
1

Chapter 1
Getting Started

This chapter will show you how to set up your BlackBerry 10 development environment and deploy
your first application on the BlackBerry 10 simulator and on a physical device. You will also get a
broad perspective of the Cascades programming model, as well as its most essential features. In
setting up your environment, I will walk you through the following steps:

Getting your code signing keys and generating debug tokens.	

Using the Momentics IDE to create your first Cascades project.	

Building and deploying your application on a simulator and a physical device. 	

Cascades Programming Model
BlackBerry 10 is a major mobile operating system overhaul. It’s the third release built on top of the
extremely reliable QNX operating system, which is used in critical applications ranging from medical
devices to nuclear power plants. QNX is also POSIX compliant, meaning that if you’re familiar with
a UNIX programming API, you will feel just at home with the operating system’s calls. Another big
advantage of building BlackBerry 10 on top of a POSIX system is the availability of a myriad of open-
source libraries that you can include in your own projects.

A key feature of BlackBerry 10 is that it is built using a multilayered architecture where QNX is the
backbone providing essential services such as multithreading, memory management, and security,
to name a few (see Figure 1-1). The layer on top of QNX includes the BlackBerry Platform Services
(BPS) as well as several modules from the Qt framework.

2 CHAPTER 1: Getting Started

BPS is an API written in C, giving low-level access to the BlackBerry 10 device. It’s mostly used when
you need to write high-performance applications such as games that require the most effective way of
accessing the hardware. BPS is not the main subject of this book. I will nevertheless give you examples
of how to use it, but I will mostly concentrate on the higher-level modules built on top of BPS.

Qt is a C++ framework providing an abstraction layer to the lower-level POSIX APIs. It also
adds many classes and components essential to C++ programming. The following modules
from the Qt framework have been ported to the BlackBerry 10 platform and can be used in your
own applications:

	QtCore: Provides the core framework elements for building C++ applications.
In particular, QtCore defines the Qt object system, an event handling mechanism
called signals and slots, memory management, and collection classes, to name
a few.

	QtNetwork: Provides APIs for building networked applications. In particular, for
HTTP applications, it provides the QNetworkAccessManager class.

	QtSql: Includes drivers and data access logic to relational databases.

	QtXml: Includes SAX and DOM parsers for handling XML documents.

The Qt modules mostly provide non-GUI functionality for your application. To build rich native
applications with an engaging UI, you need to rely on the Cascades layer of the BlackBerry 10
architecture. In fact, Cascades is much more than a GUI framework; it also includes the following
nonexhaustive list of services and APIs:

	User interface: Provides the core components for building rich native user
interfaces using QML/JavaScript, C++, or a mix of all three technologies.

	Application integration: APIs that integrate platform applications and
functionality such as e-mail and calendar into your own apps.

Figure 1-1.  BlackBerry 10 platform

3CHAPTER 1: Getting Started

	Data management: High-level APIs abstracting data sources and data models.
The supported data formats include SQL, XML, and JSON.

	Communication: APIs for enabling your apps to communicate with other devices
by using, for example, Bluetooth, Wi-Fi, and NFC.

	Location: APIs for using maps and managing location services in your
application.

	Multimedia: APIs for accessing the camera, audio player, and video player in
your apps.

	Platform: Additional APIs for managing platform notifications and home screen
functions.

When developing native applications, you will notice that there is some overlap between the
functionality provided by Cascades and the underlying modules. At first this might seem confusing
but you should keep in mind that Cascades often provides a richer and easier-to-use API. Therefore,
as a good rule of thumb, always try to implement a functionality with the Cascades API first, and if
it is not possible, use the underlying Qt or BPS modules. Networking is a good example where you
will use the QtNetwork module essentially.

QML
When building user interfaces with Cascades, you can proceed in two distinct ways: you can either
write imperative code in C++ or create your UI declaratively with the Qt Modeling Language (QML).
Most examples in this book use the latter approach for the following reasons:

Thanks to the Cascades Builder tool, you get immediate feedback on the way 	
your UI will look in QML.

When it comes to designing UIs, writing C++ code can quickly become 	
unmanageable, especially if you consider many nested components. In contrast,
QML keeps the code much more tractable.

Once you get the hang of QML, it is way faster to create a polished UI within a 	
few minutes than in C++.

Behind the scenes, you are still using C++ objects exposed to QML by 	
Cascades. QML simply makes your life easier during the entire application
development life cycle by avoiding numerous compile-build-deploy cycles until
you get the UI right.

QML is a much friendlier language than C++ for people with a programming 	
background in JavaScript. You will therefore have a greater chance of sharing
your UI designs with other members of your team if they are written in QML.

To illustrate the previous points, let’s design a very simple UI using both approaches: one UI design
in QML and another one in C++. As shown in Figure 1-2, the UI isn’t very fancy; it’s simply a text field
stacked on top of a slider. Whenever the slider moves, the text field is updated with the slider’s new
position.

4 CHAPTER 1: Getting Started

Listing 1-1 shows the QML markup version.

Listing 1-1.  main.qml

import bb.cascades 1.0
Page {
 Container {
 TextField {
 id: texfield
 }
 Slider{
 id: slider
 fromValue: 0
 toValue: 100
 onImmediateValueChanged: {
 texfield.text = Math.round(immediateValue)
 }
 }
 }
}
 
The equivalent C++ version of the code for creating the same UI is given in Listings 1-2 and 1-3.

Figure 1-2.  Stacked TextField and Slider

 Don’t worry if you have never programmed in C++, we will cover the basics in Chapter 3. As a matter of fact,
you will also see in Chapter 2 that you can build relatively complex Cascades applications using
QML/JavaScript only, without ever writing a single line of C++ code.

Listing 1-2.  applicationui.hpp

class ApplicationUI : public QObject
{
 Q_OBJECT
public:
 ApplicationUI(bb::cascades::Application *app);
 virtual ~ApplicationUI() { }
 

5CHAPTER 1: Getting Started

public slots:
 void onImmediateValueChanged(float value);
 
};

Listing 1-3.  applicationui.cpp

ApplicationUI::ApplicationUI(bb::cascades::Application *app) : QObject(app) {
 Page *page = new Page();
 
 Container *contentContainer = new Container();
 contentContainer->setLayout(StackLayout::create());
 
 TextField* textfield = TextField::create();
 Textfield->setObjectName("textfield");
 Slider* slider = Slider::create();
 slider->setFromValue(0);
 slider->setToValue(100);
 
 contentContainer->add(textfield);
 contentContainer->add(slider);
 
 QObject::connect(slider, SIGNAL(immediateValueChanged(float)), this,
 SLOT(onImmediateValueChanged (float)));
 
 page->setContent(contentContainer);
 app->setScene(page);
}
 
void ApplicationUI::onImmediateValueChanged(float value) {
 value = round(value);
 QString stringValue = QString::number(value);
 Application* app = static_cast<Application*>(this->parent());
 TextField* textField = app->scene()->findChild<TextField*>("textfield");
 textField->setText(stringValue);
}
  
ApplicationUI is the “application delegate” in charge of creating the user interface and wiring
together the application’s controls’ event handling. You have to provide this class and it is instantiated
during the application bootstrap process.

As you can see, the declarative way of building the UI in QML is very concise compared to the
imperative C++ approach. This is also because Cascades takes care of a lot of the plumbing work
for you behind the scenes when you’re using QML.

Signals and Slots
In Cascades terminology, event handling is done using signals and slots, which are basically a
loosely coupled notification mechanism between controls. Whenever something interesting happens
to a control, such as a state change, a predefined signal is emitted for notifying that change. If you’re
interested in receiving that notification, then you have to specify some application logic in JavaScript

6 CHAPTER 1: Getting Started

or C++, which will be called in the corresponding Cascades predefined signal handler. Signals and
slots are part of the QtCore module. The Cascades framework uses them in order to build a
high-level event handling mechanism. This section will expand on the topic in order to give you a
firm grip on the way signals and slots work. As noted previously, the most important property of
signals is their ability to let you bind objects together without them knowing about each other.

Signals and Slots in QML
For a given predefined signal signal, Cascades also provides a corresponding predefined onSignal
handler (which is also called equivalently a slot). You can write JavaScript code in your QML document
to tell Cascades what to do when the handler is triggered and how the control should respond to the
signal. For example, in order to handle the slider’s position updates, Cascades defines a predefined
onImmediateValueChanged signal handler called when the slider emits the immediateValueChanged signal.
In Listing 1-1, the predefined handler will execute the texfield.text = Math.round(immediateValue)
JavaScript code in order to update the textfield. You will also notice that the JavaScript code references
an immediateValue parameter. Signals usually include extra parameters that provide additional
information about them. In QML, they are implicitly available to the JavaScript execution context and
you can use them in order to retrieve further information about the change that just occurred.

You can refer to the Cascades API reference found at http://developer.blackberry.com/cascades/
reference/user_interface.html for a list of all predefined signals and corresponding slots organized
by GUI control. Look under the core controls section.

Signals and Slots in C++
Looking at Listing 1-2, you will notice that I’ve used the slots: annotation to declare an
onImmediateValueChanged(float value) slot in the application delegate class. In Listing 1-3,
I’ve connected the slider’s onImmediateValueChanged(float value) to the application delegate’s
onImmediateValueChanged(float value) slot using the QObject::connect(source, SIGNAL(signal),
destination, SLOT(slot)) method.

 The Q_OBJECT, signals: and slots: “annotations” are Qt extensions to the C++ language.

Signals and slots are implemented in Qt using the following constructs:

A class must inherit from 	 QObject.

You must add the 	 Q_OBJECT macro at the beginning of the class definition. The
Q_OBJECT macro marks the class as managed by the Meta Object Compiler
(MOC). During compilation, the MOC generates additional code for the class
in a file called moc_classname.cpp, which adds support for signals and slots,
metaprogramming, and other features for runtime introspection. Note that the
entire process is completely transparent and you don’t need to worry about it
during compilation.

http://developer.blackberry.com/cascades/reference/user_interface.html
http://developer.blackberry.com/cascades/reference/user_interface.html

7CHAPTER 1: Getting Started

 If you intend on extending the class, you must also repeat the Q_OBJECT macro in all of its subclasses.

Figure 1-3.  Sensor system

You must declare the class signals using the 	 signals: annotation.

You must declare the class slots using the 	 slots: annotation.

You must define the class slots as regular member functions.	

Finally, you must wire signals and slots using 	 QObject::connect().

As an example, let us consider the case of a temperature sensor. We would like to build a system
where we can chart and log temperature readings over time. We would also want to decouple the
system by separating the charting logic from the temperature logging. A very simplified design can
be implemented using three classes (see Figure 1-3). The TempSensor class is responsible for the
temperature readings through the setTemp(float newValue) function, which could be triggered by
a hardware interrupt. The function would then update TempSensor’s internal state, and then emit a
tempChanged(float) signal. The TempChart and TempLogger classes would respectively handle the
signal with a corresponding onTempChanged(float) slot.

The C++ implementation is given in Listings 1-4 and 1-5.

8 CHAPTER 1: Getting Started

Listing 1-4.  TempSensor.hpp

#include <QObject>
 
class TempSensor : public QObject{
Q_OBJECT
public:
 TempSensor(QObject* parent=0) : QObject(parent), m_value(0) {};
 virtual ~TempSensor(){};
 
 void setTemp(float newValue){
 if(m_value == newValue) return;
 m_value = newValue;
 emit(tempChanged(m_value);
 }
 
signals:
 void tempChanged(float)
 
private:
 float m_value;
};
 
#include <QObject>
 
 
class TempChart : public QObject{
Q_OBJECT
public:
 TempChart(QObject* parent=0) : QObject(parent){};
public slots:
 void onTempChanged(float value){
 // do charting
 }
};
 
#include <QObject>
 
class TempLogger : public QObject{
Q_OBJECT
public:
 TempLogger(QObject* parent=0) : QObject(parent){};
 
public slots:
 void onTempChanger(float value){
 // do logging
 }
};
 

9CHAPTER 1: Getting Started

Listing 1-5.  main.cpp

#include "TempSensor.hpp"
int main(){
 TempSensor sensor;
 TempLogger logger;
 TempChart chart;
  
 QObject::connect(sensor, SIGNAL(tempChanged(float)), logger, SLOT(onTempChanged(float)));
 QObject::connect(sensor, SIGNAL(tempChanged(float)), chart, SLOT(onTempChanged(float)));
  
 // do temperature readings here.
}
 
Here are a few things to keep in mind when implementing signals and slots:

Signals are triggered in your code using the emit 	 signalName() syntax
(see Listing 1-4).

Signals must always have a void return value. In other words, you can’t get a 	
return value from a signal once it has been emitted.

As illustrated in the previous example, one signal can be connected to many 	
slots. When the signal is emitted, the slots are called one after the other.

The opposite is also true; many signals can be connected to the same slot.	

You can also connect a signal to another signal. When the first signal is emitted, 	
the second one is also emitted.

Slots are normal member functions. You can call them directly if you wish. They 	
can also be virtual functions if you wish.

The signature of a signal must match the signature of the receiving slot. 	
A slot can also have a shorter signature than the signal (in this case the slot
drops the extra arguments).

Meta-Object System
Qt extends C++ with a meta-object system in order to introduce runtime introspection features that
would not be available with a statically compiled language such as C++. Behind the scenes, Qt uses
the meta-object compiler (MOC) to generate the extra C++ plumbing code for the functions declared
by the Q_OBJECT macro and for the class signals. Finally, the QObject::connect function uses the
MOC-generated introspection functions to wire signals and slots together. When building Cascades
applications, the MOC is called transparently by the build system.

Cascades Application Bootstrap Process
The entry point for all Cascades applications is the main function shown in Listing 1-6.

10 CHAPTER 1: Getting Started

Listing 1-6.  main.cpp

#include <bb/cascades/Application>
#include <QLocale>
#include <QTranslator>
#include "applicationui.hpp"
 
#include <Qt/qdeclarativedebug.h>
 
using namespace bb::cascades;
 
Q_DECL_EXPORT int main(int argc, char **argv)
{
 Application app(argc, argv);
 
 // Create the Application UI object, this is where the main.qml file
 // is loaded and the application scene is set.
 new ApplicationUI(&app);
 
 // Enter the application main event loop.
 return Application::exec();
}
 
The first step in main is to create an instance of a bb::cascades::Application class, which provides
the application’s run loop, and all the boilerplate functionality required by a Cascades application.
At this point, you will have a “bare bones” Cascades app but the run loop has not kicked in yet.
To further customize the application, the following properties of the bb::Cascades::Application
instance have to be specified:

	Scene property: Specifies the instance of bb::cascades::AbstractPane to use
as the scene for the application’s main window. A scene is basically a layout of
controls which will be displayed in the application’s main window.

	Cover property: Specifies the instance of bb::cascades::AbstractCover to be
used when the application is in cover mode.

	Menu property: An instance of a bb::cascades::Menu accessible by the user with
a swipe from the top of the screen.

In practice, you will not update the bb::cascades::Application’s properties directly in the main
function but instead rely on an application delegate object, which will take care of loading or
creating the main scene and wiring all the events using signals and slots. You’ve already seen an
implementation of an application delegate in Listing 1-2 and Listing 1-3 given by the ApplicationUI
class. In Listing 1-3, we customized the application delegate in order to build the scene graph using
C++. Listing 1-7 shows the default version generated by the Momentics IDE’s New BlackBerry
Project wizard (more on installing your development environment later in the chapter).

Listing 1-7.  applicationui.cpp

ApplicationUI::ApplicationUI(bb::cascades::Application *app) :
 QObject(app)
{
 // prepare the localization. Code omitted
  

11CHAPTER 1: Getting Started

 // Create scene document from main.qml asset, the parent is set
 // to ensure the document gets destroyed properly at shut down.
 QmlDocument *qml = QmlDocument::create("asset:///main.qml").parent(this);
 
 // Create root object for the UI
 AbstractPane *root = qml->createRootObject<AbstractPane>();
 
 // Set created root object as the application scene
 app->setScene(root);
}
 
I’ve removed the code related to localization in order to concentrate on the scene graph creation
logic. Here an instance of a bb::cascades::QmlDocument is created by reading the main.qml QML file
containing the declarative UI description. This is the same QML you will design using the Cascades
Builder tool.

Finally, once the application delegate has been initialized, the application’s main event loop kicks in
through a call to bb::cascades::Application::exec().

Parent-Child Ownership
If you take a close look at Listing 1-3, you will notice that I haven’t released the objects allocated with
the new operator at any point in the code. This might seem as a memory leak but it’s not. Cascades
widgets are organized in a parent-child relationship that also handles object ownership and memory
management. In the case shown in Listing 1-3, the root parent of the entire object hierarchy is the
bb::cascades::Application app object. The memory associated with the child controls will be
released when this object is deleted by the runtime. I will cover memory management in detail in
Chapter 3, but for the moment you can safely assume that there are no memory leaks in Listing 1-3.

Native SDK Setup
To build Cascades applications, you need to set up the native SDK using the following steps:

1.	 Download and install the latest version of the Momentics IDE from
http://developer.blackberry.com/native/downloads (the page will also
provide you with a link to the latest BlackBerry 10 simulator). You can either
download the simulator directly or let Momentics handle the download at a
later stage when you configure a simulator target.

2.	 Request a BlackBerry ID from http://blackberryid.blackberry.com. You
will need your BlackBerry ID to create a BlackBerry ID token, which is
used in turn for generating debug tokens (debug tokens are deployed on
a BlackBerry device during development and enable your device to run
development code). Note that you don’t need a debug token for the simulator.

3.	 As soon as you have created your BlackBerry ID, go to
https://www.blackberry.com/SignedKeys in order to generate a BlackBerry
ID token. Select the first option and sign in with your BlackBerry ID
(see Figure 1-4).

http://developer.blackberry.com/native/downloads
http://blackberryid.blackberry.com/
https://www.blackberry.com/SignedKeys

12 CHAPTER 1: Getting Started

4.	 After having signed in, you will be redirected to another page for generating
your BlackBerry ID token. Enter a password for the token, accept the license
agreement, and click Get Token (see Figure 1-5).

Figure 1-4.  BlackBerry keys order form

13CHAPTER 1: Getting Started

5.	 The token will be generated and downloaded as a file called bbidtoken.csk.
Depending on your development platform, you will have to put the file in one
of the following locations:

a.	 Windows XP: C:\Documents and Settings\Application Data\Research in Motion\

b.	 Windows Vista, Windows 7, and Windows 8: C:\Users\AppData\Local\
Research in Motion\

c.	 Mac OS X: ~/Library/Research in Motion

Momentics IDE
To create Cascades applications, you will use the Momentics IDE, which essentially adds extra
plug-ins and tools to a standard Eclipse distribution (if you’ve already used Eclipse in the past for
Java or Android development, you will be right at home; otherwise, don’t worry—this section will
guide you through the IDE). This section explains how a Cascades project is organized in Momentics
and reviews the most important features of the IDE that you will be using frequently. First start by
creating a new Cascades project using the following steps:

1.	 Launch the Momentics IDE and choose File ➤ New ➤ BlackBerry Project…
This will start the New BlackBerry Project wizard shown in Figure 1-6.

Figure 1-5.  BlackBerry ID token

14 CHAPTER 1: Getting Started

2.	 Select Cascades as the project type and click Next.

3.	 Select Standard Empty Project from the templates page and click Next.

4.	 On the Basics Settings page, change your project’s name from the default
CascadesProject to HelloCascades, and then click Next. Don’t change any of
the other default settings.

5.	 Keep the default settings on the last wizard page API Level and click Finish.

6.	 If you’re not in the QML Editing perspective, a prompt will appear, asking you
if you want to switch to it. Click Yes.

Workspace
Momentics stores your projects in a workspace, which is essentially a collection of projects located
in the same directory on your file system. Once you’ve finished creating the HelloCascades project,
your workspace should look similar to Figure 1-7.

Figure 1-6.  BlackBerry 10 Platform

15CHAPTER 1: Getting Started

Perspectives
A perspective is a task-oriented collection of views and editors. When designing Cascades
applications, you will mostly use the QML Editing, C/C++, and Debug perspectives. You can easily
switch from one perspective to another using the perspectives toolbar or the Window ➤ Open
Perspective navigation menu. Some views, such as the Project Explorer, will appear in multiple
perspectives.

In the Project Explorer view, the src subfolder contains the following C++ source files:

	main.cpp: Defines the application entry point main.

	applicationui.hpp and application.cpp: You will find the wizard-generated
application delegate declaration and definition.

You’ve already seen simplified versions of these files in the examples in Listing 1-7. For the moment,
you can simply ignore them. The assets subfolder contains the main.qml defining your application’s UI.

Let’s spice up the default version of the app generated by the Cascades wizard.

1.	 Create a new folder called images under the assets folder of your project (see
Figure 1-5).

2.	 Copy the swissalpsday.png and swissalpsnight.png from the book’s
resources in your project’s images folder.

Figure 1-7.  Momentics workspace

16 CHAPTER 1: Getting Started

 The source code for this book is located in the https://github.com/aludin/BB10Apress GitHub
repository and at www.apress.com/9781430261575. You can either clone the repository or download a
compressed Zip copy. As you read along, you can import the projects in turn in Momentics (in Momentics,
select File ➤ Import Existing Projects into Workspace and select the root directory of a project located under
the BB10Apress folder).

Figure 1-8.  Momentics IDE, QML perspective

3.	 Open the main.qml file by double-clicking it in Project Explorer. Make
sure you’re in the QML editing perspective by switching to it using the
perspectives toolbar located in the upper-right corner of the Momentics IDE.
The QML editing or Cascades Builder perspective is organized around four
important views (see Figure 1-8):

The Project Explorer shows you all the resources available in your project, including 	
source folders, asset folders, and targets.

The Components view located on the lower-left section of the screen displays core 	
Cascades controls that you can drag and drop in the Source view located at the
center of your screen.

https://github.com/aludin/BB10Apress
http://www.apress.com/9781430261575

17CHAPTER 1: Getting Started

The QML Properties view is displayed on the right side of the screen. You can use 	
this view by selecting a QML element in the Source view.

The main design area is located in the middle of your screen. You can switch 	
between source only, design only, and source-design split modes.

4.	 In the Source view, remove the text: qsTr(Hello World) + Retranslate.
onLocaleOrLanguageChanged property from the Label control.

5.	 Select the Label in the Source view by double-clicking it, and then update
the QML Properties view by doing the following:

Add “helloCascades” in the id field.	

Add “Hello Cascades” in the text field.	

Scroll down until you reach the Horizontal Alignment property of the label and 	
change it to Center.

main.qml should now look like Listing 1-8.

Listing 1-8.  main.qml

import bb.cascades 1.0
 
Page {
 Container {
 //Todo: fill me with QML
 Label {
 id: helloCascades
 // Localized text with the dynamic translation and locale updates support
 textStyle.base: SystemDefaults.TextStyles.BigText
 text: "Hello Cascades"
 horizontalAlignment: HorizontalAlignment.Center
 }
 }
}
 

6.	 Drag a Container control from the Components view and drop it under the
label’s closing brace in the Source view.

7.	 Double-click the second Container control:

Change the id to imageContainer.	

Change the Horizontal Alignment property to Center.	

Change the Layout property to DockLayout. 	

8.	 Drag an ImageView control from the Components view and drop it after the
DockLayout control’s closing brace in the Source view.

18 CHAPTER 1: Getting Started

9.	 Select the ImageView control:

Change the id property to “swissalpsday”.	

Click the Image Source button and select the 	 swissalpsday.png file in the assets/
images folder.

10.	 Add another ImageView control under the previous one in the Source view.

Change the id property to “swissalpsnight”.	

Click the Image Source button and select the 	 swissalpsnight.png file in the assets/
images folder

Set the opacity property to 0.	

11.	 Drag a Slider control from the Components view and drop it in the Source
view after imageContainer’s closing brace. Change the slider Horizontal
Alignment to Center.

12.	 In the Source view, add the following code in the body of the Slider control:
 
 onImmediateValueChanged: {
 swissalpsnight.opacity = immediateValue
}
 

The final version of the QML markup should look like Listing 1-9. If not, try to repeat the previous
steps until you reach the same result, or simply update the QML directly in the Source view.

Listing 1-9.  main.qml

import bb.cascades 1.0
 
Page {
 Container {
 //Todo: fill me with QML
 Label {
 id: helloCascades
 // Localized text with the dynamic translation and locale updates support
 textStyle.base: SystemDefaults.TextStyles.BigText
 text: "Hello Cascades"
 horizontalAlignment: HorizontalAlignment.Center
 }
 Container {
 id: imageContainer
 horizontalAlignment: HorizontalAlignment.Center
 layout: DockLayout {
 
 }
 ImageView {
 id: swissalpsday
 imageSource: "asset:///images/swissalpsday.png"
 

19CHAPTER 1: Getting Started

 }
 ImageView {
 id: swissalpsnight
 imageSource: "asset:///images/swissalpsnight.png"
 }
 }
 Slider {
 horizontalAlignment: HorizontalAlignment.Center
 onImmediateValueChanged: {
 swissalpsnight.opacity = immediateValue
 }
 }
 }
}
 
Congratulations! You’ve just finished designing your first Cascades application!

Build Configurations
There are four build configurations to consider when creating Cascades application:

Simulator debug	

Device debug	

Device profile	

Device release	

A build configuration defines a set of rules and settings for building your application for a given
processor or target (for example, the “Simulator debug” configuration will build your project with
debug symbols enabled for a Simulator target, whereas “Device release” will build a release version
of your project for a physical device with an ARM processor). At any point, you can set the active
build configuration, as explained in the following paragraph.

To build the project for the simulator, select HelloCascades in Project Explorer, and then
set Project ➤ Build Configurations ➤ Set Active ➤ Simulator-Debug from the Momentics main menu.
Next, select Project ➤ Build Project. The build starts immediately and the build output is displayed in
the Console View.

When the build finishes, a new folder called x86/o-g containing the build results will be created
under your project’s root folder.

Note that another extremely convenient way of selecting a build configuration is by using the
BlackBerry Toolbar, as shown in Figure 1-9 (you will also see in the next section how to use the
BlackBerry Toolbar to set up targets). To build the project, select Debug for the build type and then
click the Hammer button.

20 CHAPTER 1: Getting Started

Targets
Before testing HelloCascades, you need to define a deployment target. On the BlackBerry Toolbar,
select the Manage Devices… option located in the Active Device drop-down (this will display the
Device Manager wizard; see Figure 1-10 and Figure 1-11).

Figure 1-9.  BlackBerry Toolbar

Figure 1-10.  Manage devices

21CHAPTER 1: Getting Started

Simulator
To configure a new simulator using the Device Manager wizard, follow these steps:

1.	 Click Install a New Simulator. Choose the most recent simulator from the list
and install it (see Figure 1-12). (Note that if you are developing for a specific
API level, you can select a different simulator. I will tell you more about API
levels at the end of this Chapter.)

Figure 1-11.  Device Manager (figure also shows installed simulators)

22 CHAPTER 1: Getting Started

2.	 As soon as you have selected the simulator, the Device Manager wizard will
start its download.

3.	 When the download has completed, the simulator will be launched and the
final step will be to pair Momentics with the simulator (see Figure 1-13).

Figure 1-12.  Simulator versions

23CHAPTER 1: Getting Started

4.	 The simulator will now appear in the Device Manager’s list of simulators and
you can connect to it (see Figure 1-11). (Note that you might need to restart
Momentics for the new simulator to appear in the BlackBerry Toolbar’s Active
Device list.)

You can now try to launch HelloCascades on the simulator using the green Debug button on the
BlackBerry Toolbar (if you haven’t built the project previously, click the Hammer button; see Figure 1-9).

Device
Configuring a new physical device for testing purposes is accomplished by pairing the device with
Momentics. You will also have to generate a debug token, which will be saved on the device by
Momentics. Once again, the BlackBerry Toolbar streamlines the process:

1.	 Make sure to turn on Development Mode on your device using
Settings ➤ Security and Privacy ➤ Development Mode.

2.	 Connect your device to your computer with the USB cable provided by
BlackBerry.

Figure 1-13.  Simulator pairing

24 CHAPTER 1: Getting Started

3.	 Just like for the simulator, launch the Device Manager wizard from the
BlackBerry Toolbar. This time, select the Devices tab and click Set Up New
BlackBerry 10 Device (see Figure 1-14).

Figure 1-14.  Set up new BlackBerry 10 device

4.	 You will have to pair your device during the first step of the configuration.
To pair your device, you can either use the USB cable or a Wi-Fi connection.
Select Pair Using USB and then click Next. (Note that if your device is
protected by a password, enter it in the password field; see Figure 1-15.)

25CHAPTER 1: Getting Started

5.	 If you have already generated your BlackBerry ID token as explained in the
SDK configuration section, the wizard will skip the second step; otherwise,
follow the wizard’s instructions.

6.	 On the next wizard page, select Create Debug Token and click Finish. You
will finally be asked to provide the password used to create your BlackBerry
ID token (see Figure 1-5) before a new debug token is deployed on your
device (see Figure 1-16).

Figure 1-15.  Pair device using USB

26 CHAPTER 1: Getting Started

This time, you can try to launch HelloCascades on the device by selecting it as the Active Device on
the BlackBerry Toolbar.

Launch Configurations
The purpose of this section is to explain what’s happening behind the scenes when you use the
BlackBerry Toolbar, which essentially creates launch configurations for you. A launch configuration
is purely an Eclipse concept and not at all specific to Momentics; it associates a build result with
a target. You must create it in order to run your application on a simulator or a device. There are
two kinds of launch configurations that you can create: the Run Configuration and the Debug
Configuration. In this section, I will show you how to create a Debug Configuration for the Simulator
target. (The steps for creating a Run Configuration are identical to a Debug Configuration. A Run
Configuration will simply launch your application on the target, whereas a Debug Configuration will
launch it under Momentics’ debugger control.)

1.	 Select Run ➤ Debug Configurations… from the Momentics main menu to
display the Debug Configurations Dialog (see Figure 1-17).

Figure 1-16.  Create Debug Token

27CHAPTER 1: Getting Started

2.	 Select BlackBerry C/C++ Application from the list and press the New button
in the upper-left corner of the dialog box. The settings for the new launch
configuration will be displayed (see Figure 1-18).

Figure 1-17.  Debug Configurations

28 CHAPTER 1: Getting Started

3.	 Make sure that the build configuration is Simulator Debug and the selected
target is Neutrino/x86, which corresponds to the simulator. Press Apply and
then press Debug (note that the simulator name might be different, depending
on how you have configured it).

4.	 HelloCascades will now be launched in debug mode on the simulator. The
Momentics IDE will also switch from the QML Editing perspective to the
Debug perspective, and the program execution will stop at the beginning of
the main function (see Figure 1-19) .

Figure 1-18.  Simulator launch configuration

29CHAPTER 1: Getting Started

5.	 Press the Resume button to continue the program execution. The Hello
Cascades application should now be running on the simulator (see Figure 1-20).

Figure 1-19.  Debug perspective

30 CHAPTER 1: Getting Started

Figure 1-20.  Hello Cascades on the simulator

6.	 Try moving the slider and notice how the scene changes from day to night.

To create a debug Launch configuration for the device, you basically need to repeat the same steps,
with the following differences:

1.	 Set the active build configuration to Device-Debug.

2.	 Build the HelloCascades project.

3.	 Create a new launch configuration (see Figure 1-17 and Figure 1-18).

4.	 Give a name to your launch configuration (for example, HelloCascades
Device-Debug).

5.	 Select the device target.

6.	 Press Debug.

Once again, launch configurations can be completely ignored by using the BlackBerry Toolbar, but it
is always a good idea to have a basic understanding of their functionality.

31CHAPTER 1: Getting Started

API Levels
An API level is a set of APIs and libraries that your application builds against. It also corresponds to a
version of the BlackBerry 10 OS. API levels are backward compatible. (Higher API levels include APIs
from the previous releases, although some APIs could be deprecated. In other words, this is identical
to the way Java manages its APIs.) If for some reason you need to compile against a specific API
level, you can change the setting in Momentics using Momentics ➤ Preferences ➤ BlackBerry ➤
API Level.

QNX System Information Perspective
Before finishing this chapter, I want mention the Momentics QNX System Information perspective,
which can be used for navigating your device’s or simulator’s filesystem (you can open the
perspective by selecting Windows ➤ Open Perspective ➤ QNX System Information;
see Figure 1-21). As you develop Cascades applications, you will realize that the possibility to
access your device will be extremely useful for retrieving logs from the target file system or for
monitoring your application’s memory and CPU usage.

Figure 1-21.  QNX System Information perspective

Summary
This chapter gave you a bird’s-eye view of the BlackBerry 10 platform and the Cascades
programming model. I showed you how to declaratively design your UI using QML, which is much
more efficient than using imperative C++ code. QML is therefore the preferred approach—not just
because the Cascades framework takes care of a lot of the plumbing work for you, but also because
you can rely on the Cascades Builder tools to visually design your UI. You can nevertheless still rely
on C++, something that we will further discuss in Chapter 3, for the performance-critical aspects of
your application. Signals and slots were introduced as a high-level mechanism used by Cascades for
event handling and I explained how to use them in your own code for reacting to events generated
by UI controls.

32 CHAPTER 1: Getting Started

You discovered how the Momentics IDE was organized in Perspectives, giving a task-centric view
of your work. The three most important ones are the QML Editing, C/C++ Editing, and Debug
perspectives. You will be using them time and again when creating Cascades applications. We
also went through the configuration of a BlackBerry device for development purposes, as well as
the generation of the debug tokens required for application deployment on a device. Finally, you
learned how to create, build, and launch configurations for your application in order to deploy it on a
simulator or device.

	Chapter 1: Getting Started
	Cascades Programming Model
	QML
	Signals and Slots
	Signals and Slots in QML
	Signals and Slots in C++
	Meta-Object System

	Cascades Application Bootstrap Process
	Parent-Child Ownership

	Native SDK Setup
	Momentics IDE
	Workspace
	Perspectives
	Build Configurations
	Targets
	Simulator
	Device

	Launch Configurations

	API Levels
	QNX System Information Perspective
	Summary

