
251

Chapter 8
Personal Information
Management APIs

As you start developing Cascades business and productivity apps, you will realize the necessity for
leveraging core services such as searching contacts, sending messages, and managing calendar
entries. The aforementioned services fall under the personal information management (PIM)
umbrella and refer to the tools used to manage the user’s personal and professional lives. One
approach would be to implement the PIM services in your own application, which would quickly
become daunting. Also from a user perspective, providing functionality already covered by the core
applications would be less than ideal. A better approach would therefore be to reuse the preexisting
PIM services provided by the BlackBerry 10 core applications and leverage them in your own apps.
You can essentially achieve this in two ways:

	Use service APIs: All BlackBerry 10 PIM applications provide an API for
interfacing with their data stores. To leverage the APIs, you will have to link your
application against the bbpim library and use service classes to access the PIM
functionality.

	Use the invocation framework: Use this to invoke core applications from your
own app.

I will cover the PIM service APIs in this chapter. The invocation framework will be the subject of
Chapter 10. After having read this chapter, you will

Understand how user accounts are linked to service providers on the BlackBerry 	
10 device.

Have a good overview of the APIs used for interfacing to the BlackBerry 10 PIM 	
applications.

252 CHAPTER 8: Personal Information Management APIs

Personal Information Management
In a broad sense, “personal information management” refers to the tools used by the user to organize his
personal and professional lives. The following are the corresponding BlackBerry 10 core applications:

	Contacts: Enables the user to manage his contacts and store relevant
information such as a picture, work number, mobile number, e-mail, and so forth.

	Calendar: Enables the user to manage meetings, appointments, and events.

	Messaging: Enables the user to send and receive e-mail and short text
messages.

	Notebooks: Provides a productivity app for collecting, managing, and organizing
information that the user wants to remember. Information is organized in folders.

In this chapter, I will cover the Contacts, Calendar, and Messaging APIs, which correspond to the
PIM services used most often. You can also use this chapter as a reference for the PIM APIs.

PIM APIs
This section describes the APIs used for accessing the PIM applications described in the previous
section. You will see that the APIs always provide a service class, which corresponds to the API’s
interface to the target application’s database. The material will be presented in a top-down approach
by always starting with the service interface, and then explaining the remaining classes used in
calling the interface.

Note   To use the PIM APIs, you will have to add LIBS += -lbbpim to your application’s .pro file.

Service Types
The PIM APIs define service types, which correspond to broad categories of services such as messaging,
calendars, contacts, geolocation, phone, and so on. The Service class encapsulates this information in
the Service::Type enumeration (the values corresponding to PIM services are as follows):

	Service::Calendars: Represents a calendar service type. A calendar service can
be used to manage meetings and appointments.

	Service::Contacts: Represents a contacts service type. A contact service can
be used for managing user contacts, including data such as e-mail, phone
numbers, and so forth.

	Service::Messages: Represents a message service type. A message service can
be used for sending and receiving messages. A message could be an e-mail
message, a short text message, or even a tweet.

	Service::NoteBook: Represents a notebook service type, which contains a list of
items. A notebook could be something as simple as a grocery list.

253CHAPTER 8: Personal Information Management APIs

As you will see in the next section, the actual services are implemented by service providers, which
are linked to accounts on the device (for example, the caldav service provider can be used for
accessing calendar services).

Service Providers
A service provider typically implements a service type. Note that a given service type can be
implemented by multiple service providers, which in turn can correspond to multiple accounts
on the device (for example, the calendar service is implemented by the localcalendar provider,
which corresponds to the device’s “local” calendar account, and the caldav service provider,
which could be linked to a Google calendar account). In C++, you can use the QList<Provider>
AccountService::providers() method call to retrieve the list of all service providers available
on the device. You can then determine additional information about a service provider using the
Provider class:

	QString Provider::id(): Returns this provider’s id. Typical examples of provider
ids are localcalendar, localcontacts, sms-mms, facebook, caldav, imapemail,
and so forth.

	QString Provider::name(): Returns this provider’s name. You can use the name
property to display a user-friendly string to the user.

	bool Provider::isServiceSupported(Service::Type service): Returns whether
or not the service type is supported by the provider.

	bool Provider::isSocial(): Returns whether this service provider is a social
networking service.

	bool Property::EnterpriseType Provider::isEnterprise(): Returns whether
or not this service provider is an enterprise service. Possible values for
EnterpriseType are EnterpriseUnknown, NonEnterprise, and Enterprise.

	QList<QString> Provider::settingsKeys(): Returns this provider’s settings
keys. You can consider the settings keys as a generic way of specifying the
parameters required for creating a new account linked to the corresponding
service provider. In other words, each provider will define its own set of keys that
you will have to use when linking an account to the provider.

	QVariant Provider::settingsProperty(const QString& key, Property::Field
property): Returns metainformation for the given settings key. For example, you
can use this method to determine the type of a given key using Property::Type
as the second parameter. The returned QVariant will contain a string describing
the type. The possible values are number, boolean, string, and email).

254 CHAPTER 8: Personal Information Management APIs

Accounts
An Account object represents a user account stored on the device. Using the Account class, you can
retrieve information such as the account’s id, and most importantly, to which provider the account is
linked. Important Account methods are summarized as follows (the next section will show you how to
retrieve user accounts stored on the device):

	Account(const Provider& provider): Instantiates a new account object linked
to the given provider. All the account properties are set to the default values as
defined by the provider.

	AccountKey Account::id(): Returns this account’s ID. Note that you will
need the AccountKey to use service classes such as the CalendarService and
MessageService.

	Provider Account::provider(): Returns the provider associated to this account.

	void Account::setSettingsValue(const QString& key, const QVariant&
value): Assigns value to the corresponding key. The key is defined by the
provider linked to this account (also see Provider::settingsKeys()).

AccountService Class
You can use the AccountService class to determine the service providers registered on the user’s device,
as well as the corresponding accounts. The following list reviews important AccountService methods:

	Result AccountService::createAccount(const QString& providerId, Account&
accountData): Creates a new account linked to the service provider given by
providerId.

	QList<Account> AccountService::accounts(): Retrieves the list of all accounts
stored on the device.

	QList<Account> AccountService::accounts(Service::Type service, const
QString& providerId): Retrieves the list of accounts stored on the device
for a given service type and provider. The providerId string is given by
Provider::id() (see the description in the “Service Providers” section).

	Account AccountService::defaultAccount(Service::Type type): Returns
the default account for a given service type. The Service::Type enumeration
can take the following values: Calendars, Contacts, Notebook, Geolocations,
Linking, Memos, Messages, Tags, Tasks, and Phone.

	QMap<Service::Type, Account> AccountService::defaultAccounts(): Returns
a map of default accounts by service type.

	QList<Provider> AccountService::providers(): Retrieves the list of all provider
objects.

	QList<Account> AccountService::accounts(Service::Type service): Retrieves
the list of Account objects currently synchronizing data for the given service type.

255CHAPTER 8: Personal Information Management APIs

Creating a New Account
You can use the AccountService class to create a new account linked to a given service provider by
performing the following steps:

1.	 Retrieve the provider’s keys, which correspond to the account parameters
that you will have to set.

2.	 Instantiate an Account object by passing the provider object to the Account
object’s constructor. Update the Account object using the provider keys.

3.	 Create the actual account using the AccountService::createAccount(const
QString& providerId, Account) method.

Listing 8-1 outlines the process in practice (note that the getKeyValue() method, which is used to
retrieve a key value, is not shown. In practice, the key values could be provided by a user-entered
QML form or loaded using app settings at application start-up).

Listing 8-1.  Account Creation

const QString providerId = "imapemail";
const Provider provider = m_accountService->provider(providerId);
 
Account account(provider);
 
// Iterate over all of the provider’s settings keys
foreach (const QString &key, provider.settingsKeys()) {
 QVariant value = getKeyValue(key);
 account.setSettingsValue(key, value);
}
 
m_accountService->createAccount(provider.id(), account);

Searching for Accounts
As illustrated in Listing 8-2, you can use the AccountService class to search accounts linked to a
given provider.

Listing 8-2.  Account Creation

#include <bb/pim/account/AccountService>
 
using namespace bb::pim::account;
 
AccountService accountService;
QList<Account> accounts = accountService.accounts(Service::Messages,"emailemap");
for (int i = 0; i < accounts.size(); i++) {
 cout << "display name: " + accounts[i].displayName().toStdString() << endl;
}
 

256 CHAPTER 8: Personal Information Management APIs

In a similar way, if you wanted to retrieve the accounts linked to the caldav provider, you could use
the following method call: accountService.accounts(Service::Calendar, "caldav")

In practice, as you will see in the following sections, you will need the Account ID to update the
corresponding PIM app.

Contacts API
You can use the Contacts API to create, update, and delete contacts stored on the device. Typically,
when you add a new contact, you can set the contact’s attributes such as e-mails, postal addresses,
phone numbers, pictures, and so on. Using the ContactService class, the following sections will
illustrate basic operations of the Contacts database.

Note   To access the Contacts database, you need to add the access_pimdomain_contacts permission
in your project’s bar-descriptor.xml file.

ContactService
As with accounts and the AccountService class, the ContactService class is the central interface for
manipulating contacts stored on the device. The following summarizes ContactService methods:

	Contact ContactService::createContact(const Contact& contact, bool
isWork): Creates a new contact and adds it to the Contacts database. If isWork
is true, the contact will be created in the enterprise perimeter; otherwise, the
contact will be created in the personal perimeter.

	Contact ContactService::contactDetails(ContactId id): Retrieves the full
details of the contact given by id.

	ContactService::updateContact(const Contact& contact): Updates an existing
contact. Note that you need to be sure that you have retrieved the contact using
ContactService::contactDetails(ContactId id). Only contacts retrieved with
the previous method return the full contact data. Other methods return partial
contact information and the call to ContactService::updateContact(const
Contact& contact) might then overwrite the database with incomplete data.

	QList<Contact> ContactService::searchContacts(const
ContactSearchFilters& filters): Retrieves a list of contacts based on the
given search filter. The default search fields are first name, last name, company
name, phone, and e-mail.

	QList<Contact> ContactService::contacts(const ContactListFilters&
filters): Retrieves a list of contacts based on the given list filters.

	void ContactService::deleteContact(ContactId contactId): Deletes the
contact whose ContactId is id.

257CHAPTER 8: Personal Information Management APIs

Creating a New Contact
Listing 8-3 shows you how to create a new contact in the Contacts database.

Listing 8-3.  Creating a New Contact

#include <bb/pim/contacts/ContactService>
#include <bb/pim/contacts/Contact>
#include <bb/pim/contacts/ContactAttributeBuilder>
#include <bb/pim/contacts/ContactBuilder>
 
using namespace bb::pim::contacts;
 
ContactService contactService;
 
QString firstName("Anwar");
QString lastName("Ludin");
QDateTime birthday(QDate(1973, 1, 21));
QString email("anwar@aludin.com");
 
ContactBuilder builder;
 
// Set the first name
builder.addAttribute(ContactAttributeBuilder()
 .setKind(AttributeKind::Name)
 .setSubKind(AttributeSubKind::NameGiven)
 .setValue(firstName));
 
// Set the last name
builder.addAttribute(ContactAttributeBuilder()
 .setKind(AttributeKind::Name)
 .setSubKind(AttributeSubKind::NameSurname)
 .setValue(lastName));
 
// Set the birthday
builder.addAttribute(ContactAttributeBuilder()
 .setKind(AttributeKind::Date)
 .setSubKind(AttributeSubKind::DateBirthday)
 .setValue(birthday));
 
// Set the email address
builder.addAttribute(ContactAttributeBuilder()
 .setKind(AttributeKind::Email)
 .setSubKind(AttributeSubKind::Work)
 .setValue(email));
 
// Set the postal address
builder.addPostalAddress(ContactPostalAddressBuilder().setCity("Geneva")
 .setCountry("Switzerland")
 .setLine1("2 rue de la Muse")
 .setPostalCode("1205")
 .setSubKind(AttributeSubKind::Work));
 

258 CHAPTER 8: Personal Information Management APIs

// Set photo
builder.addPhoto(ContactPhotoBuilder()
 .setOriginalPhoto("/accounts/1000/shared/photos/aludin.jpg"));
 
// Save the contact to persistent storage
contactService.createContact(builder, false);
 
The code is relatively straightforward. The easiest way to create a new contact is to use a ContactBuilder
instance. You can also assign attributes to the contact using a ContactAttributeBuilder instance
(as illustrated in Listing 8-2, you can specify the attribute’s kind, subkind, and value). For adding a
postal address, you should use a ContactPostalAddressBuilder. You can also assign a photo to the
contact using a ContactPhotoBuilder. Finally, once the contact’s attributes have been set, you can
call the ContactService::createContact(Contact contact, bool isWork) method to add the new
contact to the Contacts database (note that you can pass the ContactBuilder instance directly to
the ContactService::createContact() method because it provides a conversion operator, which will
create a Contact object from the ContactBuilder object).

Note   To access the contact’s photo in a shared folder on the file system, you must add the Shared Files
permission to your project’s bar-descriptor.xml file.

And finally, Figure 8-1 illustrates the newly created contact displayed in the BlackBerry
10 Contacts app.

259CHAPTER 8: Personal Information Management APIs

Updating a Contact
You can also update an existing contact using the ContactService::updateContact() method,
as illustrated in Listing 8-4.

Listing 8-4.  Updating a Contact

#include <bb/pim/contacts/ContactService>
#include <bb/pim/contacts/Contact>
#include <bb/pim/contacts/ContactAttributeBuilder>
#include <bb/pim/contacts/ContactBuilder>
 
ContactService contactService
 
int ContactId = 100; // alternatively use a search to get the contact
  
Contact contact = contactService->contactDetails(contactId);
if (contact.id()) {
 // Create a builder to modify the contact
 ContactBuilder builder = contact.edit();
 

Figure 8-1.  Newly created contact

260 CHAPTER 8: Personal Information Management APIs

 // Update the single attributes
 updateContactAttribute<QString>(builder, contact,
 AttributeKind::Name, AttributeSubKind::NameGiven,
 "Jack");
 updateContactAttribute<QString>(builder, contact,
 AttributeKind::Name, AttributeSubKind::NameSurname,
 "Smith");
 updateContactAttribute<QDateTime>(builder, contact,
 AttributeKind::Date, AttributeSubKind::DateBirthday,
 QDateTime(QDate(1980,3,21)));
 updateContactAttribute<QString>(builder, contact,
 AttributeKind::Email, AttributeSubKind::Other, "jsmith@aludin.com");
 
 // Save the updated contact back to persistent storage
 contactService->updateContact(builder);
}
 
As shown in Listing 8-4, you need to first retrieve the contact’s full details using the
ContactService::ContactDetails(ContactId id) method before updating the contact. You can
then use the ContactBuilder returned by the Contact::edit() method to update the contact’s
attributes (the code uses the templated updateContactAttribute<T>() helper function to update
the contact’s attributes (see Listing 8-5).

Listing 8-5.  Updating Contact Attributes

template<typename T>
static void updateContactAttribute(ContactBuilder &builder,
  
const Contact &contact, AttributeKind::Type kind,
 AttributeSubKind::Type subKind, const T &value)
{
 // Delete previous instance of the attribute
 QList<ContactAttribute> attributes = contact.filteredAttributes(kind);
 foreach (const ContactAttribute &attribute, attributes)
 {
 if (attribute.subKind() == subKind)
 builder.deleteAttribute(attribute);
 }
 
 // Add new instance of the attribute with new value
 builder.addAttribute(ContactAttributeBuilder().setKind(kind)
 .setSubKind(subKind).setValue(value));
}
 
Note how the code first deletes all previous instances of the attribute in the contact’s entry,
and then updates the builder to include the new attribute value.

261CHAPTER 8: Personal Information Management APIs

Searching for Contacts
Besides creating and updating contacts, you can also use the ContactService class to search for
contacts by matching search criteria. There are two ways to perform a search. First, you can create
a ContactSearchFilters instance that you pass to the ContactService::searchContacts(const
ContactSearchFilters& filter) method. In this case, you must at least specify a search value,
which is a string, but you can also further refine the search criteria by specifying search fields using
the SearchField::Type enumeration (if you don’t specify any search fields, the default first name,
company name, phone, and email fields will be used for matching the search value). Besides search
fields, you can also specify whether an attribute is present or not in the contact’s entry.

Alternatively, you can use a ContactListFilters instance and pass it to the
ContactService::contacts(const ContactListFilters& filter) method. In both cases, you can
control the number of returned search results by using the ContactSearchFilters::setLimit() and
the ContactListFilters::setLimit() methods (if you don’t specify a search limit, 20 values will be
returned at most; note that you can also choose to retrieve all the results corresponding to a search
by setting the limit to 0).

The following summarizes important ContactSearchFilters methods (for a detailed description of
ContactSearchFilters and ContactListFilters, consult BlackBerry’s online documentation):

	ContactSearchFilters& ContactSearchFilters::setSearchValue(const
QString& value): Sets the string to search in the list of contacts.

	ContactSearchFilters& ContactSearchFilters::setSearchFields(const
QList<SearchField::Type>& fields): Sets the search fields that the search
applies to. These fields are searched for the value set by the previous method.

	ContactSearchFilters& ContactSearchFilters::setHasAttribute(Attribute
Kind::Type present): Filters the search results to contain only contacts with the
provided attribute kind.

	ContactSearchFilter& ContactSearchFilter::setShowAttributes(bool value):
Specifies whether or not to include attributes in the search results. If true, attributes
are returned. If true along with ContactSearchFilter::setHasAttribute(),
then only the matching attributes are returned.

	ContactSearchFilters& ContactSearchFilters::setLimit(int limit): Sets the
maximum number of results returned by the search.

	ContactSearchFilters& ContactSearchFilters::setAnchorId(ContactId
anchor, bool inclusive): Sets the current anchor for paging. If inclusive is
true, anchor is included in the search results; otherwise, the contact after anchor
is returned in the search results (see the next section about paging).

The code shown in Listing 8-6 illustrates how to perform a search in practice (the code is adapted
from the BlackBerry 10 address book sample app and is used to update a ListView data model with
the search results).

262 CHAPTER 8: Personal Information Management APIs

Listing 8-6.  AddressBook::filterContacts( )

void AddressBook::filterContacts()
{
 QList<Contact> contacts;
 
 if (m_filter.isEmpty()) {
 // No filter has been specified, so just list all contacts
 ContactListFilters filter;
 filter.setLimit(0)
 contacts = m_contactService->contacts(filter);
 } else {
 // Use the entered filter string as search value
 ContactSearchFilters filter;
 filter.setSearchValue(m_filter);
   
 contacts = m_contactService->searchContacts(filter);
 }
 
 // Clear the old contact information from the model
 m_model->clear();
 
 // Iterate over the list of contact IDs
 foreach (const Contact &idContact, contacts) {
 // Fetch the complete details for this contact ID
 const Contact contact = m_contactService->contactDetails(idContact.id());
 
 // Copy the data into a model entry
 QVariantMap entry;
 entry["contactId"] = contact.id();
 entry["firstName"] = contact.firstName();
 entry["lastName"] = contact.lastName();
 
 const QList<ContactAttribute> emails = contact.emails();
 if (!emails.isEmpty())
 entry["email"] = emails.first().value();
 
 // Add the entry to the model
 m_model->insert(entry);
 }
}
 
In the previous example, if the filter string given by m_filter is empty, the code simply retrieves
all contacts using the ContactService::contacts() method. Otherwise, a ContactSearchFilter
instance is created with the search criteria and passed to the ContactService::searchContacts()
method. Finally, the ContactService::contactDetails() method is used to retrieve a given contact’s
full attributes (as mentioned previously, the search results will only return a partial list of attributes;
if you need the full list of attributes, you must call ContactService::contactDetails()).

263CHAPTER 8: Personal Information Management APIs

Paging
You can use paging to navigate through a partial list of contacts. In practice, paging is important for
performance reasons because it avoids the search to block the UI thread (as a good rule of thumb,
if your search criteria returns more than 200 values, you should consider paging). Listing 8-7 illustrates
how to use paging in practice.

Listing 8-7.  Paging

ContactSearchFilters filter;
filter.setSearchValue("Anwar");
filter.setLimit(20);
QList<Contact> contactPage;
do
{
 contacts = service.searchContacts(filter);
 process(contactPage);
 if (contactPage.size() == maxLimit)
 {
 filter.setAnchorId(contactPage[maxLimit-1].id());
 }
 else
 {
 break;
 }
} while (true);
 
The previous code uses a do-while loop to process search results in pages of size 20. Note that you
need to update during an iteration the anchor id, which corresponds to the last element returned
by the previous page, in order to move to the next logical page. Finally, you know that you are
processing the last page when the current page size is less than the maximum page limit. At this
point, you need to break out of the loop.

Asynchronous Search
An alternative to paging is to use an asynchronous search to avoid blocking the main UI thread (the
golden rule for building enticing Cascades apps is a nonblocking responsive UI). As mentioned in
Chapter 3, to perform an asynchronous operation, you need to create a worker object and start it in
a separate thread from the main UI thread.

To illustrate how you can perform an asynchronous search in practice, Listing 8-8 gives you the
AsynchSearch class definition.

Listing 8-8.  Asynchronous Search

#include <QObject>
#include <QString>
#include <QList>
 
#include <bb/pim/contacts/ContactService>
#include <bb/pim/contacts/Contact>
#include <bb/pim/contacts/ContactSearchFilters>
 

264 CHAPTER 8: Personal Information Management APIs

using namespace bb::pim::contacts;
 
class AsynchSearch: public QObject {
 Q_OBJECT
public:
 AsynchSearch(QObject* parent = 0) : QObject(parent) {};
 virtual ~AsynchSearch() {};
public slots:
 void doSearch();
public:
 void setFilter(QString filter) {
 m_filter = filter;
 }
 QString filter() {
 return m_filter;
 }
 
signals:
 void searchFinished(QList<Contact>);
 
private:
 QString m_filter;
 ContactService m_contactService;
}; 

Note   You can download a modified version of the AddressBook sample app using asynchronous searches
from this book’s GitHub repository at https://github.com/aludin/BB10Apress.

As illustrated in the AsynchSearch class definition, the class returns its search results using
the searchFinished(QList<Contact> contacts) signal. The actual search is performed in the
AsynchSearch::doSearch() method shown in Listing 8-9.

Listing 8-9.  AsynchSearch::doSearch( )

#include "AsynchSearch.h"
 
void AsynchSearch::doSearch() {
 QList<Contact> contacts;
 QList<Contact> contactsDetails;
 if (m_filter.isEmpty()) {
 // No filter has been specified, so just list all contacts
 ContactListFilters filter;
 filter.setLimit(0);
 contacts = m_contactService.contacts(filter);
 foreach (Contact c, contacts)

https://github.com/aludin/BB10Apress

265CHAPTER 8: Personal Information Management APIs

 {
 // Fetch the complete details for this contact ID
 const Contact contact = m_contactService.contactDetails(c.id());
 contactsDetails.append(contact);
 }
 emit searchFinished(contactsDetails);
 } else {
 // Use the entered filter string as search value
 ContactSearchFilters filter;
 filter.setSearchValue(m_filter);
 contacts = m_contactService.searchContacts(filter);
 foreach (Contact c, contacts)
 {
 // Fetch the complete details for this contact ID
 const Contact contact = m_contactService.contactDetails(c.id());
 contactsDetails.append(contact);
 }
 emit searchFinished(contactsDetails);
 }
}
 
Here again, the code uses the m_filter variable to retrieve the search results in a similar way to
Listing 8-6 (the main difference comes from the fact that the contact details are not used to update
a data model). Finally, as mentioned, when the search has completed, the searchFinished() signal
is emitted with the list of contacts corresponding to the search criteria. The updated version of
AddressBook::filterContacts(), which performs an asynchronous search, is given in Listing 8-10.

Listing 8-10.  AddressBook::filterContacts( ), Updated

void AddressBook::filterContacts() {
 QThread* thread = new QThread;
 AsynchSearch* asynch = new AsynchSearch;
 asynch->setFilter(m_filter);
 asynch->moveToThread(thread);
 
 bool result = connect(thread, SIGNAL(started()), asynch, SLOT(doSearch()));
 Q_ASSERT(result);
 result = connect(asynch, SIGNAL(searchFinished(QList<Contact>)), this,
 SLOT(onSearchFinished(QList<Contact>)));
 Q_ASSERT(result);
 
 result = connect(asynch, SIGNAL(searchFinished(const QList<Contact>)),
 thread, SLOT(quit()));
 Q_ASSERT(result);
 result = connect(asynch, SIGNAL(searchFinished(const QList<Contact>)),
 asynch, SLOT(deleteLater()));
 Q_ASSERT(result);
 result = connect(thread, SIGNAL(finished()), thread, SLOT(deleteLater()));
 Q_ASSERT(result);
 
 thread->start();
}
 

266 CHAPTER 8: Personal Information Management APIs

As illustrated in Listing 8-10, the updated version of AddressBook::filterContacts() creates a new
Thread and initializes an AsynchSearch object so that it will be run in the separate Thread by moving
the AsynchSearch instance to the new thread context.

The signals and slot connections are configured as follows:

The 	 QThread::started() signal is connected to the AsynchSearch::doSearch()
slot to perform the search when the thread is started.

The 	 AsynchSearch::searchFinished() signal is connected to the AddressBook::
onSearchCompleted() slot to return the search results to the main UI thread.

The same 	 AsynchSearch::searchFinished() signal is also connected to
the secondary thread’s QThread::quit() slot, which will in turn emit the
QThread::finished() signal.

Memory management and cleanup is handled by the 	
AsynchSearch::searchFinished() and QThread::finished() signals, which call
their corresponding deleteLater() slots.

Finally, the AddressBook::onSearchCompleted() slot, which is used to update the data model,
is shown in Listing 8-11.

Listing 8-11.  AddressBook::onSearchFinished( )

void AddressBook::onSearchFinished(QList<Contact> contacts) {
 
 // Clear the old contact information from the model
 m_model->clear();
 
 // Iterate over the list of contact IDs
 foreach (Contact c, contacts)
 {
 // Copy the data into a model entry
 QVariantMap entry;
 entry["contactId"] = c.id();
 entry["firstName"] = c.firstName();
 entry["lastName"] = c.lastName();
 
 const QList<ContactAttribute> emails = c.emails();
 if (!emails.isEmpty())
 entry["email"] = emails.first().value();
 // Add the entry to the model
 m_model->insert(entry);
 }
}
 
Also note that you need to register with the Qt type system the QList<Contact> type used as a
parameter in the interthread signal (in interthread signals, slots are not called immediately. but at a
“later stage” in the emitting thread’s event loop; therefore, the parameters passed to a slot located in
a different thread need to be saved and restored by the Qt type system); see Listing 8-12.

Listing 8-12. main.cpp

qRegisterMetaType< QList<Contact> >("QList<Contact>");

267CHAPTER 8: Personal Information Management APIs

Using a ContactsPicker
You can include the ContactsPicker control in your app if you want to provide a search interface
similar to the core Contacts app (the ContactPicker control uses a Card behind the scenes to display
its UI; you will find out about Cards when we cover the invocation framework in Chapter 10). As you
will see shortly, you can specify whether the ContactsPicker is configured in single-selection or
multiselection mode. To use the ContactsPicker in QML, you must first register the corresponding
C++ type with the QML type system (note that you must also register the ContactSelectionMode
class, which is used for setting the selection mode; see Listing 8-13 and Listing 8-14).

Listing 8-13.  main.cpp

qmlRegisterType<ContactPicker>("bb.cascades.pickers", 1, 0, "ContactPicker");
 
qmlRegisterUncreatableType<ContactSelectionMode>("bb.cascades.pickers", 1, 0,
 "ContactSelectionMode", "Can't instantiate enum");
 
And finally, Listing 8-14 shows you how to use the ContactPicker control in QML.

Listing 8-14.  ContactPicker

import bb.cascades 1.2
import bb.cascades.pickers 1.0
Page {
 Container {
 Button {
 text: "Open contact picker"
 onClicked: {
 picker.open();
 }
 }
 Label {
 id: result
 text: "You chose contact: "
 }
  
 
 attachedObjects: [
 ContactPicker{
 id: picker
 mode: ContactSelectionMode.Multiple
 onContactsSelected:{
 for(var i=0; i< contactIds.length; i++){
 console.log(contactIds[i]);
 }
 }
 }
]
 }
}
 

268 CHAPTER 8: Personal Information Management APIs

When the ContactPicker control is displayed, the user can select multiple contacts (see Figure 8-2).
When the user completes his selection and touches the Done button, the contactsSelected() signal
is emitted with a list of selected contact ids (if you don’t want the user to be able to select multiple
contacts, you can change the selection mode to ContactSelectionMode.Single and respond to the
contactSelected(id) signal).

Figure 8-2.  ContactPicker in multiselection mode

Calendar API
You can use the CalendarService class to add, update, and delete events in the Calendar database.
Each event is represented by a CalendarEvent object, which should contain at least the following
mandatory fields:

Account ID: The account used for accessing the calendars. As mentioned 	
previously, an account is linked to a service provider, which is either
localcalendar or caldav.

269CHAPTER 8: Personal Information Management APIs

Folder ID: Each user account can in turn include multiple calendars identified by 	
a folder ID. Therefore the “account ID, folder ID” pair uniquely identifies a user
calendar on the device.

Start time: The start time for this event (in C++ you can use a 	 QDateTime object
to specify this parameter; in QML you can use a DatePicker).

End time: The end time for this event.	

Subject: The event’s subject specified as a 	 QString.

Note   To access the Calendar database, you need to set the access_pimdomain_calendars permission
in your project’s bar-descriptor.xml file.

CalendarService
The CalendarService class is the API entry point for accessing the Calendar database. You can use
a CalendarService instance to manage calendars, events, attendees, and event locations. Note that
all CalendarService methods provide a Result::Type parameter to indicate to the client application
whether or not the API call was successful.

The following summarizes important CalendarService methods:

	QList<CalendarFolder> CalendarService::folders(Result::Type* result):
Returns all calendars folders from all calendar accounts (including remote
calendars such as caldav; a CalendarFolder object’s represents a distinct
calendar).

	QPair<AccountId, FolderId> CalendarService::defaultCalendar(Result::
Type* result): Returns a pair of IDs that specify the default calendar (the default
calendar is set by the user during device configuration. The setting is available
using the Set Defaults action located under Settings ➤ Account Settings).

	Result::Type CalendarService::createEvent(const CalendarEvent& event,
const Notification& notification=0): Creates a new event in the Calendar
database. You can optionally specify whether a notification should be sent
to attendees.

	QList<CalendarEvent> CalendarService::events(const
EventSearchParameters& params, QResult::Type* result=0): Retrieves a list
of events that match a specific search criteria identified by params. Note that
depending on the search criteria, this method can potentially take a few seconds
to complete. It would therefore be preferable not to call this method in the UI’s
main thread; use an asynchronous search instead.

	Result::Type CalendarService::deleteEvent(const CalendarEvent& event,
const Notification& notification): Deletes and removes an event from the
Calendar database.

270 CHAPTER 8: Personal Information Management APIs

CalendarFolder
A CalendarFolder is a container for calendar events. You can use this class to determine calendar
information such as name, type, owner e-mail address, and color (you can only update the
calendar’s color in the Calendar database).

CalendarEvent
A CalendarEvent object represents an event or meeting in the user’s calendar. Apart from the
mandatory fields discussed at the start of this section, you can add additional information to the
event, including attendees, location, event details, whether the event is a birthday, and so on.

The following summarizes important CalendarEvent setters:

	CalendarEvent::setAccountId(AccountId accountId): Sets the account ID for
this CalendarEvent.

	CalendarEvent::setFolderId(FolderId folderId): Sets the folder ID for this
CalendarEvent.

	CalendarEvent::setStartTime(const QDateTime& startTime): Sets the start
time for this CalendarEvent.

	CalendarEvent::setEndTime(const QDateTime& endTime): Sets the end time for
this CalendarEvent.

	CalendarEvent::setBody(const QString& body): Sets the body of this
CalendarEvent. The body provides further details about the event.

	CalendarEvent::setAllDay(bool allDay): Sets whether or not this
CalendarEvent is an all-day event.

	CalendarEvent::setAttendees(const QList<Attendee>& attendees): Sets the
list of attendees for this CalendarEvent.

	CalendarEvent::setLocation(const EventLocation& eventLocation): Sets
the location for this CalendarEvent. EventLocationis a defined as a typedef
QString EventLocation.

Attendee
An attendee is a participant to a meeting. You can use the Attendee class to specify information
about the participant, such as his name, e-mail, and his role in the meeting (chair, required
participant, optional participant, or nonparticipant included for information only).

The following summarizes important Attendee properties:

	Attendee::setContactId(ContactId contactId): Sets the contact ID for
this Attendee.

	Attendee::setEmail(const QString& email): Sets the e-mail of this Attendee.

271CHAPTER 8: Personal Information Management APIs

	Attendee::setName(const QString& name): Sets the name of this Attendee.

	Attendee::setRole(AttendeeRole::Type role): Sets the role of this Attendee
(the possible values are AttendeeRole::Invalid, AttendeeRole::Chair,
AttendeeRole::ReqParticipant, AttendeeRole::OptParticipant, and
AttendeeRole::NonParticipant).

Creating a New Event
Putting all the pieces together, Listing 8-15 shows you how to create new events in the default
calendar.

Listing 8-15.  CalendarService

#include <bb/pim/calendar/CalendarService>
#include <bb/pim/calendar/CalendarEvent>
#include <bb/pim/calendar/CalendarFolder>
 
#include <bb/pim/calendar/Attendee>
 
using namespace bb::pim::calendar;
 
// Create the calendar service object
CalendarService calendarService;
 
// Create the calendar events
CalendarEvent firstEvent;
 
// Retrieve the IDs of the default calendar on the device
QPair<AccountId, FolderId> defaultCalendar = calendarService.defaultCalendarFolder();
 
// Specify information for the first event
firstEvent.setStartTime(QDateTime(QDate(2014, 03,11), QTime(10,00,00)));
firstEvent.setEndTime(QDateTime(QDate(2014, 03,11), QTime(11,00,00)));
firstEvent.setSensitivity(Sensitivity::Normal);
firstEvent.setAccountId(defaultCalendar.first);
firstEvent.setFolderId(defaultCalendar.second);
firstEvent.setSubject("Dentist");
  
// create first event in database
calendarService.createEvent(firstEvent);
 
CalendarEvent secondEvent;
 
// Create the attendees for the second event
Attendee firstAttendee;
Attendee secondAttendee;
 
firstAttendee.setName("John Smith");
firstAttendee.setRole(AttendeeRole::ReqParticipant);
 

272 CHAPTER 8: Personal Information Management APIs

secondAttendee.setName("Anwar Ludin");
secondAttendee.setRole(AttendeeRole::OptParticipant);
 
// Add the attendees to the second event, and specify other
// information for the event
secondEvent.setStartTime(QDateTime(QDate(2014, 03, 11), QTime(15, 0, 0)));
secondEvent.setEndTime(QDateTime(QDate(2014, 03, 11), QTime(18, 00, 0)));
secondEvent.setSensitivity(Sensitivity::Confidential);
secondEvent.setAccountId(defaultCalendar.first);
secondEvent.setFolderId(defaultCalendar.second);
secondEvent.setSubject("Annual Results");
QList<Attendee> attendees;
attendees << firstAttendee << secondAttendee;
secondEvent.setAttendees(attendees);
 
// Add the events to the database
calendarService.createEvent(secondEvent);
 
In practice, you should let the user choose the specific calendar where he wants to add the new
event (for example, you could display a list of available calendars to the user by using the list
returned by the CalendarService:folders() method; note that the method will also return remote
calendars, which can be quite handy).

You can also use the CalendarService::folders() method to iterate by name over all of the user’s
calendars; for example, Listing 8-16 shows you how to add a new event in the user’s “Hobbies” calendar.

Listing 8-16.  Creating Events

#include <bb/pim/calendar/CalendarService>
#include <bb/pim/calendar/CalendarEvent>
#include <bb/pim/calendar/CalendarFolder>
 
using namespace bb::pim::calendar;
 
QList<CalendarFolder> folders = calendarService.folders();
foreach(CalendarFolder folder, folders){
 if(folder.name() == "Hobbies"){
 CalendarEvent sailingEvent;
 sailingEvent.setStartTime(QDateTime(QDate(2014, 03,12), QTime(14,00,00)));
 sailingEvent.setEndTime(QDateTime(QDate(2014, 03,12), QTime(18,30,00)));
 sailingEvent.setSensitivity(Sensitivity::Normal);
 sailingEvent.setAccountId(folder.accountId());
 sailingEvent.setFolderId(folder.id());
 sailingEvent.setSubject("Sailing competition");
 sailingEvent.setLocation("Geneva Yatch club");
 calendarService.createEvent(sailingEvent);
 }
}
 
Finally, you can check that the previous event has been successfully added to the Calendar app
(see Figure 8-3). Besides, if the folder is linked to a caldav service provider, the corresponding event
should also appear on the remote calendar.

273CHAPTER 8: Personal Information Management APIs

Searching for Calendar Events
You can define search criteria to search for particular events in a calendar by using the
EventSearchParameters class.

The following summarizes important EventSearchParameters properties:

	EventSearchParameters::setPrefix(const QString& prefix): Sets this search’s
prefix string. The search will return events whose subject or location string starts
with the prefix string.

	EventSearchParameters::setStart(const QDateTime& start): Sets the start
date and time for this search.

	EventSearchParameters::setEnd(const QDateTime& end): Sets the end date and
time for this search.

	EventSearchParameters::addFolder(const FolderKey& folder): Adds a
folder key for this search. A FolderKey defines the account ID and folder
ID to search (you can use FolderKey::setAccountId(AccountId id) and
FolderKey::setFolderId(FolderId id) to define the calendar to be searched).

Figure 8-3.  Events added to calendar

274 CHAPTER 8: Personal Information Management APIs

For example, Listing 8-17 shows you how to search the calendar database for the event created in
Listing 8-16.

Listing 8-17.  Searching Events

#include <bb/pim/calendar/CalendarService>
#include <bb/pim/calendar/CalendarEvent>
#include <bb/pim/calendar/EventSearchParameters>
 
using namespace bb::pim::calendar;
 
EventSearchParameters searchParams;
searchParams.setPrefix("sailing");
QList<CalendarEvent> events = calendarService.events(searchParams);
foreach(CalendarEvent event, events){
 qDebug() << "subjet: " << event.subject();
 qDebug() << "start time: " << event.startTime();
 qDebug() << "end time: " << event.endTime();
}
 
Note that the prefix is case-insensitive and that the search will equally match “sailing” or “Sailing”.

Message API
The Message API enables you to send messages directly from your application. A message can
include information such as subject, body, sender, and recipients. You can also include attachments
to messages. Messages can take various forms, such as text or e-mail, and they can be grouped
together in a conversation. Finally, some message types can be organized in folders (for example,
Inbox, Sent, Trash, Deleted, and so on). A very convenient aspect of the Message API is that you can
use a common interface to manage any kind of message, whether it is a text message or an e-mail.
The Message API’s entry point is the MessageService class, which is described in the next section.

MessageService
MessageService is the interface to the messaging service. You can use MessageService to perform
operations such as sending, saving, updating, removing, and retrieving messages. The following
describes MessageService methods of interest:

	MessageKey MessageService::send(bb::pim::account::AccountKey accountId,
const Message& message): Sends a message. The accountId is given by
Account::id().

	QList<Message> messages(bb::pim::account::AccountKey accountId, const
MessageFilter& filter): Retrieves a list of messages using the search criteria
given by filter.

	int MessageService::messageCount(bb::pim::account::AccountKey accountId,
const MessageFilter& filter): Returns the number of messages with the
provided accountId and corresponding to the search criteria given by filter.
You can use this method to predetermine the number of messages that will be
returned using the search filter.

275CHAPTER 8: Personal Information Management APIs

	QList<MessageFolder> MessageService::folders(bb::pim::account::AccountKey
accountId): Returns all message folders associated with this accountId.

	bool MessageService::isFeatureSupported(bb::pim::account::AccountKey
accountId, MessageServiceFeature::Type feature): Returns whether or not
the indicated feature is supported by an account. In particular, you can use this
method to determine if folder management is supported by passing MessageServ
iceType::FolderManagement to the method.

	QList<Conversation> MessageService::conversation(bb::pim::account::
AccountKey accountId, const MessageFilter& filter): Retrieves a list of
conversations that fit the provided criteria.

Sending Messages
Sending messages, whether it is an e-mail or a short text message (SMS), is amazingly simple using
the Message API. Listing 8-18 shows you the basic steps for creating a new message and sending
it using the MessageService class.

Listing 8-18.  Sending Messages

#include <bb/pim/account/AccountService>
#include <bb/pim/account/Account>
 
#include <bb/pim/message/Message>
#include <bb/pim/message/MessageBuilder>
 
AccountService accountService;
MessageService messageService;
QList<Account> accounts = accountService.accounts(Service::Messages, "imapemail");
if(accounts.size() > 0){
 Account account = accounts.first(); // use the first imapemail account available.
 
 MessageBuilder* builder = MessageBuilder::create(account.id());
 MessageContact recipient(-1, MessageContact::To, "Anwar Ludin", "anwar@aludin.com");
 
 builder->subject("Hello world");
 builder->body(MessageBody::PlainText, QString("This is the message body").toUtf8());
 builder->addRecipient(recipient);
 
 messageService.send(account.id(), *builder);
 
 delete builder;
}
 
Listing 8-18 creates a new MessageBuilder instance by passing an account corresponding to an
imapemail service provider (as mentioned previously, you can potentially have multiple accounts
corresponding to the same service provider and the code simply uses the first one returned by
the AccountService). Next, you need to create a message recipient, which is represented by the
MessageContact class and has to be added to the MessageBuilder instance. As illustrated, the

276 CHAPTER 8: Personal Information Management APIs

MessageContact instance is created using recipient’s name, e-mail address, and the fact that
he is the primary recipient (this is reflected by the Message::To parameter; if the message was
copied, you should have used Message::CC instead). Finally, when all message parameters
have been specified using the MessageBuilder instance, you can send the message using the
MessageService instance.

Sending a short text message is similar to sending e-mails, except that you must use the sms-mms
service provider and include your text message in a conversation (a conversation is essentially a
grouping of related messages between recipients). The updated version of the code for sending text
messages is shown in Listing 8-19.

Listing 8-19.  Sending a Short Text Message

AccountService accountService;
MessageService messageService;
 
QList<Account> accounts = accountService.accounts(Service::Messages, "sms-mms");
 
 if(accounts.size() > 0){
 Account account = accounts.first();
 
 ConversationBuilder* conversationBuilder = ConversationBuilder::create();
 conversationBuilder->accountId(account.id());
 
 MessageContact recipient(-1, MessageContact::To, "Anwar Ludin", "0041766271***");
 
 QList<MessageContact> participants;
 participants << recipient;
 
 conversationBuilder->participants(participants);
 
 Conversation conversation = *conversationBuilder;
 ConversationKey conversationKey = messageService.save(account.id(), conversation);
 
 MessageBuilder* builder = MessageBuilder::create(account.id());
 
 builder->conversationId(conversationKey);
 
 builder->subject("Hello world");
 builder->body(MessageBody::PlainText, QString("This is the message body").toUtf8());
 builder->addRecipient(recipient);
 
 messageService.send(account.id(), *builder); 
  
 delete conversationBuilder;
 delete builder;
 
 }
 

277CHAPTER 8: Personal Information Management APIs

You can use the following MessageService signals to track new messages and message updates:

	MessageService::messageAdded(bb::pim::account::AccountKey
accountId, bb::pim::message::ConversationKey conversationId,
bb::pim::message::MessageKey message): Emitted when a single message is
added to the message service.

	MessageService::messageUpdated(bb::pim::account::AccountKey
accountId, bb::pim::message::ConversationKey conversationId,
bb::pim::message::MessageKey messageId, bb::pim::message::MessageUpdateD
ata data): Emitted when a message is updated in the message service.

Searching for Messages
You can use the message service to search for messages corresponding to specific search criteria.
For example, you can specify that you are interested in messages sent to a specific recipient or
messages containing a given text in their body. You can also search messages by status. To perform
a search, you need to use a MessageSearchFilter instance:

	MessageSearchFilter::addSearchCritera(SearchFilterCriteria::Type
criteria, const QString& value): Adds a search criteria to this message
search filter.

	MessageSearchFilter::addStatusCriteria(SearchStatusCriteria::Type
criteria): Adds a status criteria to this message search filter. For example,
if you want to apply the search to inbound (received) messages, you can use
SearchStatusCriteria::Received.

Listing 8-20 illustrates how to use a search filter in practice.

Listing 8-20.  Searching Messages

// Create the message service object
MessageService service;
  
// Create the search criteria
MessageSearchFilter filter;
filter.addSearchCriteria(SearchFilterCriteria::Subject, "BlackBerry 10 book");
filter.addSearchCriteria(SearchFilterCriteria::Body, "Chapter 8");
filter.addStatusCriteria(SearchStatusCriteria::Received);
filter.setLimit(20);
  
// Perform a local search using the filter criteria
QList<Message> localMessageResults = service.searchLocal(1, filter);
  
// Perform a remote search using the filter criteria
QList<Message> remoteMessageResults = service.searchRemote(1, filter);
 
As illustrated in Listing 8-20, you can also specify whether the search should be performed locally on
the device or remotely on the messaging server.

278 CHAPTER 8: Personal Information Management APIs

Message API Summary
This section provides you with a brief summary of the Message APIs.

MessageBuilder
The MessageBuilder class lets you create a new Message object or edit an existing one. The following
summarizes important MessageBuilder methods:

	MessageBuilder& MessageBuilder::addRecipient(const MessageContact&
recipient, bool* ok=0): Adds the recipient to the message. You can check if
the operation was successful by using the ok flag.

	MessageBuilder& MessageBuilder::body(MessageBody::Type, const
QByteArray& data): Sets the body of this message, which can be either plain
text (MessageBody::PlainText) or HTML (MessageBody::Html).

	MessageBuilder& MessageBuilder::addAttachment(const Attachment&
attachment, bool* ok=0): Adds an attachment to this message.

	MessageBuilder::operator Message(): Casts this MessageBuilder into a Message.

MessageContact
A MessageContact object represents a recipient or sender of a message and includes the contact id,
contact type, name, and e-mail address. The following summarizes MessageContact methods of interest:

	MessageContact::MessageContact(MessageContactKey, MessageContact::Type
type, const QString& name, const QString& address, unsigned char ton=0,
unsigned char npi=0): Constructs a message contact. MessageContactKey
corresponds to the id of a Contact retrieved from the Contacts database.
You can set this value to –1 if the message contact is not located in
the Contacts database. MessageContact::Type can take the following
values: MessageContact::To, MessageContact::Cc, MessageContact::Bcc,
MessageContact::From, and MessageContact::ReplyTo. The last two parameters
are optional and are used only in alphanumeric addresses in SMS. Finally, in the
case of SMS messages, you can simply pass the contact phone number in the
name and address fields.

	QString MessageContact::displayableName(): Returns the displayable name
of this contact, which includes the contact name, friendly name, and e-mail
address.

279CHAPTER 8: Personal Information Management APIs

ConversationBuilder
A conversation is a set of related messages between recipients. The main purpose of organizing
messages in conversations is to display them together in your UI (for example, as a thread of related
messages). The following summarizes important ConversationBuilder methods:

	ConversationBuilder* ConversationBuilder::create(): Starts a new
conversation.

	ConversationBuilder& ConversationBuilder::accountId(bb::pim::account::
AccountKey accountId): Associates this conversation with the user account
given by accountId.

	ConversationBuilder& ConversationBuilder::name(QString string): Sets the
name of this conversation.

	ConversationBuilder& ConversationBuilder::participants(QList<Message
Contact> participants): Sets the participants of this conversation.

	ConversationBuilder::operator Conversation(): Casts this
ConversationBuilder into a Conversation object.

Summary
Personal information management (PIM) is an important aspect of writing applications for the
BlackBerry 10 platform. This chapter reviewed the BlackBerry 10 PIM APIs and showed you how
to use them in your own applications. The APIs provide a service interface, which can be used to
update and search the corresponding PIM data stores. A PIM data store contains items such as
contacts, calendars, messages, and notebooks. The BlackBerry 10 PIM APIs use service types
such as Messages, Calendars, and Contacts to describe groups of services. Service providers
provide the actual implementation. The service providers are in turn linked to accounts on the
device, which provide access to the target systems. This chapter covered mostly the PIM service
providers, but in practice, the BlackBerry 10 device uses a wide range of service providers (such
as social networking providers, for example).

	Chapter 8: Personal Information Management APIs
	Personal Information Management
	PIM APIs
	Service Types
	Service Providers
	Accounts
	AccountService Class
	Creating a New Account
	Searching for Accounts

	Contacts API
	ContactService
	Creating a New Contact
	Updating a Contact
	Searching for Contacts
	Paging
	Asynchronous Search
	Using a ContactsPicker

	Calendar API
	CalendarService
	CalendarFolder
	CalendarEvent
	Attendee
	Creating a New Event
	Searching for Calendar Events

	Message API
	MessageService
	Sending Messages
	Searching for Messages
	Message API Summary
	MessageBuilder
	MessageContact
	ConversationBuilder

	Summary

