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Chapter 3

Top-Down Software 
Optimization

The tuning of a previously unoptimized hardware/software combination is a difficult task, 
one that even experts struggle with. Anything can go wrong here, from the proper setup 
to the compilation and execution of individual machine instructions. It is, therefore, 
of paramount importance to follow a logical and systematic approach to improve 
performance incrementally, continuously exposing the next bottleneck to be fixed.

This chapter provides such a framework. We will talk very little here about what 
and how to tune but, rather, leave that to subsequent chapters to consider in detail. 
We will instead specify the necessary requirements for the workload, application, and 
benchmarking; and we will provide a systematic staged tuning process, the so-called  
top-down approach. In this process, the performance tuning is considered at three 
different levels: system, application, and microarchitecture. Each level will be tuned 
iteratively to convergence, possibly exposing further bottlenecks at other levels.

The Three Levels and Their Impact on 
Performance
Most people think about performance tuning of HPC applications as the process of 
tuning the actual source code, but as we shall see, this is only part of the story.

We discussed latency and throughput in Chapter 2. Let us have a look at the typical 
access latency and throughput for different components in an HPC system that was 
discussed there. This information is summarized in Table 3-1, with a few numbers 
deliberately rounded to the nearest order of magnitude.

Table 3-1 shows a trend of diminishing latency and increasing throughput as we 
move closer and closer to the execution of instructions. Indeed, the whole process might 
be thought of as a pipeline provisioning data to the processor core, delivering it through 
the cache hierarchy from the operating system memory, or even farther away from the 
external node’s memory or a hard disk.
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Performance follows the weakest-link paradigm: if one stage of the pipeline does 
not work according to expectations, the rest of the pipeline will starve. While optimizing 
this pipeline, we should start with the biggest potential bottlenecks first—at the top of 
this list, working our way down, as shown in Figure 3-1. Indeed, it makes little sense to 
start working on the branch misprediction impact while the application spends most of 
its time in the network communication or cache misses. Once we have made sure data is 
available in the cache, a continuously occurring branch misprediction does have a huge 
relative impact.

Table 3-1.  Memory Technologies and Their Latency and Throughput (to the Order of 
Magnitude)

Component Typical Latency Typical Throughput

Local SATA HDD ~1 ms 100 MB/s

Local SATA SSD ~1 ms 500 MB/s

1GB Ethernet ~15 us 100 MB/s

10GB Ethernet ~4 us 1 GB/s

Infiniband FDR 1.5 us ~6.5 GB/s

Local memory (loaded) ~250 ns ~100 GB/s

Local memory (idle) ~60 ns 0 GB/s

Remote memory (idle) ~100 ns 0 GB/s

QPI (intersocket) ~100 ns* ~64 GB/s

L3 cache access 10-25 ns ~160 GB/s

L2 cache access ~5 ns ~160 GB/s

L1 cache access 2-3 ns ~240 GB/s

XOR instruction ~6 ns ~2.5 Ginstruction/s

Branch misprediction ~7 ns -

SIMD Division instruction ~16 ns ~1 Ginstruction/s

*QPI remote connection latency is hardly observable on the backdrop of the remote 
memory latency mentioned above.
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Considering Table 3-1, the tuning of a system/software combination may be 
intuitively broken down into three stages, which are roughly ordered according to the 
data flow and their impact time—that is, the time impact that an inefficiently working part 
could make on the execution:

•	 System: This is the computer hardware and system software as such 
and all that brings it to life: the hard disk, the network interfaces, 
the memory, the BIOS, the operating system, the job manager, the 
cooling system, and the processor. All of these components require 
proper setup and configuration for the considered application 
workload to deliver the expected performance.

•	 Application: This is the part that the user is most exposed to, since 
this is what he writes or modifies as source code. The application 
level comprises the algorithmic implementation, the use of 
external application programming interfaces (APIs), locks, heap, 
stack, and so on. One central point of the application level is the 
proper management of data and the access thereto. In particular, 
this includes the parallelization in two flavors: the shared and 
distributed memory programming.

•	 Microarchitecture: For most people this is the most obscure level. 
It is concerned with the efficient use of the processor-internal 
resources by the application. For example, how efficient is the 
processor interpreting the strange hex numbers in your binary? 
How many instructions does the processor complete per cycle? 
Does an instruction wait most of the time for another one to 
complete? Is the processor able to predict the conditional branches 
in your code? Generally, one does not want to know about all of 
this, but this is where the battle is decided at the last stage of the 
optimization process.

It is important to understand that bottlenecks in the higher levels may hide bottlenecks 
in the lower ones. On the other hand, improvements in the lower levels can create 
bottlenecks at the higher levels. Figure 3-1 shows an overview of the individual levels.

Figure 3-1.  Bottleneck levels and their impact on performance of applications
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System Level
Before worrying about the code of your application, the most important and impactful 
tuning can be achieved looking at the system components of the compute node, 
interconnect, and storage. No matter how advanced and skillfully implemented an 
algorithm is, a wrongly configured network, a forgotten file I/O, or a misplaced memory 
module in a NUMA system can undo all the effort you put into careful programming.

In many cases, you will be using a system that is in good shape. Particularly if you 
are a user of an HPC compute center, your system administrators will have taken care in  
choosing the components and their sound setup. Still, not even the most adept system 
administrator is immune to a hard disk failure, the cooling deficits of an open rack door, 
or a bug in a freshly installed network driver. No matter how well your system seems to be 
maintained, you want to make sure it really does perform to its specification.

You’ll find a detailed description of the system tuning in Chapter 4, but here we give 
an overview of the components and tools. For an HPC system, the hardware components 
affecting performance at a system level are mostly as follows:

•	 Storage and file systems: As the most of HPC problems deal with 
large amounts of data, an effective scaling storage hierarchy 
is critical for application performance and scaling. If storage 
is inadequate in terms of bandwidth or access latency, it may 
introduce serialization into the entire application. Taking into 
account Amdahl’s Law (discussed in Chapter 2), this should be 
considered as the first optimization opportunity.

•	 Cluster interconnection hardware and software: HPC applications 
do not only demand high bandwidth and low latency for  
point-to-point exchanges. They also demand advanced 
capabilities to support collective communications between very 
large numbers of nodes. A single parameter set wrongly here may 
completely change the relevant performance characteristics of 
the network.

•	 Random access memory (RAM): The RAM attached to the 
integrated memory controller of a CPU comes in packages called 
dual-lnline memory modules (DIMMs). The memory controller 
supports a number of channels that can be populated with several 
DIMMs. At the same time, different specifications of DIMMs may 
be supported by the memory controller, such as DIMMs of different 
sizes in the same channel. Asymmetry in either size or placement 
of the DIMMs may result in substantial performance degradation.

•	 Platform compute/memory balance: As discussed in Chapter 2, 
each system has its compute/memory performance balance that 
can be visualized by the Roofline model. Depending on the specific 
platform configuration (including the number of cores, their speed 
and capabilities, and the memory type and speed), the application 
may end up being memory or compute bound, and these specific 
platform characteristics will define the application performance.
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•	 Basic input-output system (BIOS): The BIOS is used to bootstrap 
the system (that is, starting the OS without having full knowledge 
of the components used), but more importantly, it is also used 
to configure certain hardware features that can only be set at the 
boot time. Examples for such features are:

•	 NUMA mode: Does the BIOS present the system memory as 
local to a socket or as one homogeneous memory region? 
Inefficient memory initialization may introduce significant 
system-level bottlenecks for particular applications.

•	 Processor and RAM frequencies: The central processor unit 
(CPU) and RAM can operate under different frequency 
policies. The CPU, for instance, will try to assume a  
low-frequency state if no activity is detected, so as to save 
energy. Latest CPU and RAM specifications need to be 
supported by the BIOS in order to give the best performance. 
At the same time, CPU frequency variations driven by desire of 
saving power may lead to unpleasant load-imbalance issues.

•	 Operating system (OS): The OS seems somewhat misplaced in 
the hardware category, since it is indeed software. But once you 
access the memory, you are actually interacting with the OS, 
since it will abstract the true memory away from you. So, to some 
degree, the OS is a proxy to hardware and should be treated in 
the same category. The OS should be kept up to date, and the 
version installed should support the features of the CPU and the 
rest of the system that are essential for performance. For instance, 
the use of the advanced vector extensions (AVX) and NUMA 
must be supported by the OS. Apart from this, the most critical 
point from the OS perspective is the drivers that allow hardware 
components to be operated from the user space. Examples of this 
are InfiniBand network cards, hard disk interfaces, and so forth.

All of these components need to be tested and benchmarked. A detailed guide 
on how to identify, find root causes for, and fix system level bottlenecks is provided in 
Chapter 4.

Note■■   System-level performance impact 2x–10x.

Application Level
After the bottlenecks at the system level are successfully cleared, the next category 
we enter is the application level: we are actually getting our hands on the code here! 
Application-level tuning is more complicated than system level because it requires a 
certain degree of understanding of algorithmic details. At the system level, we dealt 
with standard components—CPUs, OS, network cards, and so on. We rarely can change 
anything about them, but they need to be carefully chosen and correctly set up. At the 
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application level, things change. Software is seldom made from standard components: 
most of its functionality is different from all other software. The essential part causing this 
differentiation is the algorithm(s) used and the implementation thereof. 

Note that optimization should not mean a major rewrite. You don’t want to change 
the general algorithm as such. A finite difference program should remain that way, even 
if finite elements might be more suitable. We are, rather, talking about optimizing the 
algorithm at hand and the plethora of smaller algorithms that it is built from.

Working Against the Memory Wall
As explained in Chapter 2, performance of modern HPC systems comes from two 
main sources: SIMD vectorization and parallelization. Both need to be considered 
at the application level. One central problem still needs to be addressed, however: 
the divergence of processor and memory performance. Moore’s Law promises 
doubling of the number of transistors on a fixed silicon area roughly every two years.1 
This implies to some degree a doubling of performance as well, because when you 
talk about doubling the number of processing cores on a chip, you have twice the 
available space. Even if the number of cores doesn’t double, there might be other uses 
for these additional transistors,  such as the AVX1 and AVX2 instruction sets, each 
of which doubles the floating point operations that can be processed per cycle. Note 
also that the ever-faster, ever-bigger, and increasingly more efficient caches are part 
of this development.

When you leave the boundaries of the processor, though, there is no such rapid 
development. Dynamic RAM (DRAM) performance grows at 1.2x in the same time as the 
CPU performance grows 2x. The observation that this would lead to a starving CPU was 
first put forward by W. A. Wulf and S. A. McKee in 1994.2 It did not come out quite as bad 
as predicted—more cache levels, larger cache sizes, integrated memory controllers, and 
more memory channels in combination with the CPU hardware prefetchers mitigated 
this predicted trend to some degree. Still, there is increasing pressure on the memory 
subsystem, and so application tuning should focus there. Chapter 8 deals with the 
respective optimization techniques in detail.

The impact of proper data management may be estimated to be in the order of the 
cache latency at different levels compared to the latency of RAM access:

S =
L

L
RAM

cachen

S =
L

L
RAM

cachen

This ratio ranges between 2x and 5x.

Note■■   Data layout and access performance impact: 2–5x.
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The Magic of Vectors
Once data is readily available in the cache, computation itself might become the 
bottleneck. Now, SIMD vectors come into play. As described in Chapter 2, a SIMD 
instruction can execute the same arithmetic operation on different elements of a SIMD 
vector at the same time, as shown in Figure 3-2. Usually, the compiler does a decent job 
vectorizing code even in a very complex environment, but there are reasons it might not 
be able to vectorize your code. The Intel Compiler has some very useful reporting that 
will tell you exactly why the compiler cannot vectorize a particular loop. In the figure, 
vmulpd two SIMD AVX vectors containing four double elements each or one SIMD 
vector and a memory reference. The assembly code shows that the compiler already 
unrolls the loop by 4.

Figure 3-2.  Example for an automatic vectorization by the compiler in C source code, and 
the resulting assembly instructions

The impact of vectorization on performance may be estimated by the number of 
vector elements of a given type that can be processed in parallel. For double precision/
AVX, the possible speedup is four times; for single precision, it’s eight times.

Note■■   Vectorization performance impact (double precision): 4x.

Distributed Memory Parallelization
The most important parallelization technique in HPC is distributed memory 
parallelization that enables communication between processes that may not share a 
common address space (although they can, of course). The benefit of this is immediately 
clear: you can communicate across physically different computers and gain access to  
the full power of the massively parallel HPC clusters.
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As in the shared-memory approach (discussed in the next section), there is need for 
a robust library that would abstract all the low-level details and hide from the user the 
differences between various interconnects available on the market. So, back in the early 
1990s, a group of researchers designed and standardized the Message Passing Interface 
(MPI).3 The MPI standard defines a language-independent communications protocol 
as well as syntax and semantics of the routines required for writing portable message-
passing programs in Fortran or C/C++; nonstandard bindings are available for many 
other languages, including C++, Perl, Python, R, and Ruby. The MPI standard is managed 
by the MPI Forum4 and is implemented by many commercial and open-source libraries.

The MPI standard was widely used as a programming model for distributed memory 
systems that were becoming increasingly popular in the early 1990s. As the shared 
memory architecture of individual systems became more popular, the MPI library 
evolved as well. The latest MPI-3 standard was issued in September 2012. It added fast 
remote memory access routines, nonblocking and sparse collective operations, and some 
other performance-relevant extensions, especially in the shared memory and threading 
area. However, the programming model clearly remains the distributed memory one with 
explicit parallelism: the developer is responsible for correctly identifying parallelism and 
implementing parallel algorithms using MPI primitives.

The performance improvement that can be gained from distributed memory 
parallelization is roughly proportional to the number of compute nodes available, which 
ranges between 10x and 1000x for the usual compute clusters.

Note■■   Distributed memory parallelization performance impact: 10–1000x.

Shared Memory Parallelization
The next level to look at is the shared memory parallelization. In contrast to the distributed 
memory programming, where the parallelization unit is normally a process with its 
own, unique address, space, shared memory programming deals with parallel execution 
flow in a common address space. Generally, the execution needs to take place on the 
same physical system. Although processes can also participate in shared memory 
communication, we generally think about threads here.

How do you make a program utilize all processors in a shared memory system? 
There are multiple libraries providing application program interfaces, or APIs, 
such as POSIX Threads,5 that help create and manage multiple application threads. 
Unfortunately, a lot of threading APIs are either operating system specific (and thus not 
portable to other OS), or use unique features of the underlying hardware, or are simply 
too low-level. This is why the HPC community has been building open, portable, and 
hardware-agnostic programming interfaces to implement threading support in the most 
popular programming languages: C, C++, and Fortran. The demand from developers for a 
cross-platform, easy-to-use, threading API helped OpenMP 6 to become the most popular 
threading API by far. OpenMP consists of a set of compiler directives, as well as library 
routines and environment variables, that  influence the program runtime behavior.
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The most recent development of the OpenMP moved the OpenMP API beyond 
traditional management of pools of threads. In the OpenMP specification version 4.0, 
released in July 2013, you  find support for SIMD optimizations, as well as support for 
accelerators and coprocessors that architecturally better fit into the distributed memory 
system type discussed earlier in this chapter. Chapter 5 discusses OpenMP and other 
threading-related optimization topics, including how to deal with the application-level 
bottlenecks specific to the shared memory systems programming.

The performance improvement for shared memory parallelization is roughly 
proportional to the number of cores available per compute node, which is from 10x to 20x 
in modern server architectures.

Note■■   Shared memory parallelization performance impact: 10x–20x.

Other Existing Approaches and Methods
So far we have discussed the most popular and widely used parallel programming models 
for the shared and distributed memory architectures—namely, MPI and OpenMP. 
However, there are a couple of other methods worth mentioning.

Partitioned Global Address Space (PGAS) is a model that assumes a global memory 
address space that is logically partitioned, with each portion being local to each 
process or thread. The PGAS approach attempts to combine the advantages of the MPI 
programming style for distributed memory systems with the data referencing semantics 
used in programming shared-memory systems. The PGAS model is the basis for Unified 
Parallel C,7  Coarray Fortran8 (now a part of the Fortran standard), as well as more 
experimental interfaces and languages.

The SHMEM (Shared Memory) library provides a set of functions similar to MPI.9 It 
is available for C and Fortran programming languages. SHMEM routines support remote 
data transfer, work-shared broadcast and reduction, barrier synchronization, and atomic 
memory operations.

Intel Thread Building Blocks (TBB)10 and Intel Cilk Plus11 aim at making threading  
and SIMD kind of parallelism easier to use. They represent a new wave of the programming  
interfaces being developed to address the increased need for parallelization that has 
reached the mainstream.

Another emerging programming model, applicable for processing large data sets in 
the so-called Big Data applications, using a parallel, distributed algorithm on a cluster, 
is MapReduce.12 A MapReduce program consists of a Map() procedure that usually 
performs filtering and sorting of large arrays of data, and a Reduce() procedure that 
performs a summary or other reduction operation on the results of the Map() operation. 
The MapReduce system middleware—for example, open-source Apache Hadoop13—
orchestrates the distributed memory servers, runs various tasks in parallel, manages 
all communication and data transfers between the parts of the system, and provides 
transparent redundancy and fault tolerance.
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One thing to keep in mind when working at the algorithm level is that you do not 
need to reinvent the wheel. If there is a library available that supports the features of 
the system under consideration, you should use it. A good example is the standard 
linear algebra operations. Nobody should program a matrix-matrix multiplication or an 
eigenvalue solver if it is not absolutely necessary and known to deliver a great benefit. 
The vector-vector, matrix-vector, and matrix-matrix operations are standardized in the 
so-called Basic Linear Algebra System (BLAS),14 while the solvers can be addressed via 
the Linear Algebra Package (LAPACK)15 interfaces, for which many implementations are 
available. One of them is Intel Math Kernel Library (Intel MKL), which is, of course, fully 
vectorized for all available Intel architectures and additionally offers shared memory 
parallelization.16

Microarchitecture Level
Having optimized the system and the algorithmic levels, let’s turn now to the problem 
of how the actual machine instructions are executed by the CPU. According to 
Table 3-1, microarchitectural changes have the least individual impact in absolute 
numbers, but when they are accumulated, their impact on performance may be large. 
Microarchitectural tuning requires a certain understanding of the operation of the 
individual components of a CPU (discussed in detail in Chapter 7). Here, we restrict 
ourselves to a very limited overview. 

Addressing Pipelines and Execution
The most important features of a modern CPU that need to be addressed at the 
microarchitectural level are as follows:

•	 Pipelining: The concept of pipelines is addressed at various 
points in this book, but they play a special role in the design of a 
CPU. Pipelines are probably the most impactful design pattern in 
modern computer architecture. The idea is based on the principle 
of an assembly line: one stage of the pipeline provides input to 
the following stages. Each stage is specialized in a particular task, 
which reduces complexity and increases performance. However, 
a stall at a particular stage may easily spread across the pipeline, 
both up (for lack of resources) and down (for lack of tasks to 
address).

•	 Out-of-order (OOO) execution: This is the ability of the CPU to 
reorder the instructions of a program according to the readiness 
of the required resources. If instruction1 depends on the input 
parameters that are not yet available, the CPU scheduler might 
schedule execution of the following instruction2 that meets all 
dependency requirements.

•	 Superscalarity: Superscalarity describes the implementation of 
instruction-level parallelism within the CPU. A superscalar CPU 
features multiple independent pipelines of the same or different 
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capabilities. The scheduler routes instructions to these pipelines 
depending on  what type the instructions are, and tries to execute 
them in parallel. In the current Intel architecture codenamed 
Haswell, for example, the CPU can execute two FMA operations at 
the same time, reaching throughput of 0.5 cycles/FMA. The total 
number of instructions that can be executed in parallel is 4/cycle.

•	 Branch prediction: A real problem in pipelined processors is 
conditional branches, which are jumps to a different part of the 
instruction flow based on the decision computed at runtime. 
In this case, the pipeline has to stop issuing instructions until 
the decision criterion is available. In order to circumvent this 
problem, a special unit in the CPU predicts the criterion based 
on the earlier decisions. A special cache is available to store these 
decisions. In this way, the CPU pipeline can continue operating 
speculatively, assuming continuation of the instruction flow at the 
predicted position. If the prediction was wrong, all instructions 
following the wrongly predicted branch are invalid and the 
complete pipeline has to be flushed for the execution flow to 
continue with the correct instruction.

Microarchitectural performance tuning is made more difficult because the actual 
implementation of the technologies just described can and will change with every 
processor generation, and might differ considerably across different vendors. Intel’s CPUs 
offer particular hardware functionality to access the information necessary to perform 
microarchitectural tuning, the so-called performance monitoring unit (PMU). The PMU 
offers measures that keep track of what exactly happens in the chip—for instance, how 
many branch predictions have been done and how many have failed. Although you 
can access the PMU explicitly, it is much more convenient to use a tool that does the 
PMU programming for you, such as Intel VTune Amplifier XE,17 Likwid,18 or the Perf 19 
command accessing the PMU via the Linux kernel.

The impact of the microarchitectural optimization can be estimated by the product 
of the depth of the pipelines and the number of pipelines in the modern processor, 
ranging in the 10x to 20x area.

Note■■  T he performance impact of microarchitectural tuning can be up to 10x–20x.

Closed-Loop Methodology
One of the most critical factors in the tuning process is the way you load the system. There 
is some ambivalence in the use of the terms workload and application. Very often, they 
are used interchangeably. In general, application means the actual code that is executed, 
whereas workload is the task and data that you give to the application. For instance, the 
application might be sort.exe, and the workload might be some data file that contains 
the names of persons.
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Workload, Application, and Baseline
In the current context, we would like to take a simpler view, considering both 
application and workload in combination simply as the workload. This combination 
needs to fulfill a number of criteria to be suitable for our purposes:

1.	 The workload should be measurable—that is, there should 
be quantifiable metric that represents performance of the 
application. Such a metric can be obvious ones, like execution 
time or GFLOPS, or more specialized, like simulated 
nanoseconds/day or transactions/s.

2.	 Measurement of the performance metric  must be 
reproducible. Upon repetitive runs of the application, the 
resulting numbers need to be consistent. Also, the stress 
exerted by the application on the system needs to be 
reproducible.

3.	 The workload should be static—that is, it must not vary 
over time, and it needs to result in the same performance, 
regardless of when the workload is executed. In practical 
terms, performance observed should not vary beyond 1 to 2 
percent.

4.	 The workload must be representative of the load imposed 
upon the system under normal operating conditions. In 
other words, it should stress those parts of the system that are 
loaded under normal operation.

In most cases, a real application (or part thereof) and a real compute task will be 
used for benchmarking. This need not be the case, however, as generating representative 
stress might be too time-consuming and the application itself might not be designed for 
benchmarking. Instead, you can consider an artificial benchmark that represents the 
real situation but gives more detailed information about the performance of individual 
fractions of the code and executes much faster. A good example is CERN’s HEP-SPEC 
benchmark,20 a subset of SPEC that mimics the system stress exerted on the CERN 
computing center.

One thing that must not be forgotten is to establish a baseline performance of the 
workload before you start tuning. Without the baseline, there is no objective starting 
point against which to compare any consequent potential improvement.

Iterating the Optimization Process
The top-down approach provides structured prioritization of the tuning tasks at hand.  
We now come to the second important part of this methodology: the closed-loop concept. 
While working at one level, we execute the following scheme:

1.	 Gather performance data: Collect performance data in the 
metric(s) agreed.
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2.	 Analyze the data and identify issues: Focus on the most time-
consuming part(s). Begin by looking for unexpected results or 
numbers that are out of tolerance. Try to fully understand the 
issue by using appropriate tools. Make sure the analysis does 
not affect the results.

3.	 Generate alternatives to resolve the issue: Remove the 
identified bottlenecks. Try to keep focused on one step at 
a time. Rate the solutions on how difficult they are to be 
implemented and on their potential payback.

4.	 Implement the enhancement: Change only one thing at a 
time in order to estimate the magnitude of the individual 
improvement. Make sure none of the changes causes a 
slowdown and negated other improvements. Keep track of the 
changes so you can roll them back, if necessary.

5.	 Test the results: Check whether performance improvements 
are up to your expectations and that they remove the 
identified bottleneck.

After the last step, you restart the cycle to identify the next bottleneck (see Figure 3-3). 
Clearly, this loop is normally infinite, for the time to stop is determined by the amount of 
time left to do the job.

Figure 3-3.  Left: The closed-loop iterative performance optimization cycle. Right: Example 
performance gains by tuning through various levels
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The right graph in Figure 3-3 shows an artificial performance optimization across 
different levels. Note that at each level the performance saturates to some degree and that 
we switch levels when other bottlenecks become dominant. This can also mean going up 
a level again, since successful tuning of the application level might expose a bottleneck  
at the system level.

For example, consider an improvement in the OpenMP threading that suddenly 
causes the memory bandwidth to be boosted. This might very well expose a previously 
undiscovered bottleneck in the systems memory setup, such as DIMMs in the channels 
of the memory controllers having different sizes, with the resulting decreased memory 
bandwidth.

Summary
The methodology presented in this chapter provides a solid process to tune a system 
consistently with the top-down/closed-loop approach. The main things to remember are 
to investigate and tune your system through the following different levels:

1.	 System level (see Chapter 4)

2.	 Application level, including distributed and shared memory 
parallelization (see Chapters 5 and 6)

3.	 Microarchitecture level (see Chapter 7)

Keep iterating at each level until convergence, and proceed to the next level with the 
biggest impact as long as there is time left.
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