dynamic
schedules such as dynamic or guided appears to be a good idea, these scheduling

Figure 6-5.  Hotspot profile of the miniFE application to determine potential load
imbalances

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

182

schemes tend to increase contention between many OpenMP threads, because a shared
variable that maintains the work distribution. Static scheduling can still be used despite
the load imbalance it introduces if the chunk size is adjusted down so that round-robin
scheduling kicks in. Because each of the threads then receives a sequence of smaller
blocks, there is a good chance that, on average, all the threads will receive compute-
intensive and less compute-intensive loop chunks. At the same time, it ensures that each
thread can compute all iterations it has to process, without synchronizing with the other
threads through a shared variable.

Thread Synchronization and Locking
Thread synchronization is a double-edged sword. It keeps your data structures safe in
that it allows you to control concurrent access and avoid race conditions on shared data;
but if synchronization is introduced into the code, then parallelism may naturally suffer
because synchronization constructs are meant to avoid concurrent execution of code
regions. As a matter of fact, there will always be a tradeoff between limiting the degree of
parallelism by introducing synchronization and choosing data structures and algorithms
that need less synchronization for better parallelization.

In Table 5-8, you saw the performance of the MiniMD application on a workstation
equipped with two Xeon processors. The data was for an execution that used Intel MPI
on a single system to create several processes for execution. The version of MiniMD that
we used to produce Table 5-8 also supported OpenMP-parallel execution instead of only
MPI. So, a valid question is: Why did we use a message-passing library if there is shared
memory available and if we could use multithreading instead? Let’s hold that thought for
a minute and just repeat the same benchmark, but now with OpenMP multithreading.

Figure 6-6 shows a speedup chart that compares the multiprocess MPI run with the
multithread execution on the same machine. While the single-process and single-thread
configuration exhibits the same performance behavior, there is a large gap between the
MPI and the OpenMP versions. The OpenMP code is almost two times slower in all cases
in comparison with the MPI version. In principle, an n-body algorithm should nicely
scale with the number of cores, as shown by the MPI version. There is undoubtedly
something going on in the OpenMP version of the code. Let’s use VTune Amplifier XE to
find out.

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

183

We have executed the application with the following sequence of commands:
 
$ source /opt/intel/vtune_amplifier_xe/amplxe-vars.sh
$ amplxe-cl -collect advanced-hotspots -r omp -- \
 ./miniMD_intel --num_threads 24
$ amplxe-cl -collect advanced-hotspots -r mpi -- \
 mpirun -np 24 ./miniMD_intel
 

These commands instruct VTune Amplifier XE to collect two profiles:

1.	 One process with 24 OpenMP threads

2.	 Twenty-four MPI ranks with one thread each

The collected profiles are named omp and mpi, respectively, through the --result-
dir command line option of the collector.

The profiles are fundamentally different in what they represent from a data collection
perspective. For the omp profile, VTune Amplifier XE monitored the performance events
while MiniMD executed and created a performance database for just a single process
with 24 threads. In the case of the mpi profile, the collector recognized that multiple
MPI processes were spawned by the mpirun command. The performance database thus
contains performance data from all 24 MPI ranks in a single profile.

Figure 6-7 shows the hotspots profiles of both executions. MPI is shown at the top,
OpenMP at the bottom. As you can see from the hotspots profile, for MPI the hotspot is
the ForceLJ::compute_halfneigh function, whereas for OpenMP it is a function called
__kmp_test_then_add_real64. Functions that have a prefix __kmp in their name are
compiler-internal functions used to implement OpenMP in Intel Composer XE.

Figure 6-6.  Speedup graph (lines) and absolute runtime (bars) for the MiniMD
benchmark

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

184

In typical applications these functions show up in the hotspots profile from time to time
and sometimes, as in this case, they are the culprit. To find out, we need to take a closer
look at what the __kmp_test_then_add_real64 function does.

Figure 6-7.  Hotspots profiles for the MPI version (top) and OpenMP version (bottom) of
MiniMD

Let’s have a closer look at it by double-clicking its line in the tabular view. This
takes us to the assembly code of the function, because runtime libraries shipped with
Intel Composer XE usually do not ship with full debugging symbols and source code, for
obvious reasons. If you inspect the machine code, you will find that its main operation
consuming a lot of time is a machine instruction lock cmpxchg. This instruction is an
atomic compare-and-exchange operation, which is frequently used to implement an
atomic add operation.

Functions like __kmp_test_then_add_real64 and similar ones that implement
OpenMP locks are hints that the code issues too many fine-grained atomic instructions.
In case of MiniMD, the culprit is an atomic directive that protects the force update
and that causes slowdown compared to the MPI version. It is also responsible for the
limited scalability of the OpenMP version because it quickly becomes a bottleneck for an
increased number of threads.

EXERCISE 6-2

Browse through the MiniMD code and try to find the OpenMP atomic constructs that
cause the overhead in the OpenMP version. Can you find similar synchronization
constructs in your application?

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

185

How such a synchronization issue can be resolved depends on the type of
application, its data structures, and the algorithms used. For the MiniMD application, the
synchronization is required because the effect of force on one atom also has an effect on
the source of the force. According to Newton’s third law, this effect is exactly the reverse
force: if atom A is affected by a positive amount, then atom B, the source of the force, will
be affected by a negative amount. The MPI version exploits this physical law to compute
the force on atom A and then simply updates atom B without recomputing the force
from scratch. This roughly cuts the computation required by 50 percent. Because of this
optimization, multithreading becomes a bit more complex. For OpenMP, the atoms are
distributed across the OpenMP threads. But as the computation for one atom requires an
update of the forces for a second atom, synchronization must be added to avoid a race
between the threads owning the atom. MiniMD already offers such a mode that can be
enabled by setting the command-line option --half_neigh 0. Figure 6-8 compares the
two modes of MiniMD. As you can see, performance and scalability are greatly improved
by avoiding the excess synchronization.

Figure 6-8.  Comparision of MiniMD with and without OpenMP atomic construct

Another source of overhead are traditional locks, such as omp_lock_t or critical
regions (#pragma omp critical in C/C++ or !$omp critical in Fortran). Whereas they
share the property of mutual exclusion with their atomic instruction counterpart, they
are typically more expensive and are widely used to protect code fragments and data
structures that are more complex than simple updates of memory locations. VTune
Amplifier XE offers a specialized analysis for problems that stem from these locks and
helps to more easily pinpoint them in the code and their behavior at runtime. The
analysis is called Locks and Waits and it specifically monitors the most commonly used

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

186

APIs to implement user-space locks. For each lock operation in the code, the analyzer
helps browse through the participating threads (lock owner and waiting threads), the lock
object involved, and the respective source code locations where the lock was acquired
and released.

Dealing with Memory Locality and NUMA Effects
With the algorithmic improvements to obtain higher degrees of parallelism, we can now
investigate how best to execute the parallel code on today’s hardware. If you recall the
features of the platform architecture that were described in Chapter 2, you will remember
that a compute node typically contains several sockets with locally attached memory
(NUMA), last level cache, and the compute cores with their private L1 and L2 caches.
Because of the different bandwidth characteristics of local memory and remote memory,
the placement of data and computation (i.e., threads and processes) becomes an important
optimization target. It is key to keep data and computation on the same NUMA region to
ensure lowest latency and highest memory bandwidth for the data accesses performed.

You may recall that each virtual page of the virtual memory associated with a process
is backed up by a physical page that resides on one of the memory modules in one NUMA
region. The Linux kernel uses a default strategy called first touch to allocate the physical
pages. When an application allocates memory (for example, by calling malloc in
C/C++), it receives a pointer to the allocated memory. However, the Linux kernel does
not yet create any new physical pages unless the memory is accessed, or “touched.” When
a thread first touches the data by reading from it or writing into it, the physical page is
allocated in the NUMA region that belongs to the core running that thread.

Note■■  T he numactl command introduced in Chapter 2 can also change the default
allocation strategy of the Linux kernel. The argument --localalloc enables the standard
Linux allocation strategy. With --preferred you can ask to place physical pages on a
specific NUMA region, whereas --membind enforces placement on NUMA regions. Finally,
the --interleave option interleaves the physical pages on several NUMA regions in a
round-robin fashion. You can find additional details about this in the man page of the
numactl command.

In a real application, this may severely penalize performance. If data is frequently
accessed from a thread that runs on a different socket than the one that it ran on during
allocation, the application will suffer from the lower bandwidth and higher latency of
the remote data access. Figure 6-9 shows the achieved bandwidth of the STREAM Triad
benchmark on our example machine. For the black line (“local memory”) in the chart, we
have executed the benchmark on socket 0 and used numactl to force memory allocation
to the local memory:
 
$ (�for i in `seq 1 12`; do OMP_NUM_THREADS=$i numactl --cpunodebind

0 --membind 0 ./stream;
done) | grep "Triad:" | awk '{print $2}'
 

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

187

The gray line shows the bandwidth we have obtained by forcing memory allocation
to the second NUMA region, while keeping the threads on the first socket:
 
$ (�for i in `seq 1 12`; do OMP_NUM_THREADS=$i numactl --cpunodebind

0 --membind 1 ./stream;
done) | grep "Triad:" | awk '{print $2}'
 

It is easy to see how much available memory bandwidth we lost by choosing a wrong
placement for data and computation. It is key to tie data and computation together
on the same NUMA region whenever possible. This will greatly improve application
performance. If the application is too complex to improve its NUMA awareness, you can
still investigate if interleaved page allocation or switching off the NUMA mode in the
BIOS improves overall performance. With these settings, the memory allocations are then
distributed across the whole machine and thus all accesses are going equally to local and
remote memory, on average.

If you wish to optimize the application and improve its NUMA awareness, then there
are several ways to accomplish this mission. First, there are ways to bind threads and
processes to individual NUMA regions so that they stay close to their data. We used the
numactl command earlier to do this, but Linux offers several other APIs (for instance,
sched_setaffinity) or tools (for example, taskset) to control process and threads in a
machine-dependent manner. You may also recall the I_MPI_PIN environment variable
and its friends (see Chapter 5) that enable a more convenient way of controlling process
placement for MPI applications. Of course, typical OpenMP implementations also
provide similar environment variables. (We will revisit this topic later in this chapter,
when we look at hybrid MPI/OpenMP applications.)

Figure 6-9.  Bandwidth as measured by the STREAM Triad benchmark

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

188

Second, you can exploit the first-touch policy of the operating system in a threaded
application. The key idea here is to use the same parallelization scheme to initialize data
and to make sure that the same parallelization scheme is also used for computation.
Listing 6-2 shows an example of a (very) naïve matrix-vector multiplication code that
uses OpenMP for multithreading. Apart from the compute function, which computes the
result of the matrix-matrix multiplication, the code contains two initialization functions
(init and init_numa_aware). In the init function, the master thread allocates all data
structures and then initializes the data sequentially. With the first-touch policy of the
Linux kernel, all physical pages will therefore reside on the NUMA region that executed
the master thread. The init_numa_aware function still uses the master thread to allocate
the data through malloc. However, the code then runs the initialization in an OpenMP
parallel for loop with the same loop schedule as the accesses in the compute function
happen for the A and c arrays. Because each OpenMP thread now touches the same data
for A and c it is supposed to work on, the physical pages are distributed across the NUMA
regions of the machine and locality is improved.

Listing 6-2.  Simplistic Matrix-vector Multiplication with NUMA-aware Memory
Allocation

void init() {
 A = (double*) malloc(sizeof(*A) * n * n);
 b = (double*) malloc(sizeof(*b) * n);
 c = (double*) malloc(sizeof(*c) * n);
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 A[i*n+j] = ((double) rand())/((double) RAND_MAX);
 
 for (int i = 0; i < n; i++) {
 b[i] = ((double) rand())/((double) RAND_MAX);
 c[i] = 0.0;
 }
}
 
void init_numa_aware() {
 A = (double*) malloc(sizeof(*A) * n * n);
 b = (double*) malloc(sizeof(*b) * n);
 c = (double*) malloc(sizeof(*c) * n);
#pragma omp parallel
 {
#pragma omp for
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 A[i*n+j] = ((double) rand())/((double) RAND_MAX);
 

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

189

#pragma omp for
 for (int i = 0; i < n; i++) {
 b[i] = ((double) rand())/((double) RAND_MAX);
 c[i] = 0.0;
 }
 }
}
 
void compute() {
#pragma omp parallel for
 for(int i = 0; i < n; i++)
 for(int j = 0; j < n; j++)
 c[i] += A[i*n+j] * b[j];
}
 

The array b is a special case in this example. If you consider the compute function,
you will see that b is read equally from all threads. So at first glance it does not seem to
make a real difference if we used a NUMA-aware allocation or just allocate it in a single
NUMA region. Unless the matrix size becomes unreasonably large, it will likely be that
b will fit in the last-level cache of the individual sockets, so that no NUMA effects can
be measured.

Of course, all this only happens if the working size of the application requires
allocation of several physical pages so that they can be distributed across the different
NUMA regions. The data also needs to be large enough so that the caches are not effective
and that out-of-cache data accesses happen. For a perfectly cache-optimized code, the
effect of this optimization may be low or even negligible. If threads frequently access a
large, shared, but read-only data structure (like b) that does not fit the LLC of the sockets,
then distributing it across several NUMA regions will still likely benefit performance.
In this case, distributing the data helps avoid overloading a single NUMA region with
memory accesses from other NUMA regions.

The effect of parallel data allocation in Listing 6-2 can be visualized nicely with the
STREAM Triad benchmark. Figure 6-10 summarizes different thread placements and the
effect of NUMA-aware allocation on memory bandwidth. The compact (gray solid and
dashed line) in the chart indicates that the OpenMP runtime was instructed to first fill a
socket with threads before placing threads on the second socket. “Scatter” (black solid
and dashed line) distributes the threads in round-robin fashion. (We will have a closer
look at these distribution schemes in the next section).

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

190

What you can observe from Figure 6-10 is that NUMA awareness always provides best
results, as it fully exploits the capabilities of the memory subsystem. If threads are kept
close to each other (compact), adding the second NUMA region contributes additional
memory bandwidth, which is expected. For the scatter distribution, the memory
bandwidth of the two NUMA regions of the system contributes to the aggregate memory
bandwidth when at least two threads are executing. However, memory bandwidth will be
up to a factor of two less if memory is allocated in only one NUMA region.

Unfortunately, NUMA-aware data allocation is not possible in all cases. One
peculiar example is MPI applications that employ OpenMP threads. In many cases, these
applications use the MPI_THREAD_FUNNELED or MPI_THREAD_SERIALIZED modes in which
only one thread performs the MPI operations. If messages are received into a newly
allocated buffer, then the first-touch policy automatically allocates the backing store of
the buffer on a single NUMA region in which the communicating thread was executing.
If you wish to run OpenMP threads across multiple NUMA regions and still maintain
NUMA awareness, things tend to become complex and require a lot of thought and fine-
tuning. Depending on how long the data will be live in the buffer and how many accesses
the threads will make, it might be beneficial to either make a multithreaded copy of the
buffer so that the accessing threads also perform the first touch, or use the Linux kernel’s
interface for page migration to move the physical pages into the right NUMA domain.
However, these will be costly operations that need to be amortized by enough data
accesses. Plus, implementing the migration strategies adds a lot of boilerplate code to the

Figure 6-10.  STREAM Triad bandwidth with NUMA-aware allocation across multiple
NUMA regions

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

191

application. The easiest way of solve this is to use one MPI rank per NUMA region and
restrict OpenMP threading to that region only. In this case, there are no changes required
to the application code, but you will need to properly bind threads and processes to the
NUMA regions and their corresponding cores.

Thread and Process Pinning
Besides the aforementioned need to properly place processes and threads to get a better
data locality in NUMA systems, thread and process pinning also offer other benefits that
may lead to performance improvements.

As shown in Figure 6-10, putting threads or processes far apart in the system
(scatter)—that is, on different sockets of the machine—can improve the aggregated
memory bandwidth. As each socket has its own memory subsystem, the threads on
different sockets do not compete for the same memory channels and thus receive more
memory bandwidth in total. The same applies to the total amount of last-level cache
(LLC) available to the application.

On the other hand, scattered distribution has some disadvantages. If threads
communicate a lot by reading and writing to variables and data structures shared
between them, then communication across the QPI link can easily become a bottleneck.
The same applies to synchronization constructs such as barriers, locks, and atomic
operations. Synchronization constructs are much more efficient if the participating
threads are on the same socket. This is because the memory operations involved in
implementing the synchronization are much faster when running from the same shared
(last-level) cache instead of involving communication over the QPI links of the system.
While synchronization is a good reason to keep threads as close as possible, it conflicts
with the above benefits of spreading the threads across the system. In general, one can
only hope to find a good tradeoff between the conflicting benefits and to approximate the
ideal placement configuration.

Controlling OpenMP Thread Placement
Intel Composer XE, and its implementation of OpenMP, offers two ways to control thread
placement in an application:

1.	 KMP_AFFINITY environment variable

2.	 OMP_PROC_BIND interface of the OpenMP 4.0 API

For a long time, before the OpenMP API version 4.0 was released, KMP_AFFINITY
was the standard way of controlling thread placement for the Intel implementation of
OpenMP. Through this environment variable, you can control thread placement on
several levels ranging from abstract placement policies to a fine-grained mapping of
OpenMP threads to sockets, cores, and hyper-threads. The settings of KMP_AFFINITY are
effective for the whole application process—that is, if the process spawns multiple parallel
regions, the same settings pertain for all parallel regions. KMP_AFFINITY also supports
only one level of parallelism, but no nested OpenMP parallel regions.

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

192

Listing 6-3 shows the effect of different values for the KMP_AFFINITY variable on the
thread placement. It shows how 18 threads are mapped to the cores of our two-socket
example machine. For the compact placement, all 18 threads will be assigned to the
first socket. The scatter strategy assigns the threads to the sockets of the machine in a
round-robin fashion; even thread IDs are assigned to the first socket, threads with odd
ID execute on the second socket. We can check this allocation by adding the verbose
modifier to the KMP_AFFINITY environment variable, which requests to print information
about the machine structure and how the threads are assigned to the (logical) cores of
the system (Listing 6-3). To make sense of the different IDs and the underlying machine
structure, you may use the cpuinfo tool introduced in Chapter 5.

Listing 6-3.  OpenMP Thread Pinning with Additional Information Printed for Each
OpenMP Thread

$ OMP_NUM_THREADS=18 KMP_AFFINITY=granularity=thread,compact,verbose \
 ./my_app
OMP: Info #204: KMP_AFFINITY: decoding x2APIC ids.
OMP: Info #202: KMP_AFFINITY: Affinity capable, using global cpuid leaf 11
info
OMP: Info #154: KMP_AFFINITY: Initial OS proc set respected: {0,1,2,3,4,5,6,
7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,3
3,34,35,36,37,38,39,40,41,42,43,44,45,46,47}
OMP: Info #156: KMP_AFFINITY: 48 available OS procs
OMP: Info #157: KMP_AFFINITY: Uniform topology
OMP: Info #179: KMP_AFFINITY: 2 packages x 12 cores/pkg x 2 threads/core (24
total cores)
OMP: Info #206: KMP_AFFINITY: OS proc to physical thread map:
OMP: Info #171: KMP_AFFINITY: OS proc 0 maps to package 0 core 0 thread 0
OMP: Info #171: KMP_AFFINITY: OS proc 24 maps to package 0 core 0 thread 1
[...]
OMP: Info #144: KMP_AFFINITY: Threads may migrate across 1 innermost levels
of machine
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 0 bound to OS proc set {0}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 1 bound to OS proc set {24}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 2 bound to OS proc set {1}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 3 bound to OS proc set {25}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 4 bound to OS proc set {2}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 5 bound to OS proc set {26}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 6 bound to OS proc set {3}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 7 bound to OS proc set {27}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 8 bound to OS proc set {4}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 9 bound to OS proc set {28}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 10 bound to OS proc set {5}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 11 bound to OS proc set {29}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 12 bound to OS proc set {6}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 13 bound to OS proc set {30}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 14 bound to OS proc set {7}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 16 bound to OS proc set {8}

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

193

OMP: Info #242: KMP_AFFINITY: pid 85939 thread 15 bound to OS proc set {31}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 17 bound to OS proc set {32}
[...]
 
$ OMP_NUM_THREADS=18 KMP_AFFINITY=granularity=thread,scatter,verbose \
 ./my_app
OMP: Info #204: KMP_AFFINITY: decoding x2APIC ids.
OMP: Info #202: KMP_AFFINITY: Affinity capable, using global cpuid leaf 11
info
OMP: Info #154: KMP_AFFINITY: Initial OS proc set respected: {0,1,2,3,4,5,6,
7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,3
3,34,35,36,37,38,39,40,41,42,43,44,45,46,47}
OMP: Info #156: KMP_AFFINITY: 48 available OS procs
OMP: Info #157: KMP_AFFINITY: Uniform topology
OMP: Info #179: KMP_AFFINITY: 2 packages x 12 cores/pkg x 2 threads/core (24
total cores)
OMP: Info #206: KMP_AFFINITY: OS proc to physical thread map:
OMP: Info #171: KMP_AFFINITY: OS proc 0 maps to package 0 core 0 thread 0
OMP: Info #171: KMP_AFFINITY: OS proc 24 maps to package 0 core 0 thread 1
OMP: Info #171: KMP_AFFINITY: OS proc 1 maps to package 0 core 1 thread 0
OMP: Info #171: KMP_AFFINITY: OS proc 25 maps to package 0 core 1 thread 1
OMP: Info #171: KMP_AFFINITY: OS proc 2 maps to package 0 core 2 thread 0
OMP: Info #171: KMP_AFFINITY: OS proc 26 maps to package 0 core 2 thread 1
OMP: Info #171: KMP_AFFINITY: OS proc 3 maps to package 0 core 3 thread 0
[...]
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 0 bound to OS proc set {0}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 1 bound to OS proc set {12}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 2 bound to OS proc set {1}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 3 bound to OS proc set {13}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 4 bound to OS proc set {2}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 5 bound to OS proc set {14}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 6 bound to OS proc set {3}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 7 bound to OS proc set {15}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 8 bound to OS proc set {4}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 9 bound to OS proc set {16}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 10 bound to OS proc set {5}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 11 bound to OS proc set {17}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 12 bound to OS proc set {6}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 13 bound to OS proc set {18}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 14 bound to OS proc set {7}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 16 bound to OS proc set {8}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 15 bound to OS proc set {19}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 17 bound to OS proc set {20}
[...]
 

If you carefully inspect the printout of Listing 6-3, it appears that the OpenMP
runtime system has assigned the threads in a way that we did not expect in the first place.
The compact policy assigned multiple OpenMP threads to the same physical core

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

194

(e.g., thread 0 and 1 to cores 0 and 24, respectively), whereas for scatter, it assigned
different physical cores. Due to SMT, each physical core appears as two logical cores that
may execute threads. With compact, we have requested from the OpenMP runtime to fill
one socket first, before utilizing the second socket. The most compact thread placement
is to put thread 0 to logical core 0 and use logical core 24 for thread 1, and so on. Thinking
of a compact placement, this might not be what we have intended to do; you might have
expected something along the line of placing 12 threads on the first socket and deploy the
remaining six threads on the other socket.

The syntax for KMP_AFFINITY provides modifiers to further control its behavior. We
already silently used granularity in Listing 6-3. You can use it to tell the Intel OpenMP
implementation whether an OpenMP thread is to be assigned to a single logical core
(granularity=thread) or to the hardware threads of a physical core (granularity=core).
Once you have played a bit with these two settings, you will see that neither will deploy
the 18 threads of our example to two sockets. The solution is to use compact,1 as the
policy. The effect is shown in Listing 6-4, in which 12 threads have been deployed to the
first socket, and the remaining six threads have been assigned to the second socket. The
documentation of Intel Composer XE6 can give you more information on what compact,1
means and what other affinity settings you can use.

Listing 6-4.  Compact KMP_AFFINITY Policy Across Two Sockets of the Example
Machine

$ OMP_NUM_THREADS=18 KMP_AFFINITY=granularity=thread,compact,1,verbose ./
my_app
[...]
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 0 bound to OS proc set {0}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 1 bound to OS proc set {1}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 3 bound to OS proc set {3}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 2 bound to OS proc set {2}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 4 bound to OS proc set {4}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 5 bound to OS proc set {5}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 6 bound to OS proc set {6}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 7 bound to OS proc set {7}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 8 bound to OS proc set {8}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 9 bound to OS proc set {9}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 10 bound to OS proc set {10}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 11 bound to OS proc set {11}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 12 bound to OS proc set {12}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 13 bound to OS proc set {13}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 14 bound to OS proc set {14}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 16 bound to OS proc set {16}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 15 bound to OS proc set {15}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 17 bound to OS proc set {17}
 

With version 4.0 of the OpenMP API specification, OpenMP now defines a common
way to deal with thread placement in OpenMP applications. In OpenMP terms, a place
denotes an entity that is capable of executing an OpenMP thread and is described as an
unordered list of numerical IDs that match the processing elements of the underlying

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

195

hardware. For Intel processors, these IDs are the core IDs as they appear in the operating
system (e.g., as reported in /proc/cpuinfo or by KMP_AFFINITY=verbose). A place list
contains an ordered list of places and is defined through the OMP_PLACES environment
variable. The place list can also contain abstract names for places, such as threads
(logical cores), cores (physical cores), or sockets (the sockets in the machine).

OpenMP also defines three placement policies with respect to an existing place list:

•	 master: Assign all threads of a team to the same place as the
master thread of the team.

•	 close: Assign OpenMP threads to places such that they are close
to their parent thread.

•	 spread: Sparsely distribute the OpenMP threads in the place list,
dividing the place list into sublists.

In contrast to KMP_AFFINITY, the OpenMP placement policies can be used on a per-
region basis by using the proc_bind clause at a parallel construct in the OpenMP code.
It also supports nested parallelism through a list of policies separated by commas for the
OMP_PROC_BIND variable. For each nesting level, one can specify a particular policy that
becomes active, once a parallel region on that level starts executing. This is especially
useful for applications that either use nested parallelism or that need to modify the thread
placement on a per-region basis.

Listing 6-5 contains a few examples of different thread placements using OMP_PLACES
and OMP_PROC_BIND. The first example has the same effect as the compact placement in
Listing 6-4, whereas the second example assigns the threads in a similar fashion as the
scatter policy of KMP_AFFINITY.

Listing 6-5.  Examples for Using OMP_PLACES and OMP_PROC_BIND

$ OMP_NUM_THREADS=18 OMP_PROC_BIND=close OMP_PLACES=threads \
 KMP_AFFINITY=verbose ./my_app
[...]
OMP: Info #242: KMP_AFFINITY: pid 86565 thread 0 bound to OS proc set {0}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 3 bound to OS proc set {25}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 14 bound to OS proc set {7}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 16 bound to OS proc set {8}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 8 bound to OS proc set {4}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 12 bound to OS proc set {6}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 11 bound to OS proc set {29}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 7 bound to OS proc set {27}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 4 bound to OS proc set {2}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 10 bound to OS proc set {5}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 5 bound to OS proc set {26}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 6 bound to OS proc set {3}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 13 bound to OS proc set {30}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 9 bound to OS proc set {28}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 1 bound to OS proc set {24}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 17 bound to OS proc set {32}

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

196

OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 15 bound to OS proc set {31}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 2 bound to OS proc set {1}
[...]
 
$ OMP_NUM_THREADS=18 OMP_PROC_BIND=spread OMP_PLACES=cores \
 KMP_AFFINITY=verbose ./my_app
[...]
OMP: Info #242: KMP_AFFINITY: pid 86690 thread 0 bound to OS proc set {0,24}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 1 bound to OS proc set {2,26}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 2 bound to OS proc set {3,27}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 3 bound to OS proc set {4,28}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 4 bound to OS proc set {6,30}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 5 bound to OS proc set {7,31}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 6 bound to OS proc set {8,32}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 7 bound to OS proc set {10,34}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 8 bound to OS proc set {11,35}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 9 bound to OS proc set {12,36}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 10 bound to OS proc set {14,38}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 11 bound to OS proc set {15,39}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 12 bound to OS proc set {16,40}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 13 bound to OS proc set {18,42}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 14 bound to OS proc set {19,43}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 15 bound to OS proc set {20,44}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 16 bound to OS proc set {22,46}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 17 bound to OS proc set {23,47}
[...]
 

For more information on how to use KMP_AFFINITY and the OpenMP interface
for threaded applications, see the user’s guide of Intel Composer XE. For more
advanced usage scenarios, the documentation also contains useful information on how
programmers can use special runtime functions that allow for specific control of all
aspects of thread pinning.

EXERCISE 6-3

Use different settings for KMP_AFFINITY and OMP_PROC_BIND, and conduct
performance runs with these settings. What are the best settings for your
application?

Thread Placement in Hybrid Applications
Process and thread placement may also lead to performance improvements for
MPI/OpenMP hybrid applications. Depending on how many MPI ranks you are running
per node, you may need to consider thread placement and find the ideal placement,
similarly to what we have discussed for purely threaded applications.

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

197

If you configure the application to run only a single MPI rank per node, so that the
remaining cores of the node are used to execute OpenMP threads, you’ll need to place the
threads appropriately to avoid NUMA issues and to make sure that the operating system
keeps the threads where their data has been allocated.

If the application runs with one or more MPI ranks per socket, thread placement will
be less of an issue. If the MPI rank is bound to a certain socket (the default for Intel MPI),
the threads of each MPI process are automatically confined to execute on the same set
of cores (or socket) that are available for their parent process (see Listing 6-6). Since now
the MPI ranks’ threads cannot move away from their executing socket, the NUMA issue is
automatically solved. Data allocation and computation will always be performed on the
same NUMA region. Pinning threads to specific cores might still lead to improvements,
since it effectively avoids cache invalidations of the L1 and L2 caches that may happen
owing to the threads’ wandering around on different cores of the same socket.

In Listing 6-6, we instruct both the Intel MPI Library and the Intel OpenMP runtime
to print their respective process and thread placements for MiniMD on a single node with
two MPI ranks. As you can see, the Intel MPI Library automatically deploys one MPI rank
per socket and restricts execution of the OpenMP threads to the cores of each socket. We
can use this as a starting point and apply what we saw earlier in this section. Adding the
appropriate KMP_AFFINITY settings, we can now make sure that each OpenMP thread is
pinned to the same core during execution (shown in Listing 6-7).

Listing 6-6.  Default Process and Thread Placement for an MPI/OpenMP Hybrid
Application

$ I_MPI_DEBUG=4 KMP_AFFINITY=verbose mpirun "-prepend-rank -np 2 \
 ./miniMD_intel --num_threads 12
[0] [0] MPI startup(): Single-threaded optimized library
[0] [0] MPI startup(): shm data transfer mode
[1] [1] MPI startup(): shm data transfer mode
[0] [0] MPI startup(): Rank Pid Node name Pin cpu
[0] [0] MPI startup(): 0 87096 book {0,1,2,3,4,5,6,7,8,9,
10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] [0] MPI startup(): 1 87097 book {12,13,14,15,16,17,18,19,
20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[...]
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 0 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 1 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 3 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 2 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 4 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 5 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

198

[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 6 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 8 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 7 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 9 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 10 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 11 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 0 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 1 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 2 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 3 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 4 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 5 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 6 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 7 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 8 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 9 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 10 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 11 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[...]

Listing 6-7.  Hybrid MPI/OpenMP Application with Thread-to-Core Pinning

$ I_MPI_DEBUG=4 KMP_AFFINITY=granularity=thread,compact,1,verbose \
 mpirun -prepend-rank -np 2
 ./miniMD_intel --num_threads 12
[0] [0] MPI startup(): Single-threaded optimized library
[0] [0] MPI startup(): shm data transfer mode
[1] [1] MPI startup(): shm data transfer mode
[0] [0] MPI startup(): Rank Pid Node name Pin cpu

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

199

[0] [0] MPI startup(): 0 87377 book
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] [0] MPI startup(): 1 87378 book
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[...]
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 0 bound to OS proc set {0}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 1 bound to OS proc set {1}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 2 bound to OS proc set {2}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 3 bound to OS proc set {3}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 4 bound to OS proc set {4}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 5 bound to OS proc set {5}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 6 bound to OS proc set {6}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 7 bound to OS proc set {7}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 8 bound to OS proc set {8}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 9 bound to OS proc set {9}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 10 bound to OS proc set {10}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 11 bound to OS proc set {11}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 0 bound to OS proc set {12}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 1 bound to OS proc set {13}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 2 bound to OS proc set {14}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 3 bound to OS proc set {15}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 4 bound to OS proc set {16}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 5 bound to OS proc set {17}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 6 bound to OS proc set {18}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 7 bound to OS proc set {19}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 8 bound to OS proc set {20}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 9 bound to OS proc set {21}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 10 bound to OS proc set {22}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 11 bound to OS proc set {23}
[...]

Summary
This chapter was all about optimizations on the threading level of the application to
achieve better performance on a single node.

If your application is using only MPI to exchange messages on the process level
and you are thinking about multithreading, this chapter showed how you can create a
hotspot and loop profile to get a better understanding of the application behavior. This is
your foundation for making informed decisions about where to apply OpenMP (or other
threading models) to your code to move it to a hybrid MPI/OpenMP solution.

The hotspot profile is the tool for getting to know about optimization and
parallelization candidates. The hotspots are always the optimization candidates that you
will investigate closely and in depth so that you can find bottlenecks in these parts of
your code. We have presented some of the most common application bottlenecks, such
as sequential and load imbalanced parts of code, excessive thread synchronization, and
issues introduced by the NUMA.

Chapter 6 ■ Addressing Application Bottlenecks: Shared Memory

200

References
1. � “Perf: Linux profiling with performance counters,”

 https://perf.wiki.kernel.org/index.php/Main_Page.

2. � J. Dongarra and M. A. Heroux, Toward a New Metric for Ranking
High Performance Computing Systems (Albuquerque, NM: Sandia
National Laboratories, 2013).

3. � Intel VTune Amplifier XE User’s Guide (Santa Clara, CA: Intel
Corporation, 2014).

4. � “Intel® Inspector XE 2015,”
https://software.intel.com/intel-inspector-xe.

5. � Valgrind Developers, “Valgrind,” http://valgrind.org/.

6. � User and Reference Guide for the Intel C++ Compiler 15.0
(Santa Clara, CA: Intel Corporation, 2014).

https://perf.wiki.kernel.org/index.php/Main_Page
https://software.intel.com/intel-inspector-xe
http://valgrind.org/

	Chapter 6: Addressing Application Bottlenecks: Shared Memory
	Profiling Your Application
	Using VTune Amplifier XE for Hotspots Profiling
	Hotspots for the HPCG Benchmark
	Compiler-Assisted Loop/Function Profiling

	Sequential Code and Detecting Load Imbalances
	Thread Synchronization and Locking
	Dealing with Memory Locality and NUMA Effects
	Thread and Process Pinning
	Controlling OpenMP Thread Placement
	Thread Placement in Hybrid Applications

	Summary
	References

