

Chapter 3
The Wall – using the screen
A TouchDevelop script usually needs to interact with the user. While input
via a microphone and output via speakers built into, or connected to, the
device are certainly possibilities, a touchscreen or a screen plus a mouse is
almost always used for input and output. In TouchDevelop, the screen is
known as the wall. The API provides many ways in which a script can
access the wall.

3.1 Output – the writing on the wall 37
3.2 Input of values from the touchscreen 42
3.3 Updating the wall’s content 42
3.4 Events on the touchscreen 45
3.5 Pushing and popping pages 49
3.6 Titles and subtitles 49
3.7 Wall buttons 50
3.8 On-demand creation of output 52

3.1 Output – the writing on the wall

3.1.1 Output of simple values Every datatype in TouchDevelop provides a method named post to wall. If that method is called, some representation of the value is displayed. Here are some simple examples.
 action main()
 (1/3) → post to wall
 123 → post to wall
 ("hello" || " there") → post to wall

38 | The wall Chapter 3

 (11>11) → post to wall
 The code produces a result like that shown in Figure 3-1 on the left side. Note that the output is apparently displayed in reverse order. That is because the default is for each new output item to be inserted at the top of the screen, pushing previously generated output further down. The default is a good one if it is desired that the user can see the most recent item without having to scroll down.

Figure 3-1: Simple output, normal and reversed order

Usual output ordering… Reversed output ordering…

 To display a value in a manner which stands out prominently on the screen, a TextBox value can be used. The text can be displayed in any color, with any size font, against any background color. A simple example of using a TextBox to display a string is shown in Figure 3-2. The script is shown on the left and the result of running it is shown on the right.

Figure 3-2: Displaying a string using a TextBox

action main()
 var X := 99
 var tb := wall → create text box(
 "X = " ∥ X, 18)
 tb → set background(
 colors → yellow)
 tb → set foreground(
 colors → blue)
 tb → set font size(24)
 tb → post to wall

Chapter 3 The wall | 39

3.1.2 Direction of Output The default direction of output on the screen can be changed so that items are displayed from top-to-bottom. To do so, make the method call:
 wall →set reversed(true)
 The following sample script should make the effect clear.
 action main()
 (1/3)→post to wall
 123→post to wall
 wall →set reversed(true)
 ("hello" || " there") →post to wall
 (11>11) →post to wall
 The result of running the script is shown in Figure 3-1 on the right side. Comparison of the two snapshots shows that the call affected all output on the screen – not just the output generated after the call was made. In summary, the effect of making the call with an argument of true is to cause existing output on the screen to be reordered if necessary, so that the oldest output is at the top and the newest output is at the bottom. Future calls to
 post to wall
 cause the new output to be added at the bottom. Making the call
 wall →set reversed(false)
 reorders the output again so that the oldest output is at the bottom and the newest is at the top, then subsequent calls to post to wall will again cause output to be inserted at the top of the screen.
3.1.3 Output of composite values Displaying a composite value such as one with the DateTime or Vector3 type produces an appropriately formatted result. Displaying a collection of values produces a list of items on the screen, each element formatted in the appropriate manner for the element’s datatype. Figure 3-3 gives a few examples of composite values being displayed.

40 | The wall Chapter 3

Figure 3-3: Displaying composite values

action main()
 var v := collections →
 create number collection
 v → add(123)
 v → add(456)
 v → add(- 789)
 v → post to wall
 var dt := time → today
 dt → post to wall
 var m := math →
 create matrix(2,3)
 m → set item(0, 2, 3.142)
 m → set item(1, 0, 2.718)
 m → post to wall

3.1.4 Output of media values Each media value is displayed on the screen in a manner appropriate for the datatype. In the case of a Song or a Song Album value, there is also a play button displayed. Tapping that play button causes the song or the song album to be played. A summary of what is displayed for each datatype is given in Table 3-1.

Table 3-1: Display of media values

Datatype What is displayed
Picture The picture, resized if necessary to fit the screen.
Board The board (note that the board can be changed and

redisplayed dynamically).
Song A play button plus whichever of these items is available:

duration, artist, name of album from which the song
was obtained, the album cover, track number.

Sound The text “A sound…” and a button to play the sound.
Picture Album A sequence of all pictures in the album.
Song Album A play button plus whichever of these items if available:

total duration, artist, name of album, the album cover,
number of tracks.

Chapter 3 The wall | 41

3.1.5 Output of social values Each value managed by the social API is displayed in a manner appropriate for the datatype. The Contact and Link values include buttons which can be tapped to initiate a phone call or send a message. A summary of what is displayed for each datatype is given in Table 3-2.
Table 3-2: Display of social values

Datatype What is displayed
Appointment The date, time and details of the appointment.
Contact The name of the contact plus buttons which can be

tapped to initiate a phone call or send a SMS message
or send an email to this contact .

Link The name associated with the link plus a button to
initiate a phone call, send a SMS message or send an
email, depending on the kind of link.

Location A scrollable Bing map which shows the location.
Message The name of the sender, the time when the message

was sent plus the contents of the message.
Place The name associated with the place plus a thumbnail

map showing the location of the place.

3.1.6 Output of web values There are several datatypes specifically associated with web access. Values of five of these types are displayed on the wall according to Table 3-3.
Table 3-3: Display of web values

Datatype What is displayed
Form Builder The current contents of the form
Json Object The string value of the JSON object.
Web Request Two lines which display the accepted webpage

encodings followed by a line which contains the
keyword GET followed by a URL.

Web Response The response
Xml Object The string value of the XML object

42 | The wall Chapter 3

3.2 Input of values from the touchscreen The wall API provides several methods which prompt the user to enter a value or pick a value from a range of possibilities. These methods are listed in Table 3-4. Some sample statements to illustrate their use are shown in Figure 3-4.
Table 3-4: Prompting for input

Datatype Method Description
Boolean ask boolean An OK button and a Cancel button are

displayed. Tapping OK returns true and
tapping Cancel returns false

Number ask number The user is prompted to enter a
number, which is returned as the result

String ask string The user is prompted to enter a string
which is returned as the result

DateTime pick date The user is prompted to pick a date;
that date combined with a time of 12
noon is returned as the result

String pick string A list of strings is displayed and the user
is prompted to pick one; the index of
the selected string is returned as the
result

DateTime pick time The user is prompted to pick a time of
day; that time combined is with an
undefined date and returned as the
result

3.3 Updating the wall’s content Each call of post to wall adds a new item on the screen. However it is frequently the case that we wish to leave the number of items unchanged and simply alter the value of one of them. The simplest, least sophisticated and least efficient way to achieve that effect would be to invoke
 wall → clear

Chapter 3 The wall | 43

and then re-display all the items with their new values. However, TouchDevelop provides some alternatives which should be preferred.
Figure 3-4: Prompting for input

action main()
 wall → set reversed(true)
 "Name three friends ..." → post to wall
 var names := collections → create string collection
 for 0 ≤ i < 3 do
 names → add(wall → ask string("Enter next name: "))
 var x := wall → pick string("Choose one of these people",
 "Names", names)
 var who := names → at(x)
 var dt := wall → pick date("What is " || who || "\'s birthday?",
 "Year / Month / Date")
 // Note: this outputs a date as Day/Month/Year
 (who || "\'s birthday is " || dt → day || "/" || dt → month ||
 "/" || dt → year) → post to wall

3.3.1 Updatable textbox For the display of text which needs to be changed while the script is executing, a textbox provides an easy-to-use mechanism. Figure 3-5 shows a simple script which displays a line of text on the screen and then changes the text when the page button at the bottom is tapped. The call to the set text method of the textbox causes the string displayed on the screen to be updated immediately. It is also possible to change the size of the text and the colors used in the textbox on the fly. Note that if the same textbox value has been posted to the wall more than once, then the set text method will cause all of those occurrences on the wall to be updated.
Figure 3-5: An updatable textbox (/censaair)

action main()
 ◳ tb := wall → create text box("Tap the plus button below", 20)
 ◳ tb → set border(colors → blue)
 ◳ tb → post to wall

44 | The wall Chapter 3

 wall → add button(“add”, “Tap Here”)

event tap wall Page Button (item : Page Button)
 ◳ tb → set text("I have been tapped!")
 ◳ tb → set foreground(colors → red)

data tb : TextBox

3.3.2 Updating a board display For updating more sophisticated displays of information on the screen, an instance of the Board datatype is normally used. Pictures, text messages and shapes can all be drawn on the board as sprites. Each sprite can have its position, orientation or content changed individually. Then a call to the
update on wall method of the board causes a rendering of the board on the screen to be immediately updated. Although the main usage of the Board datatype was intended to be for implementing games, it is useful in any situation where information displayed on the screen needs to be changed. A re-implementation of the previous example where a board is used instead is shown in Figure 3-6. The use of a board and sprites provides much greater flexibility because the positions and orientations of the items on the screen can also be updated.

Chapter 3 The wall | 45

Figure 3-6: Updating text using a board (/wkoxnasz)

action main()
 ◳ board := media → create board(200)
 ◳ sprite := ◳ board → create text(200, 20, 30, "Tap the plus button")
 ◳ sprite → set pos(100, 10)
 ◳ sprite → set color(colors → blue)
 ◳ board → post to wall
 wall → add button(“add”, “Tap Here”)

event tap wall Page Button(item : Page Button)
 ◳ sprite → set text("I have been tapped")
 ◳ sprite → set color(colors → red)
 ◳ board → update on wall

data board : Board
data sprite : Sprite

3.4 Events on the touchscreen

3.4.1 Tap wall events A script can receive input via tap events on the screen. There is one event type for nearly every kind of value which can be displayed on the screen. A full list is provided in Table 3-5. If one of these values is displayed on the screen, then tapping the value will cause the corresponding event to be executed. The tapped item is passed as a parameter to the event. The normal parameter passing rules are used, implying that a copy of the value is passed if the item is a value type and a reference to the value is passed if the item is a reference type. A trivial script which shows the use of tap events to select a string is shown in Figure 3-7.

46 | The wall Chapter 3

Figure 3-7: Using tap wall events

action main()
 “One” → post to wall
 “Two” → post to wall
 “Three” → post to wall

event tap wall String(item: String)
 ("\"" ∥ item ∥ "\" was tapped") → post to wall

3.4.2 Tap board events Although it is easy to display values on the screen and associate ‘tap wall’ events with them, there is very little control over where the values are positioned. To achieve full control over placement, it is necessary to display the values as sprites on an instance of the Board datatype. If the script displays the board with its sprites on the screen, then tapping or swiping or dragging one of the sprites will trigger an event that can be captured by the script. A trivial script which brightens or darkens the color of a solid rectangle when buttons are tapped is shown in Figure 3-8.
Table 3-5: Tap wall events

Event What happens
tap wall Appointment

Each event receives a single parameter. That
parameter has the datatype named in the event.
When any value of this type is tapped on the
screen, the corresponding event is triggered. For
value types, a copy of the value which was tapped
is passed as the parameter. For reference types, a
reference to the tapped value is passed as the
parameter.

tap wall Camera
tap wall Color
tap wall Contact
tap wall Link
tap wall Message
tap wall Motion
tap wall Page Button
tap wall Picture
tap wall Picture Album
tap wall Place
tap wall Playlist
tap wall Song
tap wall Song Album

Chapter 3 The wall | 47

Event What happens
tap wall Sound
tap wall String
tap wall TextBox
tap wall Vector3

 Simply defining a variable with a datatype of Board or Sprite or Sprite Set in the data section of the script causes new event types to be made available. In the case of the script shown in Figure 3-7, the data section contains three sprites named rectangle, Lighter and Darker, it contains controls which has type Sprite Set, and board which has type Board. The existence of these globally visible data variables creates 14 events with these names:
• tap sprite: rectangle, swipe sprite: rectangle, drag sprite: rectangle
• tap sprite: Lighter, swipe sprite: Lighter, drag sprite: Lighter
• tap sprite: Darker, swipe sprite: Darker, drag sprite: Darker
• tap sprite in controls, swipe sprite in controls, drag sprite in controls
• tap board: board, swipe board: board

48 | The wall Chapter 3

Figure 3-8: Using sprite events (/akmcnpux)

action main()
 ◳board := media → create board(640)
 ◳rectangle := ◳board → create rectangle(300, 200)
 ◳rectangle → set color(colors → from rgb(0.5, 0.5, 0.5))
 ◳rectangle → set pos(200, 200)
 ◳lighter := ◳board → create text(100, 20, 40, "Lighter")
 ◳darker := ◳board → create text(100, 20, 40, "Darker")
 ◳lighter → set color(colors → foreground)
 ◳darker → set color(colors → foreground)
 ◳lighter → set pos(100, 400)
 ◳darker → set pos(300, 400)
 ◳controls := ◳board → create sprite set
 ◳controls → add(◳lighter)
 ◳controls → add(◳darker)
 ◳board → post to wall

event tap sprite in controls(
 sprite: Sprite , index in set: Number, x: Number, y: Number)
 var delta := 0.2
 if index in set = 0 then
 ◳rectangle → set color(◳rectangle → color → lighten(delta))
 else
 ◳rectangle → set color(◳rectangle → color → darken(delta))
 ◳board → update on wall For sprites, the event names have the pattern tap/swipe/drag sprite: xxx where xxx is the name of the sprite. For sprite sets, the names have the

pattern tap/swipe/drag sprite in YYY where YYY is the name of the set. For boards, the names have the pattern tap/swipe board: ZZZ where ZZZ is the name of the board. Parameters passed to each event identify which sprite was touched (when it is a sprite set event), the coordinates of the sprite on the board, and the extent of a swiping or a dragging action. Note that there are yet more events associated with the Board datatype which have not been listed here, including the possibility of tapping anywhere on the board (not just on a sprite) and obtaining the coordinates of where the screen was tapped.

Chapter 3 The wall | 49

3.5 Pushing and popping pages Some scripts may need to display information temporarily and then have it disappear. Or, perhaps, there is a need to input some extra information from the user but it is undesirable to disrupt what has already been displayed on the screen. The solution, for situations like these, is to create a brand new wall on which information is displayed and input is requested, then have that wall disappear and have the original wall re-displayed. The general facility takes the form of a stack of pages. Each page corresponds to an instance of the wall. The following command creates a new empty wall.
 wall → push new page
 The script can then proceed to display information or prompt for input on this new wall. Afterwards, the following command
 wall → pop page
 will delete that new wall and revert to displaying the previous version. Some additional methods associated with the wall API are wall→pages which returns the stack of pages as a collection, and wall→current page which gets the current page.
3.6 Titles and subtitles The output from a script can be beautified by displaying a title at the top of the screen. If appropriate, a subtitle may be displayed too. A few lines of code which illustrate the features are as follows.
 wall → set title(“The wall’s title”)
 wall → set subtitle(“The subtitle”)
 “First line of output” → post to wall
 “Second line of output” → post to wall
 The result of running this code appears in Figure 3-9. Note that the capitalization of the title and subtitle has been changed; they have both been converted to lowercase.

50 | The wall Chapter 3

Figure 3-9: Title and subtitle example
3.7 Wall buttons Buttons in the form of simple icons may be displayed at the bottom of the screen. These are page buttons. Tapping a button triggers an event which can be captured in the script. The icons are predefined and have names. The names are as follows.
"add", "back", "cancel", "check", "close", "delete", "download",
"edit", "favs.addto", "favs", "feature.camera", "feature.email",
"feature.search", "feature.settings", "feature.video", "folder",
"minus", "new", "next", "questionmark", "refresh", "save",
"share", "stop", "sync", "transport.ff", "transport.pause",
"transport.play", "transport.rew", "upload"
 This list of names can be generated by executing the following statement.
 wall → button icon names → post to wall
 A possible statement to generate a button is the following.
 wall → add button(“questionmark”, “help?”)
 Executing that statement causes the bar at the bottom of the screen to contain a ‘question mark’ icon with the label “help?” as shown in Figure 3-

Chapter 3 The wall | 51

10.
Figure 3-10: The ‘Question Mark’ page button

 There is space for several page buttons at the bottom of the screen. Therefore the event triggered when a page button is tapped has a parameter which enables the button to be identified, that parameter being the string used as the label. The following code shows how an event can distinguish between different possibilities for the button.
 event tap wall Page Button(item: Page Button)
 if (item → icon → equals(“help?”) then
 ▷show help info
 else
 if (item → icon → equals(“cancel”) then
 time → stop
 else
 // do nothing
 The methods provided for the Page Button datatype are listed in Table 3-6.

Table 3-6: Methods of the Page Table datatype

Page Table Method Description
equals(page button :
Page Button) : Boolean

Returns true if this button is the same button as
the one passed as a parameter

icon : String Gets the name of the icon
page : Page Gets the page to which this button is attached
text : String Gets the text associated with the icon

52 | The wall Chapter 3

3.8 On-demand creation of output Some scripts may need to generate a lot of output which the user will need to scroll through. It may be a waste of processing time (and perhaps battery charge) if all that output is generated at once. A better approach would be to create chunks of output only as the user scrolls to view the part of the screen where the output would be displayed. An event empty space on wall is triggered whenever there is space on the wall for displaying new output. There will be space when the user scrolls to the end of the displayed output.

	Chapter 3: The Wall – using the screen
	3.1 Output – the writing on the wall
	3.1.1 Output of simple values
	3.1.2de fault Direction of Outputdirection of output
	3.1.3Dappropriateproduces produces ispla yio bnOutput of composite values ge
	3.1.4
	Output of media values
	3.1.5 Output of social values
	3.1.6 Output of web value
	s

	3.2 Input of values from the touchscreen
	3.3 Updating the wall’s content
	3.3.1 Updatable textbox
	3.3.2 For Updating a board display

	3.4 Events on the touchscreen
	3.4.1 Tap wall events
	3.4.2 Tap board events

	3.5 Pushing and popping pages
	3.6 Titles and subtitles
	3.7 Wall buttons
	3.8 On-demand creation of output

