
39

Chapter 3

Top-Down Software
Optimization

The tuning of a previously unoptimized hardware/software combination is a difficult task,
one that even experts struggle with. Anything can go wrong here, from the proper setup
to the compilation and execution of individual machine instructions. It is, therefore,
of paramount importance to follow a logical and systematic approach to improve
performance incrementally, continuously exposing the next bottleneck to be fixed.

This chapter provides such a framework. We will talk very little here about what
and how to tune but, rather, leave that to subsequent chapters to consider in detail.
We will instead specify the necessary requirements for the workload, application, and
benchmarking; and we will provide a systematic staged tuning process, the so-called
top-down approach. In this process, the performance tuning is considered at three
different levels: system, application, and microarchitecture. Each level will be tuned
iteratively to convergence, possibly exposing further bottlenecks at other levels.

The Three Levels and Their Impact on
Performance
Most people think about performance tuning of HPC applications as the process of
tuning the actual source code, but as we shall see, this is only part of the story.

We discussed latency and throughput in Chapter 2. Let us have a look at the typical
access latency and throughput for different components in an HPC system that was
discussed there. This information is summarized in Table 3-1, with a few numbers
deliberately rounded to the nearest order of magnitude.

Table 3-1 shows a trend of diminishing latency and increasing throughput as we
move closer and closer to the execution of instructions. Indeed, the whole process might
be thought of as a pipeline provisioning data to the processor core, delivering it through
the cache hierarchy from the operating system memory, or even farther away from the
external node’s memory or a hard disk.

Chapter 3 ■ Top-Down Software Optimization

40

Performance follows the weakest-link paradigm: if one stage of the pipeline does
not work according to expectations, the rest of the pipeline will starve. While optimizing
this pipeline, we should start with the biggest potential bottlenecks first—at the top of
this list, working our way down, as shown in Figure 3-1. Indeed, it makes little sense to
start working on the branch misprediction impact while the application spends most of
its time in the network communication or cache misses. Once we have made sure data is
available in the cache, a continuously occurring branch misprediction does have a huge
relative impact.

Table 3-1.  Memory Technologies and Their Latency and Throughput (to the Order of
Magnitude)

Component Typical Latency Typical Throughput

Local SATA HDD ~1 ms 100 MB/s

Local SATA SSD ~1 ms 500 MB/s

1GB Ethernet ~15 us 100 MB/s

10GB Ethernet ~4 us 1 GB/s

Infiniband FDR 1.5 us ~6.5 GB/s

Local memory (loaded) ~250 ns ~100 GB/s

Local memory (idle) ~60 ns 0 GB/s

Remote memory (idle) ~100 ns 0 GB/s

QPI (intersocket) ~100 ns* ~64 GB/s

L3 cache access 10-25 ns ~160 GB/s

L2 cache access ~5 ns ~160 GB/s

L1 cache access 2-3 ns ~240 GB/s

XOR instruction ~6 ns ~2.5 Ginstruction/s

Branch misprediction ~7 ns -

SIMD Division instruction ~16 ns ~1 Ginstruction/s

*QPI remote connection latency is hardly observable on the backdrop of the remote
memory latency mentioned above.

Chapter 3 ■ Top-Down Software Optimization

41

Considering Table 3-1, the tuning of a system/software combination may be
intuitively broken down into three stages, which are roughly ordered according to the
data flow and their impact time—that is, the time impact that an inefficiently working part
could make on the execution:

•	 System: This is the computer hardware and system software as such
and all that brings it to life: the hard disk, the network interfaces,
the memory, the BIOS, the operating system, the job manager, the
cooling system, and the processor. All of these components require
proper setup and configuration for the considered application
workload to deliver the expected performance.

•	 Application: This is the part that the user is most exposed to, since
this is what he writes or modifies as source code. The application
level comprises the algorithmic implementation, the use of
external application programming interfaces (APIs), locks, heap,
stack, and so on. One central point of the application level is the
proper management of data and the access thereto. In particular,
this includes the parallelization in two flavors: the shared and
distributed memory programming.

•	 Microarchitecture: For most people this is the most obscure level.
It is concerned with the efficient use of the processor-internal
resources by the application. For example, how efficient is the
processor interpreting the strange hex numbers in your binary?
How many instructions does the processor complete per cycle?
Does an instruction wait most of the time for another one to
complete? Is the processor able to predict the conditional branches
in your code? Generally, one does not want to know about all of
this, but this is where the battle is decided at the last stage of the
optimization process.

It is important to understand that bottlenecks in the higher levels may hide bottlenecks
in the lower ones. On the other hand, improvements in the lower levels can create
bottlenecks at the higher levels. Figure 3-1 shows an overview of the individual levels.

Figure 3-1.  Bottleneck levels and their impact on performance of applications

Chapter 3 ■ Top-Down Software Optimization

42

System Level
Before worrying about the code of your application, the most important and impactful
tuning can be achieved looking at the system components of the compute node,
interconnect, and storage. No matter how advanced and skillfully implemented an
algorithm is, a wrongly configured network, a forgotten file I/O, or a misplaced memory
module in a NUMA system can undo all the effort you put into careful programming.

In many cases, you will be using a system that is in good shape. Particularly if you
are a user of an HPC compute center, your system administrators will have taken care in
choosing the components and their sound setup. Still, not even the most adept system
administrator is immune to a hard disk failure, the cooling deficits of an open rack door,
or a bug in a freshly installed network driver. No matter how well your system seems to be
maintained, you want to make sure it really does perform to its specification.

You’ll find a detailed description of the system tuning in Chapter 4, but here we give
an overview of the components and tools. For an HPC system, the hardware components
affecting performance at a system level are mostly as follows:

•	 Storage and file systems: As the most of HPC problems deal with
large amounts of data, an effective scaling storage hierarchy
is critical for application performance and scaling. If storage
is inadequate in terms of bandwidth or access latency, it may
introduce serialization into the entire application. Taking into
account Amdahl’s Law (discussed in Chapter 2), this should be
considered as the first optimization opportunity.

•	 Cluster interconnection hardware and software: HPC applications
do not only demand high bandwidth and low latency for
point-to-point exchanges. They also demand advanced
capabilities to support collective communications between very
large numbers of nodes. A single parameter set wrongly here may
completely change the relevant performance characteristics of
the network.

•	 Random access memory (RAM): The RAM attached to the
integrated memory controller of a CPU comes in packages called
dual-lnline memory modules (DIMMs). The memory controller
supports a number of channels that can be populated with several
DIMMs. At the same time, different specifications of DIMMs may
be supported by the memory controller, such as DIMMs of different
sizes in the same channel. Asymmetry in either size or placement
of the DIMMs may result in substantial performance degradation.

•	 Platform compute/memory balance: As discussed in Chapter 2,
each system has its compute/memory performance balance that
can be visualized by the Roofline model. Depending on the specific
platform configuration (including the number of cores, their speed
and capabilities, and the memory type and speed), the application
may end up being memory or compute bound, and these specific
platform characteristics will define the application performance.

Chapter 3 ■ Top-Down Software Optimization

43

•	 Basic input-output system (BIOS): The BIOS is used to bootstrap
the system (that is, starting the OS without having full knowledge
of the components used), but more importantly, it is also used
to configure certain hardware features that can only be set at the
boot time. Examples for such features are:

•	 NUMA mode: Does the BIOS present the system memory as
local to a socket or as one homogeneous memory region?
Inefficient memory initialization may introduce significant
system-level bottlenecks for particular applications.

•	 Processor and RAM frequencies: The central processor unit
(CPU) and RAM can operate under different frequency
policies. The CPU, for instance, will try to assume a
low-frequency state if no activity is detected, so as to save
energy. Latest CPU and RAM specifications need to be
supported by the BIOS in order to give the best performance.
At the same time, CPU frequency variations driven by desire of
saving power may lead to unpleasant load-imbalance issues.

•	 Operating system (OS): The OS seems somewhat misplaced in
the hardware category, since it is indeed software. But once you
access the memory, you are actually interacting with the OS,
since it will abstract the true memory away from you. So, to some
degree, the OS is a proxy to hardware and should be treated in
the same category. The OS should be kept up to date, and the
version installed should support the features of the CPU and the
rest of the system that are essential for performance. For instance,
the use of the advanced vector extensions (AVX) and NUMA
must be supported by the OS. Apart from this, the most critical
point from the OS perspective is the drivers that allow hardware
components to be operated from the user space. Examples of this
are InfiniBand network cards, hard disk interfaces, and so forth.

All of these components need to be tested and benchmarked. A detailed guide
on how to identify, find root causes for, and fix system level bottlenecks is provided in
Chapter 4.

Note■■   System-level performance impact 2x–10x.

Application Level
After the bottlenecks at the system level are successfully cleared, the next category
we enter is the application level: we are actually getting our hands on the code here!
Application-level tuning is more complicated than system level because it requires a
certain degree of understanding of algorithmic details. At the system level, we dealt
with standard components—CPUs, OS, network cards, and so on. We rarely can change
anything about them, but they need to be carefully chosen and correctly set up. At the

Chapter 3 ■ Top-Down Software Optimization

44

application level, things change. Software is seldom made from standard components:
most of its functionality is different from all other software. The essential part causing this
differentiation is the algorithm(s) used and the implementation thereof.

Note that optimization should not mean a major rewrite. You don’t want to change
the general algorithm as such. A finite difference program should remain that way, even
if finite elements might be more suitable. We are, rather, talking about optimizing the
algorithm at hand and the plethora of smaller algorithms that it is built from.

Working Against the Memory Wall
As explained in Chapter 2, performance of modern HPC systems comes from two
main sources: SIMD vectorization and parallelization. Both need to be considered
at the application level. One central problem still needs to be addressed, however:
the divergence of processor and memory performance. Moore’s Law promises
doubling of the number of transistors on a fixed silicon area roughly every two years.1
This implies to some degree a doubling of performance as well, because when you
talk about doubling the number of processing cores on a chip, you have twice the
available space. Even if the number of cores doesn’t double, there might be other uses
for these additional transistors, such as the AVX1 and AVX2 instruction sets, each
of which doubles the floating point operations that can be processed per cycle. Note
also that the ever-faster, ever-bigger, and increasingly more efficient caches are part
of this development.

When you leave the boundaries of the processor, though, there is no such rapid
development. Dynamic RAM (DRAM) performance grows at 1.2x in the same time as the
CPU performance grows 2x. The observation that this would lead to a starving CPU was
first put forward by W. A. Wulf and S. A. McKee in 1994.2 It did not come out quite as bad
as predicted—more cache levels, larger cache sizes, integrated memory controllers, and
more memory channels in combination with the CPU hardware prefetchers mitigated
this predicted trend to some degree. Still, there is increasing pressure on the memory
subsystem, and so application tuning should focus there. Chapter 8 deals with the
respective optimization techniques in detail.

The impact of proper data management may be estimated to be in the order of the
cache latency at different levels compared to the latency of RAM access:

S =
L

L
RAM

cachen

S =
L

L
RAM

cachen

This ratio ranges between 2x and 5x.

Note■■   Data layout and access performance impact: 2–5x.

Chapter 3 ■ Top-Down Software Optimization

45

The Magic of Vectors
Once data is readily available in the cache, computation itself might become the
bottleneck. Now, SIMD vectors come into play. As described in Chapter 2, a SIMD
instruction can execute the same arithmetic operation on different elements of a SIMD
vector at the same time, as shown in Figure 3-2. Usually, the compiler does a decent job
vectorizing code even in a very complex environment, but there are reasons it might not
be able to vectorize your code. The Intel Compiler has some very useful reporting that
will tell you exactly why the compiler cannot vectorize a particular loop. In the figure,
vmulpd two SIMD AVX vectors containing four double elements each or one SIMD
vector and a memory reference. The assembly code shows that the compiler already
unrolls the loop by 4.

Figure 3-2.  Example for an automatic vectorization by the compiler in C source code, and
the resulting assembly instructions

The impact of vectorization on performance may be estimated by the number of
vector elements of a given type that can be processed in parallel. For double precision/
AVX, the possible speedup is four times; for single precision, it’s eight times.

Note■■   Vectorization performance impact (double precision): 4x.

Distributed Memory Parallelization
The most important parallelization technique in HPC is distributed memory
parallelization that enables communication between processes that may not share a
common address space (although they can, of course). The benefit of this is immediately
clear: you can communicate across physically different computers and gain access to
the full power of the massively parallel HPC clusters.

Chapter 3 ■ Top-Down Software Optimization

46

As in the shared-memory approach (discussed in the next section), there is need for
a robust library that would abstract all the low-level details and hide from the user the
differences between various interconnects available on the market. So, back in the early
1990s, a group of researchers designed and standardized the Message Passing Interface
(MPI).3 The MPI standard defines a language-independent communications protocol
as well as syntax and semantics of the routines required for writing portable message-
passing programs in Fortran or C/C++; nonstandard bindings are available for many
other languages, including C++, Perl, Python, R, and Ruby. The MPI standard is managed
by the MPI Forum4 and is implemented by many commercial and open-source libraries.

The MPI standard was widely used as a programming model for distributed memory
systems that were becoming increasingly popular in the early 1990s. As the shared
memory architecture of individual systems became more popular, the MPI library
evolved as well. The latest MPI-3 standard was issued in September 2012. It added fast
remote memory access routines, nonblocking and sparse collective operations, and some
other performance-relevant extensions, especially in the shared memory and threading
area. However, the programming model clearly remains the distributed memory one with
explicit parallelism: the developer is responsible for correctly identifying parallelism and
implementing parallel algorithms using MPI primitives.

The performance improvement that can be gained from distributed memory
parallelization is roughly proportional to the number of compute nodes available, which
ranges between 10x and 1000x for the usual compute clusters.

Note■■   Distributed memory parallelization performance impact: 10–1000x.

Shared Memory Parallelization
The next level to look at is the shared memory parallelization. In contrast to the distributed
memory programming, where the parallelization unit is normally a process with its
own, unique address, space, shared memory programming deals with parallel execution
flow in a common address space. Generally, the execution needs to take place on the
same physical system. Although processes can also participate in shared memory
communication, we generally think about threads here.

How do you make a program utilize all processors in a shared memory system?
There are multiple libraries providing application program interfaces, or APIs,
such as POSIX Threads,5 that help create and manage multiple application threads.
Unfortunately, a lot of threading APIs are either operating system specific (and thus not
portable to other OS), or use unique features of the underlying hardware, or are simply
too low-level. This is why the HPC community has been building open, portable, and
hardware-agnostic programming interfaces to implement threading support in the most
popular programming languages: C, C++, and Fortran. The demand from developers for a
cross-platform, easy-to-use, threading API helped OpenMP 6 to become the most popular
threading API by far. OpenMP consists of a set of compiler directives, as well as library
routines and environment variables, that influence the program runtime behavior.

Chapter 3 ■ Top-Down Software Optimization

47

The most recent development of the OpenMP moved the OpenMP API beyond
traditional management of pools of threads. In the OpenMP specification version 4.0,
released in July 2013, you find support for SIMD optimizations, as well as support for
accelerators and coprocessors that architecturally better fit into the distributed memory
system type discussed earlier in this chapter. Chapter 5 discusses OpenMP and other
threading-related optimization topics, including how to deal with the application-level
bottlenecks specific to the shared memory systems programming.

The performance improvement for shared memory parallelization is roughly
proportional to the number of cores available per compute node, which is from 10x to 20x
in modern server architectures.

Note■■   Shared memory parallelization performance impact: 10x–20x.

Other Existing Approaches and Methods
So far we have discussed the most popular and widely used parallel programming models
for the shared and distributed memory architectures—namely, MPI and OpenMP.
However, there are a couple of other methods worth mentioning.

Partitioned Global Address Space (PGAS) is a model that assumes a global memory
address space that is logically partitioned, with each portion being local to each
process or thread. The PGAS approach attempts to combine the advantages of the MPI
programming style for distributed memory systems with the data referencing semantics
used in programming shared-memory systems. The PGAS model is the basis for Unified
Parallel C,7 Coarray Fortran8 (now a part of the Fortran standard), as well as more
experimental interfaces and languages.

The SHMEM (Shared Memory) library provides a set of functions similar to MPI.9 It
is available for C and Fortran programming languages. SHMEM routines support remote
data transfer, work-shared broadcast and reduction, barrier synchronization, and atomic
memory operations.

Intel Thread Building Blocks (TBB)10 and Intel Cilk Plus11 aim at making threading
and SIMD kind of parallelism easier to use. They represent a new wave of the programming
interfaces being developed to address the increased need for parallelization that has
reached the mainstream.

Another emerging programming model, applicable for processing large data sets in
the so-called Big Data applications, using a parallel, distributed algorithm on a cluster,
is MapReduce.12 A MapReduce program consists of a Map() procedure that usually
performs filtering and sorting of large arrays of data, and a Reduce() procedure that
performs a summary or other reduction operation on the results of the Map() operation.
The MapReduce system middleware—for example, open-source Apache Hadoop13—
orchestrates the distributed memory servers, runs various tasks in parallel, manages
all communication and data transfers between the parts of the system, and provides
transparent redundancy and fault tolerance.

Chapter 3 ■ Top-Down Software Optimization

48

One thing to keep in mind when working at the algorithm level is that you do not
need to reinvent the wheel. If there is a library available that supports the features of
the system under consideration, you should use it. A good example is the standard
linear algebra operations. Nobody should program a matrix-matrix multiplication or an
eigenvalue solver if it is not absolutely necessary and known to deliver a great benefit.
The vector-vector, matrix-vector, and matrix-matrix operations are standardized in the
so-called Basic Linear Algebra System (BLAS),14 while the solvers can be addressed via
the Linear Algebra Package (LAPACK)15 interfaces, for which many implementations are
available. One of them is Intel Math Kernel Library (Intel MKL), which is, of course, fully
vectorized for all available Intel architectures and additionally offers shared memory
parallelization.16

Microarchitecture Level
Having optimized the system and the algorithmic levels, let’s turn now to the problem
of how the actual machine instructions are executed by the CPU. According to
Table 3-1, microarchitectural changes have the least individual impact in absolute
numbers, but when they are accumulated, their impact on performance may be large.
Microarchitectural tuning requires a certain understanding of the operation of the
individual components of a CPU (discussed in detail in Chapter 7). Here, we restrict
ourselves to a very limited overview.

Addressing Pipelines and Execution
The most important features of a modern CPU that need to be addressed at the
microarchitectural level are as follows:

•	 Pipelining: The concept of pipelines is addressed at various
points in this book, but they play a special role in the design of a
CPU. Pipelines are probably the most impactful design pattern in
modern computer architecture. The idea is based on the principle
of an assembly line: one stage of the pipeline provides input to
the following stages. Each stage is specialized in a particular task,
which reduces complexity and increases performance. However,
a stall at a particular stage may easily spread across the pipeline,
both up (for lack of resources) and down (for lack of tasks to
address).

•	 Out-of-order (OOO) execution: This is the ability of the CPU to
reorder the instructions of a program according to the readiness
of the required resources. If instruction1 depends on the input
parameters that are not yet available, the CPU scheduler might
schedule execution of the following instruction2 that meets all
dependency requirements.

•	 Superscalarity: Superscalarity describes the implementation of
instruction-level parallelism within the CPU. A superscalar CPU
features multiple independent pipelines of the same or different

Chapter 3 ■ Top-Down Software Optimization

49

capabilities. The scheduler routes instructions to these pipelines
depending on what type the instructions are, and tries to execute
them in parallel. In the current Intel architecture codenamed
Haswell, for example, the CPU can execute two FMA operations at
the same time, reaching throughput of 0.5 cycles/FMA. The total
number of instructions that can be executed in parallel is 4/cycle.

•	 Branch prediction: A real problem in pipelined processors is
conditional branches, which are jumps to a different part of the
instruction flow based on the decision computed at runtime.
In this case, the pipeline has to stop issuing instructions until
the decision criterion is available. In order to circumvent this
problem, a special unit in the CPU predicts the criterion based
on the earlier decisions. A special cache is available to store these
decisions. In this way, the CPU pipeline can continue operating
speculatively, assuming continuation of the instruction flow at the
predicted position. If the prediction was wrong, all instructions
following the wrongly predicted branch are invalid and the
complete pipeline has to be flushed for the execution flow to
continue with the correct instruction.

Microarchitectural performance tuning is made more difficult because the actual
implementation of the technologies just described can and will change with every
processor generation, and might differ considerably across different vendors. Intel’s CPUs
offer particular hardware functionality to access the information necessary to perform
microarchitectural tuning, the so-called performance monitoring unit (PMU). The PMU
offers measures that keep track of what exactly happens in the chip—for instance, how
many branch predictions have been done and how many have failed. Although you
can access the PMU explicitly, it is much more convenient to use a tool that does the
PMU programming for you, such as Intel VTune Amplifier XE,17 Likwid,18 or the Perf 19
command accessing the PMU via the Linux kernel.

The impact of the microarchitectural optimization can be estimated by the product
of the depth of the pipelines and the number of pipelines in the modern processor,
ranging in the 10x to 20x area.

Note■■  T he performance impact of microarchitectural tuning can be up to 10x–20x.

Closed-Loop Methodology
One of the most critical factors in the tuning process is the way you load the system. There
is some ambivalence in the use of the terms workload and application. Very often, they
are used interchangeably. In general, application means the actual code that is executed,
whereas workload is the task and data that you give to the application. For instance, the
application might be sort.exe, and the workload might be some data file that contains
the names of persons.

Chapter 3 ■ Top-Down Software Optimization

50

Workload, Application, and Baseline
In the current context, we would like to take a simpler view, considering both
application and workload in combination simply as the workload. This combination
needs to fulfill a number of criteria to be suitable for our purposes:

1.	 The workload should be measurable—that is, there should
be quantifiable metric that represents performance of the
application. Such a metric can be obvious ones, like execution
time or GFLOPS, or more specialized, like simulated
nanoseconds/day or transactions/s.

2.	 Measurement of the performance metric must be
reproducible. Upon repetitive runs of the application, the
resulting numbers need to be consistent. Also, the stress
exerted by the application on the system needs to be
reproducible.

3.	 The workload should be static—that is, it must not vary
over time, and it needs to result in the same performance,
regardless of when the workload is executed. In practical
terms, performance observed should not vary beyond 1 to 2
percent.

4.	 The workload must be representative of the load imposed
upon the system under normal operating conditions. In
other words, it should stress those parts of the system that are
loaded under normal operation.

In most cases, a real application (or part thereof) and a real compute task will be
used for benchmarking. This need not be the case, however, as generating representative
stress might be too time-consuming and the application itself might not be designed for
benchmarking. Instead, you can consider an artificial benchmark that represents the
real situation but gives more detailed information about the performance of individual
fractions of the code and executes much faster. A good example is CERN’s HEP-SPEC
benchmark,20 a subset of SPEC that mimics the system stress exerted on the CERN
computing center.

One thing that must not be forgotten is to establish a baseline performance of the
workload before you start tuning. Without the baseline, there is no objective starting
point against which to compare any consequent potential improvement.

Iterating the Optimization Process
The top-down approach provides structured prioritization of the tuning tasks at hand.
We now come to the second important part of this methodology: the closed-loop concept.
While working at one level, we execute the following scheme:

1.	 Gather performance data: Collect performance data in the
metric(s) agreed.

Chapter 3 ■ Top-Down Software Optimization

51

2.	 Analyze the data and identify issues: Focus on the most time-
consuming part(s). Begin by looking for unexpected results or
numbers that are out of tolerance. Try to fully understand the
issue by using appropriate tools. Make sure the analysis does
not affect the results.

3.	 Generate alternatives to resolve the issue: Remove the
identified bottlenecks. Try to keep focused on one step at
a time. Rate the solutions on how difficult they are to be
implemented and on their potential payback.

4.	 Implement the enhancement: Change only one thing at a
time in order to estimate the magnitude of the individual
improvement. Make sure none of the changes causes a
slowdown and negated other improvements. Keep track of the
changes so you can roll them back, if necessary.

5.	 Test the results: Check whether performance improvements
are up to your expectations and that they remove the
identified bottleneck.

After the last step, you restart the cycle to identify the next bottleneck (see Figure 3-3).
Clearly, this loop is normally infinite, for the time to stop is determined by the amount of
time left to do the job.

Figure 3-3.  Left: The closed-loop iterative performance optimization cycle. Right: Example
performance gains by tuning through various levels

Chapter 3 ■ Top-Down Software Optimization

52

The right graph in Figure 3-3 shows an artificial performance optimization across
different levels. Note that at each level the performance saturates to some degree and that
we switch levels when other bottlenecks become dominant. This can also mean going up
a level again, since successful tuning of the application level might expose a bottleneck
at the system level.

For example, consider an improvement in the OpenMP threading that suddenly
causes the memory bandwidth to be boosted. This might very well expose a previously
undiscovered bottleneck in the systems memory setup, such as DIMMs in the channels
of the memory controllers having different sizes, with the resulting decreased memory
bandwidth.

Summary
The methodology presented in this chapter provides a solid process to tune a system
consistently with the top-down/closed-loop approach. The main things to remember are
to investigate and tune your system through the following different levels:

1.	 System level (see Chapter 4)

2.	 Application level, including distributed and shared memory
parallelization (see Chapters 5 and 6)

3.	 Microarchitecture level (see Chapter 7)

Keep iterating at each level until convergence, and proceed to the next level with the
biggest impact as long as there is time left.

References
1. � G. E. Moore, “Cramming More Components onto Integrated Circuits” Electronics 38,

no. 8 (19 April 1965): 114–17.

2. � W. A. Wulf, and S. A. McKee, “Hitting the Memory Wall: Implications of the Obvious,”
1994, www.eecs.ucf.edu/~lboloni/Teaching/EEL5708_2006/slides/wulf94.pdf.

3.  MPI Forum, “MPI Documents,” www.mpi-forum.org/docs/docs.html.

4.  “Message Passing Interface Forum,” www.mpi-forum.org.

5. � The Open Group, “Single UNIX Specification, Version 4, 2013 Edition,” 2013,
www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.
jsp?publicationid=12310.

6.  OpenMP.Org, “OpenMP,” http://openmp.org/wp.

7.  UPC-Lang.Org., “Unified Parallel C,” http://upc-lang.org.

8.  Co-Array.Org, “Co-Array Fortran,” www.co-array.org.

9.  “SHMEM,” Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/SHMEM.

http://www.eecs.ucf.edu/~lboloni/Teaching/EEL5708_2006/slides/wulf94.pdf
http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/
http://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?publicationid=12310
http://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?publicationid=12310
http://openmp.org/wp
http://upc-lang.org/
http://www.co-array.org/
http://en.wikipedia.org/wiki/SHMEM

Chapter 3 ■ Top-Down Software Optimization

53

10. � Intel Corporation, “Intel Threading Building Blocks (Intel TBB),”
http://software.intel.com/en-us/intel-tbb.

11. � Intel Corporation, “Intel Cilk Plus,”
http://software.intel.com/en-us/intel-cilk-plus.

12. � G. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” OSDI’04: Sixth Symposium on Operating System Design and
Implementation, San Francisco, December 2004.

13. � “Welcome to Apache Hadoop!,” http://hadoop.apache.org.

14.  NetLib.Org, “BLAS (Basic Linear Algebra Subprograms),” www.netlib.org/blas/.

15.  NetLib.Org, “LAPACK — Linear Algebra PACKage,” www.netlib.org/lapack/.

16. � Intel Corporation, “Intel Math Kernel Library,”
http://software.intel.com/en-us/intel-mkl.

17. � Intel Corporation, “Intel VTune Amplifier XE 2013,”
http://software.intel.com/en-us/intel-vtune-amplifier-xe.

18.  “Likwid - Lightweight performance tools,” http://code.google.com/p/likwid/.

19. � “perf (Linux)” Wikipedia, the free encyclopedia,
 http://en.wikipedia.org/wiki/Perf_(Linux).

20. � HEPiX Benchmarking Working Group, “HEP-SPEC06 Benchmark,”
https://w3.hepix.org/benchmarks/doku.php.

http://software.intel.com/en-us/intel-tbb
http://software.intel.com/en-us/intel-cilk-plus
http://hadoop.apache.org/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://code.google.com/p/likwid/
http://en.wikipedia.org/wiki/Perf_(Linux)
https://w3.hepix.org/benchmarks/doku.php

	Chapter 3: Top-Down Software Optimization
	The Three Levels and Their Impact on Performance
	System Level
	Application Level
	Working Against the Memory Wall
	The Magic of Vectors
	Distributed Memory Parallelization
	Shared Memory Parallelization
	Other Existing Approaches and Methods

	Microarchitecture Level
	Addressing Pipelines and Execution

	Closed-Loop Methodology
	Workload, Application, and Baseline
	Iterating the Optimization Process

	Summary
	References

