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Chapter 3
C++, Qt, and Cascades

I have avoided discussing C++ until now and given you mostly a “QML/JavaScript” perspective of 
Cascades programming. My goal was to show you how easily you could quickly build applications 
using QML and JavaScript only, without even writing a single line of C++ code. By now you know 
enough about the Cascades programming model and it is time to look at what’s happening behind 
the scenes in the C++ world.

QML and JavaScript provide a quick and efficient way of declaratively designing your application’s 
UI and wiring some behavior for event handling. You will, however, reach a point where you will need 
to do some heavy lifting and implement core business logic in C++. The reasons for this can be 
manifold but they will almost certainly revolve around the following:

Your application’s business logic is complex and you don’t want it scattered in 	
QML documents.

You need to achieve maximum performance, and JavaScript will simply not 	
scale as well as C++ (for example, it would make no sense writing a physics 
engine in JavaScript).

You need tight platform integration provided by Qt modules or BPS.	

You need to reuse third-party libraries written in C/C++.	

C++ has the reputation of being a large and complex language, but the purpose of this chapter is 
to teach just enough so that you can efficiently build Cascades applications. I am actually going to 
make the bold assertion that all that you need to build Cascades applications is entirely covered in 
this chapter. The only prerequisite to understanding the material presented here is that you already 
have some OOP knowledge by having written applications in Java or Objective-C, and I will show 
you the equivalent C++/Qt way.

Note that the material will also strongly focus on the Qt C++ language extensions for writing 
applications. Cascades is heavily based on the Qt framework and therefore it is important that you 
have a good understanding of the underlying Qt framework. For example, I will tend to favor the 
Qt types, memory management, and container classes even if the standard C++ library provides 
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equivalent functionality. (Another important reason is that the Qt containers are tightly integrated 
with QML and this will save us the pain of writing glue code to access standard C++ containers 
from QML.)

After having read this chapter, you will have a C++ perspective of Cascades programming and a 
good understanding of

The Qt object model.	

Qt memory management techniques.	

The Qt container classes that you can access from QML.	

The different mechanisms for exposing C++ classes to QML.	

C++ OOP 101
C++ has naturally evolved a great deal over the years and its current incarnation includes all the 
features required for modern software design. For example, memory management has been greatly 
simplified with smart pointers, and frameworks such as Qt drastically improve a programmer’s 
productivity. The purpose of this section is to get you up and running with the OOP aspects of 
C++—namely support for classes, member functions, inheritance and polymorphism—so that you 
can quickly build Cascades applications without spending a couple of hours on a C++ tutorial.

C++ Class
Just like Java and Objective-C, C++ is a class-based language. A class serves as an abstraction 
for encapsulating functions and data (or in other words, a class is used to create new types in 
C++). Instances of the class are the objects that you pass around in your application and act upon 
by calling their methods. Usually, the class is separated between a header file providing the class 
definition, which includes the class’s public interface, and an implementation file, which provides 
member function definitions (for example, in Cascades the application delegate definition is given  
by applicationui.hpp, and its implementation is given by applicationui.cpp). To illustrate C++ 
classes, let’s consider the case of a financial instrument’s pricing library. Pricing libraries are usually 
used by investment banks on Wall Street in order to price financial products such as options, bonds, 
and other kinds of derivative instruments (the pricing problem can actually become quite complex 
and is done by “rocket scientists” called quants).  Quite naturally, the very first abstraction provided 
by a pricing library is the Instrument class, which will be the root abstraction for managing all 
financial products (see Listing 3-1).

Listing 3-1.  Instrument.h

#ifndef INSTRUMENT_H_
#define INSTRUMENT_H_
#include <QObject>
 
class Instrument : public QObject {
    Q_OBJECT
    Q_PROPERTY(QString symbol READ symbol WRITE setSymbol NOTIFY symbolChanged)
    Q_PROPERTY(double price READ price NOTIFY priceChanged)
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public:
    Instrument(QObject* parent = 0);
    virtual ~Instrument();
 
    QString symbol() const;
    void setSymbol(const QString& symbol);
 
    virtual double price() const=0;
signals:
    void symbolChanged();
    void priceChanged();
 
private:
    QString m_symbol;
}; 

Note  C++, unlike Java, does not define or mandate a base class from which all classes must derive. 
However, in the following examples, I will be using QObject as a base class in order to illustrate its properties 
and emphasize its central role in Cascades programming.

Listing 3-1 is called a class definition. As mentioned previously, a class definition is provided in a 
header file (ending with an .h or .hpp extension) that declares the class’s member functions and 
variables, as well as their visibility (private, protected, or public). Note that the Instrument class 
declares a constructor and a destructor. The Instrument(QObject* parent=0) constructor is used to 
initialize a class instance and the ~Instrument() destructor is where you release resources owned 
by the object (such as dynamically allocated objects managed by the class instance). (Note that 
unlike Java, where the garbage collector handles memory management, in C++ you are in charge of 
memory management, and you must make sure that dynamically allocated resources are released 
when no longer needed.)

Besides the constructor and destructor, the class’s public interface also includes:

The 	 virtual double Instrument::price()=0 function, which is used to return 
the instrument’s fair price. I will tell you more about this strange looking function 
in a moment.

The 	 symbol property, which is defined using the Q_PROPERTY macro. I will tell 
you more about the macro shortly. For the moment, simply keep in mind that it 
makes the corresponding property accessible from QML.

The 	 symbolChanged() signal, which is emitted when the corresponding symbol 
property is updated.

The 	 priceChanged() signal, which is emitted when the instrument’s price 
changes.
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Finally, the Instrument class inherits from QObject, which is part of the Qt framework (also note the 
presence of the Q_OBJECT macro, which tells the MOC compiler to generate additional code in order 
to support the signals and slots mechanism; see Chapter 1).

The Instrument class member function definition is given in a separate file, usually ending with the 
.cpp extension (see Listing 3-2).

Listing 3-2.  Instrument.cpp

#include "Instrument.h"
 
Instrument::Instrument(QObject* parent) : QObject(parent), m_symbol(""){
 
}
 
Instrument::~Instrument() {
    // TODO Auto-generated destructor stub
}
 
void Instrument::setSymbol(const QString& symbol){
    if(m_symbol == symbol) return;
    m_symbol = symbol;
    emit symbolChanged();
}
 
QString Instrument::symbol() const{
    return m_symbol;
}
 
We first include the Instrument.h header file and then proceed by defining the member functions. 
The constructor first calls the QObject(QObject* parent) base class constructor and then initializes 
the class members using a member initialization list (in this case, there is only one class member, 
m_symbol, to initialize). As you can see, the file also defines the accessor functions for the m_symbol 
member variable. Finally, note how the symbolChanged() signal is emitted when m_symbol is updated. 
As you will see later in this chapter, the signal is used by the QML declarative engine to update 
properties bound to Instrument’s symbol property.

We can now try to use the newly created instrument class by creating a simple test application with 
a main function, which is the entry point of all C/C++ applications (see Listing 3-3).

Listing 3-3.  main.cpp

int main()
{
    Instrument instrument;
}
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If you try to compile the previous code, the compiler will complain with the following message:
 
../src/main.cpp:15:16: error: cannot declare variable 'instrument' to be of abstract type 
'Instrument'
../src/Instrument.h:13:7: note: because the following virtual functions are pure within 
'Instrument':
../src/Instrument.h:21:17: note: virtual double Instrument::price()
 
The compiler essentially tells you that it cannot instantiate the Instrument class because it contains 
a pure virtual function. You must be wondering what kind of a beast this is! Well, it is just a fancy 
way of saying that the method is abstract and that we have not provided an implementation. Also, 
marking a member function virtual tells the C++ compiler that a child class can override it. This 
is very important. By default, methods are statically resolved in C++. If you intend polymorphic 
behavior, then you need to flag the function as virtual. By appending the =0 to the method 
declaration, you are telling the compiler that the method is abstract and you are not providing a 
default implementation. In effect, the class also becomes an abstract base class.

Note  Listing 3-3 creates the Instrument instance on the stack as an automatic variable (in other words, 
the instrument will be automatically deleted as soon it runs out of scope). In C++ you can also dynamically 
allocate an object using the new operator. In that case, you will have to reclaim the memory when the object 
is no longer needed using the delete operator.

C++ Inheritance
So far so good; the Instrument class provides us with a convenient abstraction for managing 
financial instruments. However, for the pricing library to be useful, you need to extend it by building 
a hierarchy of concrete types. In finance you can literarily synthesize any instrument with a desired 
payoff (that’s what quants do). However, the basic building blocks are bonds, stocks, and money 
accounts. You can use these instruments to create more or less complex derivatives such as options 
and swaps (that’s why they are called derivatives, because their price derives from an underlying 
instrument). Let’s extend the hierarchy to include stocks (see Listing 3-4).

Listing 3-4.  Stock.h

#define STOCK_H_
#include "Instrument.h"
 
class Stock: public Instrument {
Q_OBJECT
Q_PROPERTY(double spot READ spot WRITE setSpot NOTIFY spotChanged)
public:
    Stock(QObject* parent = 0);
    virtual ~Stock();
 
    double spot();
    void setSpot(double spot);
 
    double price() const;
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signals:
    void spotChanged();
private:
    double m_spot;
};
 
#endif /* STOCK_H_ */
 
As illustrated in the previous code, Stock inherits from the Instrument class and adds a new spot 
property, which corresponds to the stock’s market price.  The member function definitions are given 
by Stock.cpp (see Listing 3-5).

Listing 3-5.  Stock.cpp

#include "Stock.h"
 
Stock::Stock(QObject* parent) : Instrument(parent), m_spot(0) {
 
}
 
Stock::~Stock() {
    // for illustration purposes only. Show that the destructor is called
    std::cout << "~Stock()" << std::endl;
}
 
double Stock::price() const{
    return spot();
}
 
double Stock::spot() const{
    return m_spot;
}
 
void Stock::setSpot(double spot){
    if(m_spot == spot) return;
    m_spot = spot;
    emit spotChanged();
}
 
The Stock constructor calls the Instrument base class constructor in order to initialize the base  
class object correctly (and once again, a constructor initialization list is used in order to initialize  
the Stock object’s member variables). The Stock.cpp file also includes a concrete implementation of 
the Instrument::price() method, which simply returns the current spot or market price of the stock.

An option is a slightly more complex beast. A vanilla equity option gives you the right, but not the 
obligation, to buy (in the case of a call option) or sell (in the case of a put option) the underlying stock 
for a specific agreed-upon price sometime in the future. The parameters defining the current price of 
the option (i.e., the right to buy or sell the underlying stock in the future according to the terms of the 
option contract) are given by the following:

The current spot price of the stock.	

The future agreed-upon 	 strike price of the stock.

The stock’s 	 volatility, which is a measure of its riskiness.
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The time to 	 maturity of the contract expressed in years.

The 	 risk-free rate, which usually represents the interest rate on a three month US 
Treasury bill.

Using the previous input parameters, a neat little thing called the Black-Scholes formula gives you 
the option’s fair value. Putting all of this together, our Option class definition is given in Listing 3-6.

Listing 3-6.  Option.h

#ifndef OPTION_H_
#define OPTION_H_
#include "Instrument.h"
 
class Option: public Instrument {
    Q_OBJECT
    Q_ENUMS(OptionType)
 
    Q_PROPERTY(OptionType type READ optionType WRITE setOptionType NOTIFY typeChanged)
    Q_PROPERTY(double riskfreeRate READ riskfreeRate WRITE setRiskfreeRate NOTIFY
               riskfreeRateChanged)
    Q_PROPERTY(double spot READ spot WRITE setSpot NOTIFY spotChanged)
    Q_PROPERTY(double strike READ strike WRITE setStrike NOTIFY strikeChanged)
    Q_PROPERTY(double maturity READ timeToMaturity WRITE setTimeToMaturity
               NOTIFY maturityChanged)
    Q_PROPERTY(double volatility READ volatility WRITE setVolatility NOTIFY volatilityChanged)
 
public:
    enum OptionType {
        CALL, PUT
    };
 
    Option(QObject* parent = 0);
    virtual ~Option();
 
    double price() const;
 
    double riskfreeRate() const;
    void setRiskfreeRate(double riskfreeRate);
 
    double spot() const;
    void setSpot(double spot);
 
    double strike() const;
    void setStrike(double strike);
    double timeToMaturity() const;
    void setTimeToMaturity(double timeToMaturity);
 
    OptionType optionType() const;
    void setOptionType(OptionType type);
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    double volatility() const;
    void setVolatility(double volatility);
 
signals:
    void priceChanged();
    void typeChanged();
    void spotChanged();
    void volatilityChanged();
    void strikeChanged();
    void riskfreeRateChanged();
    void maturityChanged();
 
private:
    OptionType m_type;
    double m_strike;
    double m_spot;
    double m_volatility;
    double m_riskfreeRate;
    double m_timeToMaturity;
};
 
#endif /* OPTION_H_ */
 
Here again, the Option class adds its own set of properties and notification signals. An option type 
is also defined using the OptionType enumeration, which is used to differentiate between put and 
call options (depending on the option type, the Black-Scholes price is different). Also note how the 
Q_ENUMS macro is used to export the enumeration to QML. Here again, the virtual price method is 
overridden to provide the option’s Black-Scholes fair value (see Listing 3-7). You can simply skim 
over the implementation, which is only provided to illustrate how the different option parameters 
are used in the pricing. (Note that the CND function, which is an implementation of the cumulative 
distribution function, is not shown here.)

Listing 3-7.  Option::price( )

double Option::price() const {
    double d1, d2;
 
    d1 = (log(m_spot / m_strike)
                     + (m_riskfreeRate + m_volatility * m_volatility / 2)
                     * m_timeToMaturity)
                     / (m_volatility * sqrt(m_timeToMaturity));
    d2 = d1 - m_volatility * sqrt(m_timeToMaturity);
 
    switch (m_type) {
    case CALL:
        return m_spot * CND(d1)
               - m_strike * exp(-m_riskfreeRate * m_timeToMaturity) * CND(d2);
    case PUT:
        return m_strike * exp(-m_riskfreeRate * m_timeToMaturity) * CND(-d2)
               - m_spot * CND(-d1);
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    default:
            //
            return 0;
    }
}
 
The methods used for updating the option’s properties are straightforward. For example, Listing 3-8 
illustrates how the spot property is updated:

Listing 3-8.  Spot Property

double Option::spot() const {
    return m_spot;
}
 
void Option::setSpot(double spot) {
    if(m_spot == spot) return;
    m_spot = spot;
    emit spotChanged();
    emit priceChanged();
}
 
Also note that when a property is updated, besides emitting the corresponding property change 
signal, the priceChanged() signal is also emitted. This will play an important role when you will use 
the Option instance in QML bindings.

At this point, we have defined three abstractions in our class hierarchy: Instrument, Stock, and 
Option. Let’s try to use them in practice. A small test program is given in Listing 3-9.

Listing 3-9.  main.cpp

#include <iostream>
#include "Stock.h"
#include "Option.h"
 
int main()
{
 
    Stock stock;
    stock.setSymbol("orcl");
    stock.setSpot(50);
 
    Option option;
 
    option.setSymbol("myOption");
    option.setSpot(50);
    option.setStrike(55);
    option.setMaturity(0.5);
    option.setVolatility(0.2);
    option.setRiskfreeRate(.05);
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    std::cout << "Stock price is: "  << stock.price() << std::endl;
    std::cout << "Option price is: " << option.price() << std::endl;
 
}
 
To display the program’s output, I am using the standard C++ library by including the iostream 
header (std::cout is the standard output stream, which displays characters in a text console by 
default). The program’s output is given as follows:
 
Stock price is: 50
Option price is: 1.45324

Polymorphism
We defined the Stock and Option class, but for our class library to be truly useful, we need to be able 
to manipulate them using the common base class Instrument interface. In practice, we care about 
being able to price instruments no matter the concrete type; whether it is a Stock or an Option. In 
other words, we want to be able to manipulate financial instruments using the base class Instrument 
abstraction. If the instrument is a Stock, it will return its market spot price, and if it’s an Option,  
it will return the Black-Scholes price. This is exactly what we imply by polymorphism: the ability to 
implement the pricing logic differently depending on the underlying concrete type and being able 
to call at runtime the correct implementation using the Instrument base class abstraction. In C++, 
runtime polymorphic behavior is achieved using two mechanisms: references and pointers.

Using References
A reference is essentially an alias to an existing variable. Listing 3-10 shows you how to use a 
reference when pricing an option.

Listing 3-10.  Using References

Option option;
option.setOptionType(Option::CALL);
option.setSymbol("myOption");
option.setSpot(50);
option.setStrike(55);
option.setTimeToMaturity(0.5);
option.setRiskfreeRate(.05);
option.setVolatility(.2);
 
Instrument& instr = option;
 
std::cout << "Instrument symbol is: " << instr.symbol().toStdString() << std::endl;
std::cout << "Instrument price is: " << instr.price() << std::endl;
 
As shown in Listing 3-10, instr is defined as a reference to an Instrument by adding an ampersand 
(&) after the type declaration (note that because a reference is an alias to an existing object, the 
definition must also include the referenced Option object). Finally, the price() method is called 
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polymorphically using the Instrument base class interface (remember that price is a pure virtual 
function in Instrument’s class definition). The program’s output is given as follows:
 
Instrument symbol is: myOption
Instrument price is: 1.45324
 
Another way of using references is by taking them as function parameters. For example, Listing 3-11 
defines a showInstrumentPrice() function taking a reference to an Instrument (note the & indicating 
a pass-by-reference of the instrument parameter).

Listing 3-11.  showInstrumentPrice

void showInstrumentPrice(const Instrument& instrument) {
    std::cout << "Instrument symbol is: " << instrument.symbol().toStdString() <<
                 " Instrument price is: " << instrument.price() << std::endl;
}
 
int main(){
    Stock stock;
    stock.setSymbol("myStock");
    stock.setSpot(50);
 
    Option option;
    option.setOptionType(Option::CALL);
    option.setSymbol("myOption");
    option.setSpot(50);
    option.setStrike(55);
    option.setTimeToMaturity(0.5);
    option.setRiskfreeRate(.05);
    option.setVolatility(.2);
 
    showInstrumentPrice(stock);
    showInstrumentPrice(option);
}
 
The showInstrumentPrice function takes a reference to an Instrument object. It does not 
know if the actual object is a Stock or an Option, but it knows that it can call the base class 
Instrument::price() method in order to get the instrument’s price. Because Instrument::price() 
has been declared as virtual, the C++ runtime determines the correct price method to call using 
virtual function dispatch. The output of the application is given as follows:
 
Instrument symbol is: myStock, Instrument price is: 50
Instrument symbol is: myOption, Instrument price is: 1.45324
 
In other words, the Instrument::price() call is polymorphic and returns a different price depending 
on whether you pass a Stock or an Option. This only works because you are passing a reference 
to the showInstrumentPrice() method. If you try to change the showInstrumentPrice signature 
by removing the reference operator to showInstrumentPrice(Instrument instrument), the C++ 
compiler will try to pass the Instrument parameter by value. The value semantics imply that a copy 
of the variable is passed to the function. The copy operation is done by calling a copy constructor, 
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which is a special class constructor used for making a copy of a class instance. If you don’t specify 
a copy constructor, the C++ compiler will generate one implicitly for you, which will do a member-
wise copy of the source object.

There are several reasons why this will not work in the previous case:

As explained, the compiler will try to generate a copy constructor. However, 	
because Instrument is an abstract class, the C++ compiler cannot generate  
a copy.

Let’s suppose that Instrument did provide a default implementation for the 	
price() method, always returning 0. Something more serious, called object 
slicing, would occur: only the base Instrument part of the object, whether it is a 
Stock or an Option, would be copied and passed to the showInstrumentPrice() 
function (the overridden price method would therefore be “sliced-off” and you 
would lose all polymorphic behavior. In other words, the function call would 
always return 0, no matter the concrete type passed to the function).

There is a third reason why you can’t pass an Instrument instance by value: 	
Instrument’s base class is QObject, which does not support value semantics. 
(I will tell you more about value semantics when we discuss QObject identities. 
For the moment, suffice to say that because a QObject’s copy constructor is 
private, you cannot use it in order to make a copy of the class instance.)

Using Pointers
Now let’s look at how polymorphism can be achieved using pointers. Listing 3-12 gives you an 
updated version of the test application using pointers (in other words, the objects are dynamically 
allocated on the heap).

Listing 3-12.  Pointers

Stock* stock = new Stock;
stock->setSymbol("myStock");
stock->setSpot(50);
 
Option* option = new Option;
option->setSymbol("myOption");
option->setSpot(50);
option->setStrike(55);
option->setTimeToMaturity(0.5);
option->setVolatility(.2);
option->setRiskfreeRate(.05);
 
Instrument* instrument;
 
instrument = stock;
std::cout << "Instrument symbol is: " << instrument->symbol().toStdString() << std::endl;
std::cout << "Instrument price is: " << instrument->price() << std::endl;
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delete instrument;
 
instrument = option;
std::cout << "Instrument symbol is: " << instrument->symbol().toStdString() << std::endl;
std::cout << "Instrument price is: " << instrument->price() << std::endl;
 
delete instrument;
 
This time we allocate the Stock and the Option on the heap using the new operator, which returns 
a pointer to the dynamically allocated object (in all of the examples until now we were allocating 
automatic objects on the stack). We also use an Instrument pointer (Instrument*) in order to 
polymorphically call the price method, which is resolved at runtime. The program’s output is given as 
follows:
 
Instrument symbol is: myStock
Instrument price is: 50
Instrument symbol is: myOption
Instrument price is: 1.45324
 
Also note that the objects must be deleted when no longer needed, otherwise you will face a 
memory leak.

Note  As illustrated in Listing 3-11, you must use the -> operator when accessing a class member with a 
pointer (accessing class members of a stack variable is done using the dot (.) operator).

This concludes our condensed overview of C++’s OOP features. The next sections will further 
concentrate on the Qt extensions to C++.

Qt Object Model
I very briefly mentioned the Qt object model when I presented the signals and slots mechanism 
in Chapter 1. The model extends standard C++ with runtime type introspection and metatype 
information, among other things.

Note  C++ provides a limited form of runtime introspection with the typeid and dynamic_cast 
keywords. The Qt framework extensions provide a much richer version based on QObject and the MOC 
compiler.

The Qt object model adds the following features to standard C++ (your class must inherit from 
QObject and declare thee Q_OBJECT macro):

Runtime type introspection using the 	 QMetaObject class.

A dynamic property system giving you the possibility to add properties at 	
runtime to an instance of a QObject class.



 
72 CHAPTER 3: C++, Qt, and Cascades

The signals and slots notification and interobject communication mechanism.	

A form of memory management using parent-child relationships. At any point 	
you can set a child object’s parent (this will effectively add the object to the 
parent’s list of children). The parent will then take ownership of the child object 
and whenever the parent is deleted, it will also take care of deleting all of its 
children.

Meta-Object Compiler (MOC)
I already mentioned the MOC tool in Chapter 1, but I will do a quick recap here. The MOC parses 
a C++ header file and if it finds a class declaration containing the Q_OBJECT macro, generates 
additional code in order to add runtime introspection, signals and slots, and dynamic properties 
to that class (note that you have also encountered other macros such as Q_PROPERTY, Q_ENUMS and 
Q_INVOKABLE used by the MOC compiler in order to “enrich” a class’s functionality). Note that when 
using the Momentics IDE, you don’t need to take any additional steps to use the MOC tool, which 
is automatically called during the build process; it will scan all the header files located in the source 
folder of your project. (You can see this happening if you carefully inspect the console view during 
the build phase: if the class declaration is in a header file called MyClass.h, the MOC generated 
output will be created in moc_MyClass.cpp and dropped in a folder of your project tree. On the Mac, 
it’s a hidden folder.)

QObject
QObject is essential in Qt/Cascades programming because it implements most of the functionality 
at the heart of the Qt object model discussed in the previous section. You have already informally 
encountered the QObject::connect() method in Chapter 1 in order to connect signals to slots. 
The purpose of this section is to give you additional details by reviewing other important QObject 
methods.

QObject::connect( )
The bool QObject::connect(const QObject* sender, const char* signal, const QObject* 
receiver, const char* slot, ConnectionType = AutoConnection) method connects a sender’s 
signal to the receiver’s slot. As you can see, the signal and slot parameters are C strings. You 
will therefore have to use the corresponding SIGNAL() and SLOT() macros in order to convert 
function signatures into strings. Behind the scenes, QObject::connect() compares the strings with 
introspection data generated by the MOC tool. Here is a simple example illustrating how to use the 
connect method:

QObject::connect(sender, SIGNAL(valueChanged(int)), receiver, 
SLOT(setValue(int)).

Note that the connect method returns a bool value that you should always check to make 
sure that the connection was successful. During development, a best practice is to pass 
QObject::connect()’s return value to the Q_ASSERT(bool test) macro (the macro is enabled in 
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debug builds; prints a warning message if the test fails and halts program execution). In practice, 
you should never ignore a failed connection because your application might behave erratically or 
crash in release versions.

As you might have guessed, the QObject::connect() mechanism happens at runtime without any 
type checking during the compilation process. In practice, this can be quite frustrating when you 
have to debug silently failing connections. As a general rule of thumb, if a QObject::connect() fails, 
check the following points:

Make sure that the signal and slot parameter types correspond. A slot can 	
take fewer parameters than an emitting signal and the extra parameters will be 
dropped; however, it is essential that the parameter types match.

If a parameter type is defined in a namespace, make sure to use the fully 	
qualified type name by including the namespace (see Listing 3-13).

Listing 3-13.  QObject::connect( )

QObject::connect(myImageView,
                 SIGNAL(imageChanged(bb::cascades::Image*)),
                 myHandler,
                 SLOT(onImageChanged(bb::cascades::Image*)));
 
Finally, you can also disconnect a signal from a slot using QObject::disconnect(const QObject* 
sender, const char* signal, const QObject* receiver, const char* slot).

QObject::setProperty( )
You can update QObject properties defined with the Q_PROPERTY() macro using the 
QObject::setProperty(const char* propertyname, const QVariant& value) method. A QVariant is 
a union of common Qt data types; however, at any time the QVariant can contain a single variable of 
a given type. If the property was not defined with the Q_PROPERTY() macro, QObject::setProperty() 
will create a new dynamic property and add it to the QObject instance. Similarly, you can get a 
property’s value using QVariant QObject::property(const char* propertyname). As you will see 
later in this chapter, properties are a fundamental aspect of exchanging data between C++ and QML 
by using bindings (a binding can update a Cascades control’s property when a corresponding C++ 
property changes or vice-versa, depending on the binding target).

QObject::deleteLater( )
The QObject::deleteLater() method queues up your object for deletion in the Qt event thread. As 
a general rule of thumb, you should never delete heap-based objects in a slot if it has been passed 
as a parameter to the slot by the emitting signal (otherwise your application might crash because 
the object might still be required by other slots, for example). You might, however, face the situation 
where it is the slot’s responsibility to discard the passed object when it is no longer needed. In that 
case, you can use QObject::deleteLater() to make sure that the object will be eventually deleted 
once control returns to the event loop (I will not get into the details of the Qt event loop, but if you 
apply the above-mentioned rule by not deleting heap-based objects in slots, you will always be on 
the safe side of the fence).
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You will see examples of how to use QObject::deleteLater() in the section discussing QThread and 
you will also have ample opportunity to use the method in Chapter 7 when discarding QNetworkReply 
objects.

QObject::objectName()
The objectName property identifies an object by name. In practice, you can set a Cascades 
control’s objectName in QML and then retrieve the object from the scene graph in C++ using the 
QObject::findChild<T>() method. For example, this is how the C++ code in Chapter 1 updated the 
TextView in Listing 1-3.

Note  It is considered bad practice to directly access from C++ Cascades controls by objectName. The 
reason is that you will be introducing tight coupling between the UI controls and your C++ code. Instead, 
as you will see in the section dedicated to the model-view-controller pattern, the preferable way to interact  
between C++ and QML is to use signals and properties.

QObject Memory Management
QObjects organize themselves in parent-child relationships. You can always set a QObject’s parent 
either during construction or by explicitly calling the QObject::setParent(QObject* parent). The 
parent then takes ownership of the QObject and adds it to its list of children. Whenever the parent 
is deleted, so are its children. This technique works particularly well for GUI objects, which tend to 
naturally organize themselves as object trees. Here are a few things to keep in mind when using the 
parent-child memory management technique:

If you delete a 	 QObject, its destructor will automatically remove itself from its 
parent’s list of children.

Signal and slots are also disconnected so that a deleted object cannot receive 	
signals previously handled by the object.

You should never mix memory management techniques when managing an 	
object. For example, you should not manage the same object using parent-
child relationships and a smart pointer (both techniques use separate reference 
counts and will conflict if used with the same object). You can, however, use 
smart pointers and parent-child relationships in the same application as long as 
they manage different objects (you can even use a smart pointer as a member 
variable of a QObject instance).

To further illustrate parent-child memory management, let’s extend the Instrument class hierarchy 
by adding composite instruments. In finance, we usually use aggregates of instruments in order to 
represent things such as indices, portfolios, and funds. Let’s therefore introduce a new type called 
CompositeInstrument (see Listing 3-14).
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Listing 3-14.  CompositeInstrument.h

#ifndef COMPOSITEINSTRUMENT_H_
#define COMPOSITEINSTRUMENT_H_
 
#include "Instrument.h"
 
class CompositeInstrument : public Instrument {
    Q_OBJECT
 
public:
    CompositeInstrument(QObject* parent=0);
    virtual ~CompositeInstrument();
 
    void addInstrument(Instrument* instrument);
    bool removeInstrument(Instrument* instrument);
    const QList<Instrument*>& instruments();
    double price() const;
 
signals:
    void instrumentAdded();
    void instrumentRemoved();
 
private:
    QList<Instrument*> m_instruments;
};
 
#endif /* COMPOSITEINSTRUMENT_H_ */
 
If you are into design patterns, you must have recognized an implementation of the Composite 
pattern, which lets you manage an aggregation of objects as a single object. Quite interestingly, 
these aggregate instruments are also called composites in finance. (Note that another good example 
of a composite class is the Cascades Container. Also in the example given in Listing 3-14, I am 
supposing that each instrument part of the composite is equally weighted. In practice, you could 
have different weights attributed to the instruments. For example, the Dow Jones Industrial Average 
is price weighted.)

Listing 3-15 gives you the CompositeInstrument member function definitions.

Listing 3-15.  CompositeInstrument.cpp

#include "CompositeInstrument.h"
#include <iostream>
using namespace std;
 
CompositeInstrument::CompositeInstrument(QObject* parent) : Instrument(parent) {
 
}
 
CompositeInstrument::~CompositeInstrument() {
    // for illustration purposes only to show that the destructor is called
    cout << "~CompositeInstrument()" << endl;
}
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void CompositeInstrument::addInstrument(Instrument* instrument){
    if(!m_instruments.contains(instrument)){
        m_instruments.append(instrument);
        instrument->setParent(this);
        emit instrumentAdded();
    }
}
 
bool CompositeInstrument::removeInstrument(Instrument* instrument){
    if(m_instruments.contains(instrument)){
        m_instruments.removeOne(instrument);
        instrument->setParent(0);
        emit instrumentRemoved();
        return true;
    }
    return false;
}
 
const QList<Instrument*>& CompositeInstrument::instruments(){
    return m_instruments;
}
 
double CompositeInstrument::price() const {
    double totalPrice = 0;
    for(int i = 0; i < m_instruments.length(); i++){
        totalPrice += m_instruments[i]->price();
    }
    return totolPrice;
}
 
The CompositeInstrument class uses a QList<Instrument*> instance in order to keep track of its 
instruments (a QList<T> is one of Qt’s generic container classes; see the “Qt Container Classes” 
section).

Turning our attention to memory management, when a new Instrument is added to the composite, 
the composite takes ownership of the instrument using the instrument->setParent(this) method. 
Similarly, when an instrument is removed from the composite, the composite removes it from its  
list of children using instrument->setParent(0). In practice, you should always document this kind 
of behavior so that it is clear to your clients who owns an object at any given time (for example,  
the Cascades documentation will always explicitly tell you who owns a control after it is added to or 
removed from another control).

Finally, Listing 3-16 shows you how to use the CompositeClass in a small test application.

Listing 3-16.  main.cpp

int main(){
    Stock* stock = new Stock;
    stock->setSymbol("myStock");
    stock->setSpot(50);
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    Option* option = new Option;
    option->setSymbol("myOption");
    option->setSpot(50);
    option->setStrike(55);
    option->setTimeToMaturity(0.5);
    option->setVolatility(.2);
    option->setRiskfreeRate(.05);
 
    CompositeInstrument* composite = new CompositeInstrument();
    composite->addInstrument(stock);
    composite->addInstrument(option);
 
    std::cout << "Composite price is: " << composite->price() << std::endl;
 
    delete composite;
 
    // more code goes here
}
 
The application’s output is given as follows:
 
Composite price is: 51.4532
~CompositeInstrument()
Stock was deleted
Option was deleted 
 
As you can see, the Stock instance and the Option instance are also deleted when the Composite 
instance is deleted, which illustrates how parent-child relationships work in practice.

Finally, note that parent-child relationships are distinct from the actual class hierarchy. You can 
set a QObject’s parent to any other QObject without having the objects sharing a direct inheritance 
relationship.

QObject Identity
QObjects feel strongly about their identity. In other words, you cannot use them as value objects. 
Having value semantics means for an object that only its value counts and that any copy of the 
object is equivalent. However, as mentioned previously, when considering pass-by-value semantics, 
QObjects cannot be copied or assigned. Before explaining how this is enforced, let me quickly recap 
two fundamental concepts that I brushed over when I mentioned pass-by-value semantics. In C++, 
you can define a copy constructor and an assignment operator. The copy constructor is used, for 
example, to pass the object by value to a function (or return an object by value from an function). 
The assignment operator (=) is used to assign one object to another (for example obj1 = obj2). I am 
not going to show you how to implement these operators but instead simply mention their signature:

	Copy constructor: The typical form of the copy constructor is 
MyClass::MyClass(const MyClass& original) and is used for creating a new 
copy of an existing instance. Typically, the copy constructor is called when 
passing an object by value to a function.  Note that the copy constructor takes 
a constant reference to the original object in order to create the copy. If you do 
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not provide a copy constructor, the compiler will implicitly create one for you 
doing a member-wise copy of the original object. Also note that you must pass 
a reference to the original object. The member-wise copy is problematic if your 
class contains pointers to dynamically allocated resources. In this case, the 
compiler-generated version of the constructor simply performs a “shallow” copy 
of the original object—resulting in all sorts of memory ownership problems.

	Assignment operator: The typical assignment operator is const MyClass& 
MyClass::operator=(const MyClass& rhs). The assignment operator is called 
when you assign one object to another. Here again, if you do not provide one, 
the compiler will implicitly create an assignment operator for you, which does a 
member-wise copy of the original object.

Because a QObject is not intended to be assigned or copied, it disables the use of the copy 
constructor and assignment operator using the Q_DISABLE_COPY(ClassName) macro (the macro declares 
ClassName’s copy constructor and assignment operator as private, so that you cannot use them).

To summarize, QObjects can only be used with reference semantics. In other words, you can pass 
around references or pointers to QObjects in your application without breaking the single identity 
constraint.

QVariant
A QVariant acts like a union of common Qt data types. However, at any time, a QVariant can only 
hold a single value of a given type (however, the value itself can be multivalued such as a list of 
strings). Also the type stored in a QVariant must have value semantics (in other words, it must  
at least define a public default constructor, a public copy constructor, and a public destructor).  
A QVariant is an essential component of Cascades programming because it is used in many 
different scenarios, such as parsing JSON and XML files or retrieving values from a database (you will 
see how to parse XML using the Cascades XmlDataAccess class in Chapter 6, and JSON using the 
Cascades JsonDataAccess class in Chapter 7). Most importantly, the QML declarative engine uses 
QVariants to pass C++ types to JavaScript and vice-versa (note that this happens transparently 
behind the scenes). You can store your own C++ type in a QVariant by registering it with the Qt type 
system using the Q_DECLARE_METATYPE() macro . Listing 3-17 illustrates typical QVariant usage.

Listing 3-17.  QVariant

QVariant variant = 10;
if(variant.canConvert<int>()){
    std::cout << variant.toInt() << std::endl;
}
 
variant = "Hello variant";
if(variant.canConvert<QString>()){
    std::cout << variant.toString().toStdString() << std::endl;
}
 
// program output is
// 10
// Hello variant
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Finally, you will often encounter the following QVariant-based types in Cascades development:

	QVariantList: A typedef for QList<QVariant>. Typically when parsing a JSON 
array, the JsonDataAccess class will return a QVariantList. You can also 
reference a QVariantList in QML as a JavaScript array.

	QVariantMap: A typedef for QMap<QString, QVariant>. Typically when parsing 
JSON objects, the JsonDataAccess class will return a QVariantMap. You can then 
access individual object attributes using the QVariantMap’s key.

The next section will give you more information about QList and QMap.

Qt Container Classes
C++ comes with the standard library, which is a collection of generic containers and algorithms 
for manipulating them. However, Qt also includes its own set of container classes that can be 
transparently accessed from QML. Note that the Qt container classes, just like their standard library 
counterparts, are class templates (in other words, you have to pass as a template parameter the type 
T stored in the container; you should be familiar with this if you have already used Java generics).

In Cascades programming, you will mostly use the QList and QMap containers. A QList<T> is a 
templated class for storing a list of values and provides fast index-based access as well as fast 
insertions. A QMap<Key, T> is a container for storing (key, value) pairs and provides fast lookup of the 
value associated with a key. You have already seen a QList in action in Listing 3-15, and Listing 3-18 
gives you a quick overview of how to use a map in practice (you will also have the opportunity to see 
both containers in action in the code examples given in this book).

Listing 3-18.  QMap

QMap<QString, int> integers;
integers["one"] = 1;
integers["ten"] = 10;
integers["five"] = 5;
 
QList<QString> keys = integers.keys();
for(int i=0; i< keys.length(); i++){
    cout << integers[keys.at(i)] << endl;
}
 
Note that you can store any value type in a QMap, including QVariants and pointers to QObjects.

Smart Pointers
I usually prefer to not worry about deleting objects; I would rather delegate the task. Like most 
difficult problems in programming, you can solve memory management by adding a level of 
indirection, which in this case is called smart pointers. Smart pointers are actually part of the new 
C++11 standard, but I am going to concentrate on the QSharedPointer, which is part of the Qt core 
framework. QSharedPointer is a reference counting smart pointer, meaning that it holds a shared 
reference to a dynamically allocated object. The pointee will be deleted once the last QSharedPointer 
pointing to it is destroyed or goes out of scope. Obviously, QSharedPointers must be automatic 
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objects and you cannot allocate them on the heap. (Automatic objects are created on the stack 
and are destroyed when they get out of scope. To use a QSharedPointer, simply initialize it with a 
dynamically allocated resource, as shown in Listing 3-19.)

Listing 3-19.  QSharedPointer

//don't forget to #include <QSharedPointer>
 
{ // start of scope
     
    QSharedPointer<MyClass> m_variable(new MyClass);
    m_variable->method1();  // calls MyClass::method1()
    m_variable->method2();  // calls MyClass::method2()
 
}  // end of scope. MyClass instance gets deleted here
 
As you can see, by automatically assigning a dynamically allocated object to a smart pointer, you 
don’t need to worry anymore about deleting the object when it is no longer required. You can also 
assign a smart pointer to another one or return a smart pointer from a function (the reference count 
will be automatically handled for you in both cases). In other words, smart pointers make memory 
management as hassle free as in garbage-collected languages such as Java. Note that initializing 
a smart pointer, as illustrated previously, is a special case of the C++ “resource acquisition is 
initialization” (RAII) programming paradigm. RAII is particularly important in order to avoid memory 
leaks when exceptions happen during class construction. Listing 3-20 illustrates this by first using 
raw pointers in a class instantiation.

Listing 3-20.  Constructor Exception, Raw Pointers

Class MyClass : public QObject{
Q_OBJECT
public:
    MyClass(QObject* parent=0) : QObject(parent){
        m_var1 = new Type1;
        m_var2 = new Type2;
    }
 
    virtual ~MyClass() {
        delete m_var1;
        delete m_var2;
    }
private:
    Type* m_var1;
    Type2*  m_var2;
};
 
The previous code declares two pointer member variables. Let’s now imagine that an exception occurs 
during m_var2’s allocation (at this stage, m_var1 has already been allocated). When an exception 
occurs in a constructor, it is as if the class instance never existed, and the destructor will not be called 
(in other words, the call to delete m_var1 will not happen and you will face a memory leak). If you 
are thinking of handling the exception in the constructor, don’t; your code will become unreasonably 
convoluted and you would still not handle all possible cases. As you might have guessed, smart 
pointers are the solution. Listing 3-21 gives you a smart pointer version of the previous code.
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Listing 3-21.  Constructor Exception, Smart Pointers

Class MyClass : public QObject{
Q_OBJECT
public:
    MayClass(QObject* parent=0) : QObject(parent),  
      m_var1(new Type), m_var2(new Type2)
    {
    }
 
    virtual ~MyClass() {
    // empty destructor.
    }
private:
    QSharedPointer<Type> m_var1;
    QSharedPointer<Type2> m_var2;
};
 
As illustrated in Listing 3-21, I am using initialization lists to initialize the smart pointers (initialization 
lists should be preferred when dealing with non-built-in types). So what happens when an exception 
occurs? As previously, your destructor does not get called but the C++ standard mandates that the 
destructor of all successfully constructed sub-objects have to be called. (This will effectively release 
the memory held by m_var1 and avoid any leaks. Note that in the case of “dumb” pointers, the pointer 
is effectively deleted, but not the pointee; this is why your class needs a destructor in the first place.)

In practice, if you do not handle an exception, it is propagated up the call stack, and eventually, 
your program will be terminated by the C++ runtime. This could be the sensible thing to do if your 
application is in such a “catastrophic state” that it would be pointless to continue running (at the very 
least, you should create a log trace of the problem). Obviously, smart pointers would not be very 
helpful in such a situation, and the BlackBerry 10 OS would reclaim the memory anyway. However, if 
you need to write long-running applications such as headless apps, you need to make sure that your 
application is resilient; you cannot afford crashing when exceptions occur. Smart pointers will therefore 
be very useful to avoid memory leaks in exceptional cases by making sure that memory is released.

Exposing C++ Objects to QML
There are essentially four ways of exposing C++ objects to QML:

You can use a 	 QDeclarativePropertyMap to aggregate values in a map, and then 
set it as a context property of the QML document.

You can selectively expose properties and methods from a 	 QObject derived 
class, and then set the instance as a context property of the QML document.

You can “attach” an instance of a 	 QObject to a QML UIObject object using its 
UIObject::attachedObjects property in QML. Note that you will have to first 
register the QObject derived class with the QML type system.

You can create a QML custom control in C++ by extending 	
bb::cascades::CustomControl. You can then use the control as any other QML 
element in your document. Once again, you will have to register your control 
with the QML type system.
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Note  To make sure that the document context properties are accessible from QML bindings, you need to 
set them before instantiating the scene’s root object in the application delegate.

Before getting into the details of exposing C++ objects in practice, let’s take a detailed look at the 
application delegate’s constructor and explain the flow of events (see Listing 3-22). (We conveniently 
skimmed over this in Chapters 1 and 2, but now it is time to get our feet wet).

Listing 3-22.  ApplicationUI.h

ApplicationUI::ApplicationUI(bb::cascades::Application *app) :
        QObject(app)
{
    // prepare the localization
    // code omitted here
 
    // Create scene document from main.qml asset, the parent is set
    // to ensure the document gets destroyed properly at shut down.
    QmlDocument *qml = QmlDocument::create("asset:///main.qml").parent(this);
    
    // Set the qml document context properties before creating root object using:
    // void QMLDocument::setContextProperty(const QString &propertyName, QObject *object)
 
    // Create root object for the UI
    AbstractPane *root = qml->createRootObject<AbstractPane>();
 
    // Set created root object as the application scene
    app->setScene(root);
}
 
Here is a step-by-step description of the code shown in Listing 3-22:

	QmlDocument::create(const QString &qmlAsset, bool autoload= true) is 
called and a QML document is loaded from the assets folder of your application. 
All documents loaded with this method will share the same QML declarative 
engine, which is an instance of a Qt QDeclarativeEngine.

A 	 context is also associated to the document. Contexts allow data to be 
exposed to components instantiated by the QML declarative engine (all 
documents loaded using the QmlDocument::create() method share the same 
instance of the declarative engine, which is associated with the application).

Contexts form a hierarchy and the root of the hierarchy is the QML declarative 	
engine’s context. The context associated with the loaded document is therefore 
derived from the root context and shares its properties. Note that these 
properties are not the ones corresponding to QObject but the ones set with QDec
larativeContext::setContextProperty(const QString &, QObject *) method. 
You also have to be aware that you will override a property from the root context 
if you set it with a different value in the document context.
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A root node is instantiated for the scene graph represented by the QML 	
document by calling the QmlDocument::createRootObject<T>() template method 
(the template T parameter must be pointer to a UIObject subclass).

During the instantiation of the root node, the 	 UIObject::creationCompleted() 
signal will be emitted for all UIObjects in the scene graph.

Now let’s look at how the document context is used in practice for exposing C++ objects.

QDeclarativePropertyMap
A QDeclarativePropertyMap provides an extremely convenient and easy way to expose domain data 
or value types to the QML UI layer. You basically use an instance of a QDeclarativePropertyMap to 
set key-value pairs that can be used in QML bindings (the bindings are dynamic: whenever a key’s 
value is updated, anything bound in QML to that key will also be updated). The values in the map 
are stored as QVariant instances. Using variants effectively means that you can expose to QML any 
type that can be “wrapped” as a QVariant. As mentioned previously, QVariantList and QvariantMap 
are two of the most interesting QVariant-based types because you can build arbitrarily complex data 
structures using them. Listing 3-23 illustrates this by building a person data structure.

Listing 3-23.  ApplicationUI.cpp

QmlDocument::create("asset:///main.qml").parent(this);
 
QmlDocument *qml = QmlDocument::create("asset:///main.qml").parent(this);
 
QDeclarativePropertyMap* propertyMap = new QDeclarativePropertyMap;
 
QMap<QString, QVariant> person;
person["firstName"] = "John";
person["lastName"] = "Smith";
person["jobFunction"] = "Software Engineer";
person["age"] = 40;
 
QVariantList hobbies;
hobbies << "surfing" << "chess" << "cinema";
 
person["hobbies"] = hobbies;
 
propertyMap->insert("department", "Software Engineering");
propertyMap->insert("person", person);
qml->setContextProperty("mymap",propertyMap);
 
After having built the QVariant data structure, you simply add the QVariant to a 
QDeclarativePropertyMap instance using QDeclarativePropertyMap::insert(const QString& 
keyname, const QVariant& value). You can then in turn add the map instance as a context property 
of the QML document using QmlDocument::setContextProperty(const QString& mapName, QObject* 
propertyMap). In QML, you can finally reference the map by name, as shown in Listing 3-24.
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Listing 3-24.  main.qml

import bb.cascades 1.0
 
Page {
    Container {
        //Todo: fill me with QML
        Label {
            text: "Department: " + mymap.department;
            }
        }
         
        Label {
            // Localized text with the dynamic translation and locale updates support
            text: {
                return "last name: "+ mymap.person.lastName;
            }
        }
        Label{
            text:{
                 return "Age: " + mymap.person.age;
            }
        }
        Label{
            text:{
                return "Job function: " + mymap.person.jobFunction;
            }
        }
         
        Label{
            text: {
                var hobbies = mymap.person.hobbies;
                var s = "Hobbies: ";
                for (var i = 0; i< hobbies.length; i++){
                    s = s + hobbies[i] + " ";
                }
                return s;
            }
        }
    }
}
 
To extract the values stored in the map, you use the mapname.keyname “dot notation” syntax (note 
that in the specific case of the person key, the value returned is also a map and you have to reapply 
the dot notation in order to retrieve the associated values).

Exposing QObjects
As explained in the previous section, using QDeclarativePropertyMap is a great way to expose data 
structures based on common QML “basic types.” There will be times, however, where you will need 
to expose your own C++ objects directly so that you can achieve more complex behaviors, such 
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as calling the object’s methods or handling its signals in QML (or vice-versa, let the object handle 
signals emitted from QML). Typically, such objects play the role of application delegates or service 
façades (I will tell you more about this in the section dedicated to the model-view-controller pattern).

When exposing some functionality to QML, you should always think in terms of services and 
granularity. For example, if you need to access a large C++ library from QML, it is often preferable to 
define a set of coarse-grained services that you expose to the QML layer instead of trying to expose 
every single class of your library. By doing so, you will be able to define clear boundaries between 
the QML layer and your C++ types. This will also avoid leaking the internals of your class library 
to the QML layer, thus providing the additional benefit of decoupling your UI logic from the C++ 
application logic. Once you have decided on your services’ granularity, you will be able to design 
your QObject based C++ service classes using the following recipe:

Identify the class properties that you want to access from QML.	

Identify the class signals that you want to handle in QML.	

Identify any slots and class methods that should be called from QML.	

When implementing your class methods, use types that you can pass as 	
QVariants.

In practice, in order to expose a C++ class instance to QML, you need to do the following:

Add the 	 Q_OBJECT macro at the start of the class declaration (and, of course, 
your class must inherit from QObject).

Use the 	 Q_PROPERTY macro in order to expose class properties to QML.

Use the 	 Q_INVOKABLE macro in order to expose class methods to QML.

Signals and slots are automatically exposed using the 	 signals: and slots: 
annotations, as explained in Chapter 1.

The syntax for declaring object properties with the Q_PROPERTY macro is as follows:
 
Q_PROPERTY(type name
           READ getFunction
           [WRITE setFunction]
           [RESET resetFunction]
           [NOTIFY notifySignal]
           [DESIGNABLE bool]
           [SCRIPTABLE bool]
           [STORED bool]
           [USER bool]
           [CONSTANT]
           [FINAL])
 
The only mandatory values are the property type, name, and the getter function for reading the 
property. In practice, you will be using a much shorter version of the macro:
 
Q_PROPERTY(type name READ getFunction WRITE setFunction NOTIFY notifySignal)
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Note  You must specify the notifySignal if you intend on using the property in QML bindings,  which I 
will explain shortly (you must also emit the signal when the property changes).

Using the Document Context
If you carefully study the Option class given in Listing 3-6, you will notice that we have already 
defined the class in such a way that it can be readily used from QML. In fact, just like the 
QDeclarativePropertyMap instance, all you simply need to do is to add an Option instance to the 
QML document context property from C++ (see Listing 3-25 and Listing 3-26).

Listing 3-25.  ApplicationUI.hpp

class ApplicationUI : public QObject
{
    Q_OBJECT
public:
    ApplicationUI(bb::cascades::Application *app);
    virtual ~ApplicationUI() { }
private:
    Option* m_option;
};

Listing 3-26.  ApplicationUI.cpp

ApplicationUI::ApplicationUI(bb::cascades::Application *app) :
        QObject(app), m_option(new Option(this))
{
 
    // Create scene document from main.qml asset, the parent is set
    // to ensure the document gets destroyed properly at shut down.
    QmlDocument *qml = QmlDocument::create("asset:///main.qml").parent(this);
 
    qml->setContextProperty("_option", m_option);
 
    // Create root object for the UI
    AbstractPane *root = qml->createRootObject<AbstractPane>();
 
    // Set created root object as the application scene
    app->setScene(root);
}
 
The main.qml document referencing the Option instance is given in Listing 3-27.

Listing 3-27.  main.qml

import bb.cascades 1.2
Page {
    Container {
        //Todo: fill me with QML
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        Label {
            text: "Option Pricer"
            horizontalAlignment: HorizontalAlignment.Center
            textStyle.base: SystemDefaults.TextStyles.BigText
        }
        TextField {
            id: spotField
            hintText: "Enter spot price"
            onTextChanging: {
                _option.spot = text;
            }
        }
        TextField {
            id: strikeField
            hintText: "Enter strike price"
            onTextChanging: {
                _option.strike = text;
            }
        }
        TextField {
            id: maturityField
            hintText: "Enter time to maturity"
            onTextChanging: {
                _option.maturity = text;
            }
        }
        TextField {
            id: volatilityField
            hintText: "Enter underlying volatility"
            onTextChanging: {
                _option.volatility = text;
            }
        }
        TextField {
            id: riskfreeRateField
            hintText: "Enter risk free rate"
            onTextChanging: {
                _option.riskfreeRate = text;
            }
        }
        Label {
            text: "Option fair price"
            horizontalAlignment: HorizontalAlignment.Center
        }
        TextField {
            id: priceField
            text: _option.price
        }
    }
}
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Here is a brief description of the code shown in Listing 3-27:

The 	 TextFields’ textChanging signals are used to update the corresponding 
Option object’s properties.

As mentioned previously, when any of the option’s properties is updated, an 	
Instrument::priceChanged() signal is also emitted by the Option.

The priceField’s text property is bound to the corresponding Instrument::price 	
property (the QML declarative engine will therefore update the QML property 
when the Instrument::priceChanged() signal is emitted).

The resulting application UI is given in Figure 3-1.

Figure 3-1.  Option pricer UI

Using the attachedObjects Property
I am now going to show you how to use the Option class as a UIObject's attachedObjects property. 
You first need register the Option class with the QML type system (usually, you will do this in main.cpp;  
see Listing 3-28).
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Listing 3-28.  main.cpp

Q_DECL_EXPORT int main(int argc, char **argv)
{
 
    qmlRegisterType<Option>("ludin.instruments", 1, 0, "OptionType");
 
    Application app(argc, argv);
 
    // Create the Application UI object, this is where the main.qml file
    // is loaded and the application scene is set.
    new ApplicationUI(&app);
 
    // Enter the application main event loop.
    return Application::exec();
}
 
The call to qmlRegisterType<Option>("ludin.instruments", 1, 0, "OptionType") effectively 
registers the Option C++ type with the QML type system and the corresponding QML type 
OptionType.

To actually use the type in main.qml, you need to import the ludin.instruments namespace and 
declare an OptionType object as a UIObject's attachedObjects property (see Listing 3-29).

Listing 3-29.  OptionType

import bb.cascades 1.2
import ludin.instruments 1.0
 
Page {
    Container {
        //Todo: fill me with QML
        Label {
            text: "Option Pricer"
            horizontalAlignment: HorizontalAlignment.Center
            textStyle.base: SystemDefaults.TextStyles.BigText
        }
        TextField {
            id: spotField
            hintText: "Enter spot price"
        }
        TextField {
            id: strikeField
            hintText: "Enter strike price"
        }
        TextField {
            id: maturityField
            hintText: "Enter time to maturity"
        }
        TextField {
            id: volatilityField
            hintText: "Enter underlying volatility"
        }
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        TextField {
            id: riskfreeRateField
            hintText: "Enter risk free rate"
        }
        Label {
            text: "Option fair price"
            horizontalAlignment: HorizontalAlignment.Center
        }
        TextField {
            id: priceField
            text: option.price
        }
        attachedObjects: [
            OptionType {
                id: option
                type: OptionType.CALL
                symbol: "myoption"
                spot: spotField.text
                strike: strikeField.text
                maturity: maturityField.text
                volatility: volatilityField.text
                riskfreeRate: riskfreeRateField.text
            }
        ]
    }
}
 

Using Bindings
You should note that unlike Listing 3-28, you are not using signals and slots to update the controls 
in the scene graph. In fact, everything is done using bindings and the net result is that the UI code 
is mostly declarative. As illustrated in the code, the QML OptionType object’s properties are bound 
to the corresponding TextFields’ text properties. Similarly, the priceField’s text property is bound 
to the OptionType object’s price property (note that the QML declarative engine automatically 
transforms the numeric value of the price property into a string before setting the TextField’s 
text property). Whenever a property changes in C++, the QML declarative engine updates the 
corresponding bound property in QML. In other words, by using bindings, you have delegated the 
mundane task of updating your application’s controls’ to the QML declarative engine (this also 
results in cleaner QML requiring less maintenance).

Model-View-Controller
An important point to consider when designing Cascades applications is the way your C++ code 
will interact with the QML UI layer. Typically, graphical user interface frameworks promote the 
model-view-controller (MVC) pattern, which separates your application’s logic in three distinct 
responsibilities (see Figure 3-2).
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Models are responsible for managing your application’s data and provide 	
an abstraction layer for accessing and updating it. Typically, they represent 
the domain objects in your application. Models don’t know how to display 
themselves. However, they can notify controllers and views when their state 
changes.

Views are the visual representation of your application data. The same data can 	
be represented by multiple views in different ways, such as a chart or a list of 
values. Views are displayed to the user.

A controller effectively plays the role of a mediator between the model and 	
the view. It handles user input and updates the model and view accordingly. 
In simple applications, you will usually have a single controller; but in more 
complex scenarios, nothing stops you from having multiple task-oriented 
controllers.

Figure 3-2.  MVC interactions 

When a model’s state changes, it notifies its associated controllers and views so that they can 
handle the new state. Depending on the degree of separation you may want to achieve, you can also 
enforce that all model interactions go strictly through the controller. The most fundamental idea is 
that controllers and views depend on the model, but the opposite is not true. Models are therefore 
truly independent elements of your applications.

The Cascades framework does not enforce the MVC pattern. For example, there is no controller 
class to extend. However, Cascades is sufficiently flexible so that you design your application 
using the MVC pattern, should you choose so. Figure 3-3 illustrates the fundamental elements of a 
standard Cascades application.
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The QML layer shows a typical scene graph consisting of a root Page control and a Container with 
multiple children. Signals and slots are represented using dashed arrows (the signal is the start of the 
arrow and the corresponding slot is the end). Property bindings are the links shown with a full dot 
on both sides. Direct references to an element are shown as arrows with an empty diamond at their 
start. As illustrated in Figure 3-3, you can break up your application in a C++ layer that contains your 
application business logic and a QML layer that contains your application’s views (typically, user 
interactions (such as a clicked button) is handled in the QML layer using JavaScript).

As mentioned previously, it is always a good idea to expose C++ logic to the QML layer using 
coarse-grained services. This is the reason why the application delegate is your central entry point 
to the C++ application logic (the cloud symbol represents the QML document context from which 

Figure 3-3.  Cascades application elements
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you can access the application delegate). Interactions between the application delegate and QML 
controls should be essentially done using signals and slots and property bindings (as shown in 
Figure 3-3, you can also directly access a UI control from C++ in your application delegate, but 
this is strongly discouraged). Mapping this to the MVC pattern, you can see that you have lots 
of flexibility in defining where your controllers reside. For example, you could decide that the 
application delegate is your sole controller that handles all interactions between UI controls and the 
domain model.

Alternatively, you could also split the controllers between JavaScript and the application delegate. 
Finally, you could also use property bindings between your application delegate and UI controls 
exclusively. In this case, the only interactions between the UI layer and the application delegate 
would happen through property updates (in other words, this is would be a form of reactive 
programming where the data flow between C++ and QML governs the application’s state).

Application Delegate
Until now, I have used the term “application delegate” in a relatively informal way without really 
explaining what I meant. The application delegate is the ApplicationUI class generated for you by the 
New Cascades Application Wizard. The class’s responsibility is to load the QML scene graph from 
main.qml, wire signals and slots between UI controls and domain objects and add itself to the QML 
document context if necessary. The application delegate therefore plays a central role in a Cascades 
application. Here again, Cascades does not enforce the presence of an application delegate and you 
could simply load main.qml in your application’s main function. However, centralizing the interactions 
between UI controls and C++ domain objects in a dedicated object will greatly simplify your 
application’s design in the long run. The role of the application delegate is therefore to

Define signals reflecting the state of model objects used for updating Cascades 	
controls.

Define slots used by the QML layer in order to update the domain model 	
according to user interactions.

Define properties used in QML bindings. The properties can be used to 	
selectively expose QObject subclasses to the QML layer of your application. 
There are really no limitations in what the properties can represent. For example, 
a property could be a DataModel used by a ListView in order to display a list of 
items (see Chapter 6) and another property could represent a list of contacts 
from the contacts database (see Chapter 8), and so on.

Centralize all interactions between QML and C++ objects (in other words, use 	
the application delegate as your main app controller).

To illustrate the previous points, Listing 3-30 shows you a hypothetical application delegate definition 
for our financial instruments. (I will not provide the member function definitions. The most important 
point to keep in mind is how the application delegate is used as an interface to the C++ data model. 
Also note that the properties’ accessors are defined inline.)
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Listing 3-30.  Application Delegate

#include "Stock.h"
#include "Option.h"
#include "CompositeInstrument.h"
 
class ApplicationUI : public QObject
{
    // used for displaying  instruments in ListView
    Q_PROPERTY(bb::cascades::ArrayDataModel* READ instrumentsModel CONSTANT)
     
    Q_PROPERTY(QList<CompositeInstrument*> READ composites NOTIFY compositesChanged)
    Q_PROPERTY(QList<Option*> options READ options NOTIFY optionsChanged)
    Q_PROPERTY(QList<Stocks*> stocks READ stocks NOTIFY stocksChanged)
 
public:
    ApplicationUI(bb::cascades::Application *app);
    virtual ~ApplicationUI() { }
     
    // load financial instruments in ArrayDataModel
    Q_INVOKABLE void loadInstruments() { // code not shown};
signals:
    void compositesChanged();
    void stocksChanged();
    void optionsChanged();
 
private:
    bb::cascades::ArrayDataModel* dataModel() {return m_instrumentsModel};
 
    QList<CompositeInstrument*> composites() {return m_composites};
    QList<Option*> options() {return m_options};
    QList<Stocks*> stocks() {return m_stocks};
     
    QList<Stock*> m_stocks;
    QList<Option*> m_options;
    QList<CompositeInstrument*> m_composites;
 
    bb::cascades::ArrayDataModel* m_instrumentsModel;
 
};
 
The properties defined in the application delegate are accessible from QML and represent the 
domain model. A Q_INVOKABLE function is also provided in order to load the instruments from a 
database, for example (here again the function is callable from QML). Finally, the model property 
can be used by a ListView in order display the current list of instruments (ListViews and DataModels 
are covered in Chapter 6). As mentioned previously, you need to register the Stock, Option, and 
CompositeInstrument classes with the QML type system before being able to use them in QML.  
The application delegate’s constructor is one possible place where you perform this. You also  
need to add the application delegate to the QML document context (see Listing 3-31).
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Listing 3-31.  Application Delegate Constructor

ApplicationUI::ApplicationUI(bb::cascades::Application *app) :
        QObject(app){
 
    // Create scene document from main.qml asset, the parent is set
    // to ensure the document gets destroyed properly at shut down.
 
    qmlRegisterType<Stock>("ludin.instruments", 1, 0, "Stock");
    qmlRegisterType<Option>("ludin.instruments", 1, 0, "OptionType");
    qmlRegisterType<CompositeInstrument>("ludin.instruments", 1, 0, "Composite");
 
    QmlDocument *qml = QmlDocument::create("asset:///main.qml").parent(this);
    qml->setContextProperty("_app", this);
}
 
And finally, Listing 3-32 shows you how to access the application delegate in your QML document.

Listing 3-32.  main.qml

Page {
    id: page
    function optionsTotalPrice() {
        var total = 0;
        var options = _app.options;
        for (var i = 0; i < options.length(); i ++) {
            total += options[i].price();
        }
        return total;
    }
     
    Container {
        Label {
            text: "Options total price: " + page.optionsTotalPrice()
        }
        ListView {
            dataModel: _app.instrumentsModel
        }
    }
    onCreationCompleted: {
        _app.loadInstruments(); // loads intruments from db and popultates data model
    }
}
     

QThread
It is very important not to block the main UI thread when developing Cascades applications.  
You should therefore always execute long-running operations in a secondary thread so that the main UI 
thread stays as responsive as possible. A thread is simply an independent execution flow within your 
application. In other words, threads can share your application’s data but simply run independently 
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(a thread is also often called a lightweight process). In Qt, a thread is managed by an instance of the 
QThread class. This section shows you how to effectively execute a long-running operation using a 
QThread object. As with many things in Qt, it is mostly achieved using signals and slots.

Before starting a new thread, you need to package your workload as a worker object  
(see Listing 3-33).

Listing 3-33.  Worker.h

class Worker : public QObject{
Q_OBJECT
public:
    Worker();
    virtual ~Worker();
public slots:
    void doWork();    // do the processing here
signals:
    void finished(double result);
    void error(QString error);
 
};
 
The worker declares a Worker::doWork() that will be called to start the processing and a finished() 
signal that will be emitted once the workload has been completed (in other words, the finished() 
signal will be emitted at the end of Worker::doWork(); see Listing 3-34).

Listing 3-34.  Worker.cpp

Worker::doWork(){
    // do the long processing here
    emit finished(result);
}
 
Assuming that the application delegate is responsible for launching the new thread, it needs to  
move the Worker object to the QThread object and start the new thread to perform the workload  
(see Listing 3-35).

Listing 3-35.  ApplicationUI.cpp

void ApplicationUI::doWorkAsynch() {
    QThread* thread = new QThread;
    Worker* worker = new Worker;
 
    worker->moveToThread(thread);
    connect(worker, SIGNAL(error(QString)), this, SLOT(errorString(QString)));
    connect(thread, SIGNAL(started()), worker, SLOT(doWork()));
    connect(worker, SIGNAL(finished(double)), this, SLOT(finished(double)));
    connect(worker, SIGNAL(finished(double)), worker, SLOT(deleteLater()));
    connect(worker, SIGNAL(finished(double)), thread, SLOT(quit()));
    connect(thread, SIGNAL(finished()), thread, SLOT(deleteLater()));
    thread->start();
}
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As illustrated in the Listing 3-35, the Worker::doWork() method is called when the thread’s started() 
signal is emitted (the signal is emitted when QThread::start() is called). When the worker object 
has completed the long-running task, it emits the finished() signal, which could be used to pass 
a result back to the application delegate, for example. Note also that the Worker::finished() and 
QThread::finished() signals are also used to handle cleanup and make sure dynamically allocated 
memory is reclaimed (in both cases QObject::deleteLater() is used to schedule the objects for 
deletion).

Summary
Congratulations! By now you know enough to start designing complex applications using QML, 
JavaScript, Qt, and C++. This chapter has been quite dense, so let’s do a quick recap.

C++ is a complex language, but we got to the essentials for building object-oriented programs.  
In C++, you can override a function in a child class if it has been declared as virtual in the parent class. 
Having a pure virtual function in a class will effectively make that class abstract. Polymorphism is 
achieved in C++ through references or pointers to objects. C++ also makes the distinction between 
value types and references types, which you don’t find in languages such as Java, where everything 
is a reference (except primitives types such int, double, float, boolean, etc.).

By using the MVC pattern, you discovered how to organize your application objects with clearly 
defined boundaries and responsibilities. This will help you cope with complexity and accommodate 
change as your application design evolves. The following chapters will build on the foundations 
presented here and show you how to design beautiful UIs using the Cascades framework. You will 
master the Cascades core controls, as well as the more advanced ones, integrate with platform 
services, use the device sensors—and there are many more exciting things to come. From now on, 
the truly fun topics begin…
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