
75

Chapter 7

Creating and Porting NDK-
Based Android Applications

It has become appallingly obvious that our technology has exceeded our
humanity.

—Albert Einstein

Android applications can incorporate native code using the Native Development Kit
(NDK) toolset. It allows developers to reuse legacy code, program for low-level hardware,
and differentiate their applications by taking advantage of features otherwise not optimal
or possible.

This chapter provides an in-depth introduction on how to create NDK-based
applications for the Intel architecture. It also covers the cases of porting existing NDK-based
applications. It discusses in-depth the differences between the Intel compiler and the default
NDK compiler, and explains how to take full advantage of the Intel NDK environment.

JNI and NDK Introduction
JNI Introduction
We know that Java applications do not run directly on the hardware, but actually run in
a virtual machine. The source code of an application is not compiled to get the hardware
instructions, but is instead compiled to get the interpretation of a virtual machine to
execute code. For example, Android applications run in the Dalvik virtual machine;
its compiled code is executable code for the Dalvik virtual machine in DEX format.
This feature means that Java runs on the virtual machine and ensures its cross-platform
capability: that is its “compile once, run anywhere” feature. This cross-platform capability
of Java causes it to be less connected to and limits its interaction with the local machine’s
various internal components, making it difficult to use the local machine instructions to
utilize the performance potential of the machine. It is difficult to take advantage of locally
based instructions to run a huge existing software library, and thus functionality and
performance are limited.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

76

Is there a way to make Java code and native code software collaborate and share
resources? The answer is yes—by using the Java Native Interface (JNI), which is an
implementation method of a Java local operation. JNI is a Java platform defined as the
Java standard to interact with the code on the local platform. (It is generally known as
the host platform. But this chapter is for the mobile platform, and in order to distinguish
it from the mobile cross-development host, we call it the local platform.) The so-called
“interface” includes two directions—one is Java code to call native functions (methods),
and the other is local application calls to the Java code. Relatively speaking, the former
method is used more in Android application development. This chapter therefore focuses
on the approach in which Java code calls the native functions.

The way Java calls native functions through JNI is to store the local method in the
form of library files. For example, on a Windows platform, the files are in .DLL file format,
and on a UNIX/Linux machine the files are in .SO file format. By an internal method of
calling the local library file, Java can establish close contact with the local machine. This is
called the system-level approach for various interfaces.

JNI usually has two usage scenarios: first, to be able to use legacy code (for example
C/C++, Delphi, and other development tools); second, to more directly interact with the
hardware for better performance. You will see some of this as you go through the chapter.

JNI general workflow is as follows: Java initiates calls so that the local function’s
side code (such as a function written in C/C++) runs. This time the object is passed over
from the Java side, and run at a local function’s completion. After finishing running a
local function, the value of the result is returned to the Java code. Here JNI is an adapter,
mapping the variables and functions (Java methods) between the Java language and
the native compiled languages (such as C/C++). We know that Java and C/C++ are very
different in function prototype definitions and variable types. In order to make the two
match, JNI provides a jni.h file to complete the mapping between the two. This process
is shown in Figure 7-1.

C/C++
Codes

Java
App

Codes

.dll/.so
database

Java
Virtual

Machine

Class
Method

function

Call and parameters
transfer

Return
Results

JNI

Jni.h
header

file

Figure 7-1.  JNI General Workflow

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

77

The general framework of a C/C++ function call via a JNI and Java program
(especially an Android application) is as follows:

1.	 The way of compiling native is declared in the Java class
(C/C++ function).

2.	 The .java source code file containing the native method is
compiled (build project in Android).

3.	 The javah command generates an .h file, which corresponds
to the native method according to the .class files.

4.	 C/C++ methods are used to achieve the local method.

5.	 The recommended method for this step is first to copy the
function prototypes into the .h file and then modify the
function prototypes and add the function body. In this
process, the following points should be noted:

The JNI function call must use the C function. If it is the •	
C++ function, do not forget to add the extern C keyword.

The format of the method name should follow the following •	
template: Java_package_class_method, namely the
Java_package name classname and function method name.

6.	 The C or C++ file is compiled into a dynamic library (under
Windows this is a .DLL file, under UNIX/Linux, it’s a .SO file).

Use the System.loadLibrary() or System.load() method in the Java class to load
the dynamic library generated.

These two functions are slightly different:

•	 System.loadLibrary(): Loads the default directory (for
Windows, for example, this is \System32, jre\bin, and so on)
under the local link library.

•	 System.load(): Depending on the local directory added to the
cross-link library, you must use an absolute path.

In the first step, Java calls the native C/C++ function; the format is not the same for
both C and C++. For example, for Java methods such as non-passing parameters and
returning a String class, C and C++ code differs in the following ways:

C code:
 
Call function:(*env) -> <jni function> (env, <parameters>)
Return jstring:return (*env)->NewStringUTF(env, "XXX");
 

C++ code:
 
Call function:env -> <jni function> (<parameters>)
Return jstring:return env->NewStringUTF("XXX");
 

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

78

in which both Java String object NewStringUTF functions are generated by the C/C++
provided by the JNI.

Java Methods and Their Corresponding Relationship with
the C Function Prototype Java
Recall that in order for Java programs to call a C/C++ function in the code framework,
you use the javah command, which will generate the corresponding .h file for native
methods according to the .class files. The .h file is generated in accordance with certain
rules, so as to make the correct Java code find the corresponding C function to execute.

For example, for the following Java code for Android:

public class HelloJni extends Activity
 
1. {
2. public void onCreate(Bundle savedInstanceState)
3. {
4. TextView tv.setText(stringFromJNI()); // Use C function Code
5. }
6. public native String stringFromJNI();
7. }
 

For the C function stringFromJNI() used in line 4, the function prototype in the .h
file generated by javah is:
 
1. JNIEXPORT jstring JNICALL Java_com_example_hellojni_HelloJni_
stringFromJNI
2. (JNIEnv *, jobject);
 

In this regard, C source code files for the definition of the function code are roughly:
 
1. /*
2. ...
3. Signature: ()Ljava/lang/String;
4. */
5. �jstring Java_com_example_hellojni_HelloJni_stringFromJNI

(JNIEnv* env, jobject thiz)
6. {
7. ...
8. return (*env)->NewStringUTF(env, "...");
9. }
 

From this code you can see that the function name is quite long, but still very
regular, in full accordance with the naming convention: java_package_class_method.
The stringFromJNI() method in Hello.java corresponds to the Java_com_example_
hellojni_HelloJni_stringFromJNI() method in C/C++.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

79

Notice the comment for Signature: ()Ljava/lang/String;. The parentheses ()
of ()Ljava/lang/String; indicate that the function parameter is empty, which means,
beside the two parameters JNIEnv * and jobject, there are no other parameter.
JNIEnv * and jobject are two parameters that all JNI functions must have, respectively,
for the jni environment and for the corresponding Java class (or object) itself.
Ljava/lang/String; indicates that the function’s return value is a Java String object.

Java and C Data Type Mapping
As mentioned, Java and C/C++ variable types are very different. JNI provides a
mechanism to complete the mapping between Java and C/C++. The correspondence
between the main types is shown in Table 7-1.

Table 7-1.  Java to C Type Mapping

Java Type Native Type Description

boolean jboolean C/C++ 8-bit integer

byte jbyte C/C++ unsigned 8-bit integer

char jchar C/C+ unsigned 16-bit integer

short jshort C/C++ signed 16-bit integer

int jint C/C++ signed 32-bit integer

long jlong C/C++ unsigned 64-bit integer

float jfloat C/C++ 32-bit floating point

double jdouble C/C++ 64-bit floating point

void void N/A

Object jobject Any Java object, or does not correspond to an
object of java type

Class jclass Class object

String jstring String objects

Object[] jobjectArray The array of any object

Boolean[] jbooleanArray Boolean array

byte[] jbyteArray Array of bits

char[] jcharArray Character array

short[] jshortArray Short integer array

(continued)

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

80

Note■■   The correspondence between Java types and the local (C/C++) type.

Java Type Native Type Description

int[] jintArray Integer array

long[] jlongArray Long integer array

float[] jfloatArray Floating point array

double[] jdoubleArray Double floating point array

Table 7-1.  (continued)

When a Java parameter is passed, the idea of using C code is as follows:

Basic types can be used directly; for example, •	 double and
jdouble can be interoperable. Basic types are the types listed
from the line boolean through void in Table 7-1. In such a type,
if the user passes a boolean parameter into the method, there is
a local method called jboolean corresponding to the boolean
type. Similarly, if the local methods return a jint, then an int is
returned in Java.

Java object usage. An •	 Object object has String objects and a
generic object. The two objects are handled a little differently.

The •	 String object. The String object passed over by the Java
program is the corresponding jstring type in the local method.
The jstring type and char * in C are different. So if you just use
it as a char *, an error will occur. Therefore, you need to convert
jstring into a char * in C/C++ prior to use. Here we use the
JNIEnv method for conversion.

The •	 Object object. Use the following code to get the object
handler the class:

 
jclass objectClass = (env)->FindClass("com/ostrichmyself/jni/Structure");
 

Then use the following code to take required domain handler of the class:
 
jfieldID str = (env)->GetFieldID(objectClass,"nameString","Ljava/lang/
String;");
jfieldID ival = (env)->GetFieldID(objectClass,"number","I");
 

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

81

Then use the following similar code to assign value to the incoming fields of the
jobject object:
 
(env)->SetObjectField(theObjet,str,(env)->NewStringUTF("my name is D:"));
(env)->SetShortField(theObjet,ival,10);
 

If there is no incoming object, then C code can use the following •	
code to generate the new object:
 
jobject myNewObjet = env->AllocObject(objectClass);
 
Java array processing. For an array type, JNI provides some •	
operable functions. For example, GetObjectArrayElement can
take the incoming array and use NewObjectArray to create an
array structure.

The principle of resource release. Objects of C/C++ •	 new or objects
of malloc need to use the C/C++ to release memory.

If the new object of the •	 JNIEnv method is not used by Java, it must
be released.

To convert a string object from Java to get UTF by using •	
GetStringUTFChars, you need to open the memory, and you must
release the memory after you are finished using char *.
The method to use is ReleaseStringUTFChars.

These are brief descriptions of type mapping when Java exchanges data with C/C++.
For more information on Java and C/C++ data types, refer to related Java and JNI books,
documentation, and examples.

NDK Introduction
From the previous description, you know that the Java code can visit local functions (such
as C/C++) using JNI. To achieve this effect, you need development tools. There is a whole
set of development tools based on the core Android SDK that you can use to cross-compile
Java applications to applications that can run on the target Android device. Similarly, you
need cross-development tools to compile the C/C++ code into applications that can run
on an Android device. This tool is the Android Native Development Kit, or Android NDK.

Prior to the NDK, third-party applications on the Android platform were developed
on a special Java-based Dalvik virtual machine. The native SDK allows developers to
directly access the Android system resources and use traditional C or C++ programming
languages to create applications. The application package file (.apk) can be directly
embedded into the local library. In short, with the NDK, Android applications originally

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

82

run on a Dalvik virtual machine can now use native code languages like C/C++ for
program execution. This provides the following benefits:

Performance improvement. It uses native code to develop the •	
part of the program that requires high performance and directly
accesses the CPU and hardware.

The ability to reuse existing native code.•	

Of course, compared to the Dalvik virtual machine, using native SDK programming
also has some disadvantages, such as added program complexity, difficulty in
guaranteeing compatibility, the inability to access the Framework API, more difficult
debugging, decreased flexibility, and so on. In addition, access to JNI incurs some
additional performance overhead.

In short, NDK application development has its pros and cons. You need to use the
NDK at your own discretion. The best strategy is to use the NDK to develop parts of the
application for which native code will improve performance.

The NDK includes the following major components:

Tools and a build file generate the native code libraries from •	
C/C++. This includes a series of NDK commands, including javah
(use the .class files to generate the corresponding .h files), gcc
(to be described later), and other commands. It also includes the
ndk-build executable scripts, and so on, which are covered in
detail in the following sessions.

A consistent local library will be embedded in the application •	
package (application package files, that is, .apk files), which can
be deployed in Android devices.

Support for some native system header files and libraries for all •	
future Android platforms.

The process framework of the NDK application development is shown in Figure 7-2.
An Android application consists of three parts: Android application files, Java native
library files, and dynamic libraries. These three parts are generated from different sources
through the respective generation paths. For an ordinary Android application, the Android
SDK generates Android applications files and Java native library files. The Android NDK
generates the dynamic library files (the file with the .SO extension) using non-native code
(typically C source code files). Finally the Android application files, Java library files, and
native dynamic libraries are installed on the target machine, and complete collaborative
applications run.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

83

Android adds the NDK support in its key API version. Each version includes some
new NDK features, simple C/C++, a compatible STL, hardware expansion, and so on.
These features make Android more open and more powerful. The Android API and its
corresponding relationship with the NDK are shown in Table 7-2.

Applications projects developed by the NDK (referred to as NDK application
projects) have components, as shown in Figure 7-3. In contrast to typical applications
developed using the Android SDK, projects developed in the NDK add the Dalvik class
code, manifest files, common resources, and also the JNI and a shared library generated
by the NDK.

Android NDK Application

Dalvik
Application

App File

Makefile

Compile and Link
C Code

Use javah–jni
to Create Header File

Dynamic Libraries

C Source Code Head File

Java Local
Libraries

Documents

Javac Compile Java Compile

Java Local
Libraries

Java Codes

Android
Application
Documents

Figure 7-2.  Flowchart of Android NDK Application Development

Android NDK Application

Android
manifest

Resource
bundle

Dalvik
classes

Libraries &
JNI

Figure 7-3.  Application Components for an Android NDK Application

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

84

Tip■■   Each piece of native code generated using the Android NDK is given a matching
Application Binary Interface (ABI). The ABI precisely defines how the application and its code
interact with the system at runtime. The ABI can be roughly understood as similar to an ISA
(instruction set architecture) in computer architecture.

A typical ABI contains the following information:

Machine code the CPU instruction set should use.•	

A runtime memory access ranking.•	

The format of executable binary files (dynamic libraries, •	
programs, and so on) as well as what type of content is allowed
and supported.

Different conventions used in passing data between the •	
application code and systems (for example, when the function
call registers and/or how to use the stack, alignment restrictions,
and so on).

Alignment and size limits of enumerated types, structure fields, •	
and arrays.

The available list of function symbols for application machine •	
code at runtime usually comes from a very specific set of libraries.
Each supported ABI is identified by a unique name.

Table 7-2.  Relationship Between Main Android API and NDK Version

API Version Supported NDK Version

API Level 3 Android 1.5 NDK 1

API Level 4 Android 1.6 NDK 2

API Level 7 Android 2.1 NDK 3

API Level 8 Android 2.2 NDK 4

API Level 9 Android 2.3 NDK 5

API Level 12 Android 3.1 NDK 6

API Level 14 Android 4.0.1 NDK 7

API Level 15 Android 4.0.3 NDK 8

API Level 16 Android 4.1 NDK 8b

API Level 16 Android 4.2 NDK 8d

API Level 18 Android 4.3 NDK 9b

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

85

Android currently supports the following ABI types:

•	 armeabi–This is the ABI name for the ARM CPU, which supports
at least the ARMv5TE instruction set.

•	 armeabi-v7a–This is another ABI name for ARM-based CPUs;
it extends the armeabi CPU instruction set extensions, such as
Thumb-2 instruction set extensions and floating-point processing
unit directives for vector floating-point hardware.

•	 x86–This is ABI name generally known for the support of x86 or
IA-32 instruction set of the CPU. More specifically, its target is
often referred to in the following sessions as i686 or Pentium Pro
instruction set. Intel Atom processors belong to this ABI type.

These types have different compatibility. X86 is incompatible with armeabi and
armeabi-v7a. The armeabi-v7a machine is compatible with armeabi, which means
the armeabi framework instruction set can run on an armeabi-v7a machine, but not
necessarily the other way around, because some ARMv5 and ARMv6 machines do not
support armeabi-v7a code. Therefore, when you build the application, users should be
chosen carefully according to their corresponding ABI machine type.

NDK Installation
Here we use NDK Windows environment as an example to illustrate the NDK software
installation. The Windows NDK includes the following modules:

Cygwin runs Linux commands in the Windows command line.•	

Android NDK package, including •	 ndk-build and other key
commands, is the core of the NDK software; it compiles C/C++
files into .SO shared library files.

CDT (C/C++ Development Tooling, C/C++ development tools) is •	
an Eclipse plug-in and can compile C/C++ files into .SO shared
library in Eclipse. This means you can use it to ndk-build replace
the command-line commands.

The CDT module is not required, but does enable development in the familiar
Eclipse IDE. The Cygwin module must be installed in the Windows environment, but is
not required in the Linux environment. Of course, the entire development environment
needs to support the Java development environment. The following sections explain the
installation steps for each module separately.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

86

Android NDK Installation
This section describes how to install the Android NDK:

1.	 Visit the Android NDK official web site at http://developer.
android.com/sdk/ndk/index.html and download the latest
NDK package, as shown in Figure 7-4. In this case, you click
on the file android-ndk-r8d-windows.zip and download the
files to the local directory.

Figure 7-4.  The NDK Package Download Page from the Android Official Web Site

2.	 Install the Android NDK.

Android NDK installation is relatively simple. All you need to do is to extract the
downloaded android-ndk-r4b-windows.zip to a specified directory. In this case,
we install Android NDK in the directory D:\Android\android-ndk-r8d. You need to
remember this location, as it is required for the following configuration to set up the
environment.

http://developer.android.com/sdk/ndk/index.html
http://developer.android.com/sdk/ndk/index.html

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

87

Install Cygwin
This section describes how to install Cygwin:

1.	 Visit Cygwin’s official web site (http://www.cygwin.com/).
Download the Cygwin software, as shown in Figure 7-5. Go
to the download page, and then click on the setup.exe file to
download and install packages.

Figure 7-5.  Cygwin Download Page

2.	 Double-click the downloaded setup.exe file to start the
installation. The pop-up shown in Figure 7-6 appears.

http://www.cygwin.com/

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

88

3.	 The installation mode selection box is shown in Figure 7-7.
In this example, select Install from Internet mode.

Figure 7-7.  Cygwin Install Mode Selection

Figure 7-6.  Cygwin Initial Install Window

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

89

4.	 The display installation directory and user settings selection
box is shown in Figure 7-8.

Figure 7-8.  Installation Directory and User Settings Selection

Figure 7-9.  Cygwin Temporary Directory Setting for Downloaded Files

5.	 You are next prompted to enter a temporary directory to store
the downloaded files, as shown in Figure 7-9.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

90

6.	 Next you are prompted to select an Internet connection type, as
shown in Figure 7-10. For this example, select Direct Connection.

Figure 7-11.  Cygwin Install: Prompt to Select Download Mirror Site

Figure 7-10.  Cygwin Setup Internet Connection Type Selection

7.	 You are now prompted to select a download mirror site,
as shown in Figure 7-11.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

91

8.	 Start the download and install the basic parts, as shown in
Figure 7-12(a). During the setup, a Setup alert will indicate
that this is the first time you are installing Cygwin, as shown in
Figure 7-12(b). Click OK to continue.

Figure 7-12.  Cygwin Installation Package Download and Install

Figure 7-13.  Cygwin Packages Install Selection

9.	 Select the packages to install, as shown in Figure 7-13.
The default is to install all of the packages.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

92

If you download all components, the total size is more than
3GB. This requires a very long time on normal broadband
Internet speeds; it is actually not recommended to install all the
components. You need to install the NDK Devel component
and the Shells components, as shown in Figure 7-14.

Figure 7-15.  Dependency Reminder After Selecting Cygwin Component Package

Figure 7-14.  Cygwin Components Packages Required by NDK

There are some tricks to the selection of Devel and Shells
from the Install component packages. You can first click on
the loop icon next to All; it will loop among Install, Default,
and Uninstall. Set it to Uninstall State, and then click the loop
icon next to the Devel and Shells entries so that it stays in the
Install state. Finally, click Next to continue.

10.	 The contents of the selected components are displayed next,
as shown in Figure 7-15.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

93

12.	 Installation is complete. Message boxes appear, as shown in
Figure 7-17.

Figure 7-16.  Cygwin Download and Install Selected Components

11.	 Start to download and install the selected components,
as shown in Figure 7-16.

Figure 7-17.  Cygwin Reminder Boxes after Installation Is Complete

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

94

13.	 Configure the Cygwin Windows path environment variable.

Follow these steps to add the NDK package installation directory and Cygwin bin
directory to the path environment variable:

1.	 On the desktop, right-click My Computer and select the
\Properties\Advanced\Environment Variables menu item.

2.	 Click System Variables in the PATH variable. Then click the Edit
button in the dialog box of the [variable value] NDK package
added after the installation directory, in the subdirectory
build\tools\cygwin\bin.

For example, if the NDK is installed in the directory D:\Android\android-ndk-r8d
and Cygwin is installed in the D:\cygwin directory, you add the path after the PATH variable,
as follows:
 
PATH=...;D:\Android\android-ndk-r8d;D:\Android\android-ndk-r8d\build\
tools;D:\cygwin\bin
 

After this configuration is successful, you can use the console command cmd under
Linux commands. For example, Figure 7-18 shows a command-line window with the
Windows dir command and the Linux ls command.

Figure 7-18.  Command-Line Window after Installing the NDK

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

95

You configure Cygwin’s internal environment variables for NDK as follows:

1.	 Before configuring the NDK Cygwin internal environment
variables, you must run Cygwin at least once, otherwise the
\cygwin\home directory will be empty. Click the Browse
button in Windows Explorer and select the mintty.exe
file under the bin subdirectory of the Cygwin installation
directory (in this example, it is located at D:\cygwin\bin).
The window is shown in Figure 7-19.

Figure 7-19.  Initial Window when Starting Cygwin for the First Time

Figure 7-20.  Cygwin Window if it Is Not Being Run for the First Time

2.	 Then select the Windows menu \programs\Cygwin\Cygwin
terminal. You can directly enter the Cygwin window, as shown
in Figure 7-20.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

96

This will create a username (in this case, the Windows logon username hlgu)
subdirectory under empty\cygwin\home and generate several files in the directory.
 
D:\cygwin\home\hlgu>dir
2013-01-30 00:42 6,054 .bashrc
2013-01-30 00:52 5 .bash_history
2013-01-30 01:09 1,559 .bash_profile
2013-01-30 00:42 1,919 .inputrc
2012-12-01 08:58 8,956 .mkshrc
2013-01-30 00:42 1,236 .profile
 

3.	 Find .bash_profile in the installation directory cygwin\
home\<username>\ file. In this case, it is D:\cygwin\
home\hlgu\.Bash_profile. To the end of the file, add the
following code:

 
NDK=<android-ndk-r4b unzipped_NDK_folder>
export NDK
ANDROID_NDK_ROOT=<android-ndk-r4b unzipped_NDK_folder >
export ANDROID_NDK_ROOT
 

The line <android-ndk-r4b unzipped_NDK_folder > corresponds to the installation
directory of the NDK package. (In this example, it’s D:\Android\android-ndk-r8d.)
Cygwin provides a directory-conversion mechanism. Add /cygdrive/DRIVELETTER/ in
front of the directory to refer to the designated directory in the drive. Here, DRIVELETTER is
the driver letter of the directory. Consider this example:
 
NDK= /cygdrive/d/Android/android-ndk-r8d
export NDK
ANDROID_NDK_ROOT=/cygdrive/d/Android/android-ndk-r8d
export ANDROID_NDK_ROOT
 

4.	 Determine whether the command can be run by testing the
make command.
 
C:\Documents and Settings\hlgu>make -v
GNU Make 3.82.90
Built for i686-pc-cygwin
Copyright (C) 2010 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/
licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
 

http://gnu.org/licenses/gpl.html
http://gnu.org/licenses/gpl.html

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

97

If you see this output, it means the make command is running normally. Make sure
the version of make is 3.8.1 or above, because all examples in this session need v3.8.1 or
above to be able to be compiled successfully.

Now you can test the gcc, g+, gcj, and gnat commands:
 
C:\Documents and Settings\hlgu>gcc -v
Access denied.
C:\Documents and Settings\hlgu>g++ -v
Access denied.
C:\Documents and Settings\hlgu>gcj
Access denied
C:\Documents and Settings\hlgu>gnat
Access denied.
 

If you get the Access denied message, you need to continue the following steps.
Otherwise, the installation is completed successfully.

5.	 Under the bin directory of Cygwin, delete the gcc.exe,
g++.exe, gcj.exe, and gnat.exe files.

6.	 Under the same directory, select the needed gcc, g++, gcj,
and gnat files that match the version. For example, version 4
corresponds to gcc-4.exe, g++-4.exe, gcj-4.exe, and
gnat-4.exe. Make copies of those files and rename the copied
files gcc.exe, g++.exe, gcj.exe, and gnat.exe.

7.	 Now test again to see if gcc and the other commands can run:
 

C:\Documents and Settings\hlgu> gcc -v
 

Using built-in specifications, you can see which commands are available:
 
COLLECT_GCC=gcc
COLLECT_LTO_WRAPPER=/usr/lib/gcc/i686-pc-cygwin/4.5.3/lto-wrapper.exe
Target: i686-pc-cygwin
Configured with: /gnu/gcc/releases/respins/4.5.3-3/gcc4-4.5.3-3/src/gcc-
4.5.3/co
nfigure --srcdir=/gnu/gcc/releases/respins/4.5.3-3/gcc4-4.5.3-3/src/gcc-
4.5.3 --
prefix=/usr --exec-prefix=/usr --bindir=/usr/bin --sbindir=/usr/sbin
--libexecdi
r=/usr/lib --datadir=/usr/share --localstatedir=/var --sysconfdir=/etc
--dataroo
tdir=/usr/share --docdir=/usr/share/doc/gcc4 -C --datadir=/usr/share
--infodir=/
usr/share/info --mandir=/usr/share/man -v --with-gmp=/usr --with-mpfr=/usr
--ena

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

98

ble-bootstrap --enable-version-specific-runtime-libs --libexecdir=/usr/lib
--ena
ble-static --enable-shared --enable-shared-libgcc --disable-__cxa_atexit
--with-
gnu-ld --with-gnu-as --with-dwarf2 --disable-sjlj-exceptions --enable-
languages=
ada,c,c++,fortran,java,lto,objc,obj-c++ --enable-graphite --enable-lto
--enable-
java-awt=gtk --disable-symvers --enable-libjava --program-suffix=-4
--enable-lib
gomp --enable-libssp --enable-libada --enable-threads=posix --with-arch=i686
--w
ith-tune=generic --enable-libgcj-sublibs CC=gcc-4 CXX=g++-4 CC_FOR_
TARGET=gcc-4
CXX_FOR_TARGET=g++-4 GNATMAKE_FOR_TARGET=gnatmake GNATBIND_FOR_
TARGET=gnatbind -
-with-ecj-jar=/usr/share/java/ecj.jar
Thread model: posix
gcc version 4.5.3 (GCC)
 
C:\Documents and Settings\hlgu>g++ -v
 

Using built-in specifications, like gcc, you can see which commands are available:
 
COLLECT_GCC=g++
COLLECT_LTO_WRAPPER=/usr/lib/gcc/i686-pc-cygwin/4.5.3/lto-wrapper.exe
Target: i686-pc-cygwin
Configured with: /gnu/gcc/releases/respins/4.5.3-3/gcc4-4.5.3-3/src/gcc-
4.5.3/co
nfigure --srcdir=/gnu/gcc/releases/respins/4.5.3-3/gcc4-4.5.3-3/src/gcc-
4.5.3 --
prefix=/usr --exec-prefix=/usr --bindir=/usr/bin --sbindir=/usr/sbin
--libexecdi
r=/usr/lib --datadir=/usr/share --localstatedir=/var --sysconfdir=/etc
--dataroo
tdir=/usr/share --docdir=/usr/share/doc/gcc4 -C --datadir=/usr/share
--infodir=/
usr/share/info --mandir=/usr/share/man -v --with-gmp=/usr --with-mpfr=/usr
--ena
ble-bootstrap --enable-version-specific-runtime-libs --libexecdir=/usr/lib
--ena
ble-static --enable-shared --enable-shared-libgcc --disable-__cxa_atexit
--with-
gnu-ld --with-gnu-as --with-dwarf2 --disable-sjlj-exceptions --enable-
languages=
ada,c,c++,fortran,java,lto,objc,obj-c++ --enable-graphite --enable-lto
--enable-

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

99

java-awt=gtk --disable-symvers --enable-libjava --program-suffix=-4
--enable-lib
gomp --enable-libssp --enable-libada --enable-threads=posix --with-arch=i686
--w
ith-tune=generic --enable-libgcj-sublibs CC=gcc-4 CXX=g++-4 CC_FOR_
TARGET=gcc-4
CXX_FOR_TARGET=g++-4 GNATMAKE_FOR_TARGET=gnatmake GNATBIND_FOR_
TARGET=gnatbind -
-with-ecj-jar=/usr/share/java/ecj.jar
Thread model: posix
gcc version 4.5.3 (GCC)
 
C:\Documents and Settings\hlgu>gcj
gcj: no input files
 
C:\Documents and Settings\hlgu>gnat
GNAT 4.5.3
Copyright 1996-2010, Free Software Foundation, Inc.
 
List of available commands
 
gnat bind gnatbind
gnat chop gnatchop
gnat clean gnatclean
gnat compile gnatmake -f -u -c
gnat check gnatcheck
gnat sync gnatsync
gnat elim gnatelim
gnat find gnatfind
gnat krunch gnatkr
gnat link gnatlink
gnat list gnatls
gnat make gnatmake
gnat metric gnatmetric
gnat name gnatname
gnat preprocess gnatprep
gnat pretty gnatpp
gnat stack gnatstack
gnat stub gnatstub
gnat xref gnatxref
Commands find, list, metric, pretty, stack, stub and xref accept project
file sw
itches -vPx, -Pprj and -Xnam=val
 

8.	 Finally, check out the NDK core command ndk-build script to
see if it can run.

 

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

100

C:\Documents and Settings\hlgu>ndk-build
Android NDK: Your Android application project path contains spaces:
'C:/./ Settings/'
Android NDK: The Android NDK build cannot work here. Please move your
project to a different location.
D:\Android\android-ndk-r8d\build/core/build-local.mk:137: *** Android NDK:
Aborting. Stop.
 

If your output looks like this, it indicates that the Cygwin and NDK have been
installed and configured successfully.

Install CDT
CDT is an Eclipse plug-in that compiles C code into .SO shared libraries. In fact, after
installing the Cygwin and NDK module, you can compile C code into .SO shared libraries
at the command line, which means the core component of Windows NDK is already
installed. If you still like using the Eclipse IDE rather than a command-line compiler to
compile the local library, you need to install the CDT module; otherwise, skip this step
and move ahead to the NDK examples.

If you need to install CDT, use the following steps:

1.	 Visit Eclipse’s official web site at http://www.eclipse.org/
cdt/downloads.php to download the CDT package.
As shown on the download page in Figure 7-21, you can click
to download a version of the software. In this case, click
cdt-master-8.1.1.zip to start the download.

Figure 7-21.  CDT Download Page

http://www.eclipse.org/cdt/downloads.php
http://www.eclipse.org/cdt/downloads.php

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

101

2.	 Start Eclipse. Select menu \HELP\Install new software and
start to install CDT.

3.	 In the pop-up Install dialog box, click Add, as shown in
Figure 7-22.

Figure 7-22.  Eclipse Install Software Dialog Box

4.	 In the pop-up Add Repository dialog box, enter a name for
Name and a software download web site address in Location.
You can enter the local address or the Internet address. If
you’re using an Internet address, Eclipse will go to the Internet
to download and install the package, while the local address
will direct Eclipse to install the software from the local package.
Enter the local address; then you can click the Archive button
in the pop-up dialog box and enter the directory and filename
for the downloaded cdt-master-8.1.1.zip file, as shown
in Figure 7-23. If the file is downloaded from the Internet,
the address is http://download.eclipse.org/tools/cdt/
releases/galileo/.

http://download.eclipse.org/tools/cdt/releases/galileo/
http://download.eclipse.org/tools/cdt/releases/galileo/

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

102

5.	 After returning to the Install dialog box, click to select the
software components that need to be installed, as shown in
Figure 7-24.

Figure 7-24.  Selection Box for CDT for Components to Install

Figure 7-23.  Dialog Box of Eclipse Software Update Install Address

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

103

Of the components list, the CDT Main Feature is the required component.
In this example, we only select this component.

6.	 A list of detailed information about CDT components to
install is displayed, as shown in Figure 7-25.

Figure 7-25.  Detailed Information for CDT Component Installation

7.	 Review the licenses dialog box. Click “I accept the terms of the
license agreement” to continue, as shown in Figure 7-26.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

104

8.	 The installation process starts, as shown in Figure 7-27.

Figure 7-26.  CDT License Review Window

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

105

9.	 When the installation process is complete, restart Eclipse to
complete the installation.

NDK Examples
This section includes an example to illustrate the use of JNI and NDK. As described
previously, NDK can run from the command line and in the Eclipse IDE. We will use both
methods to generate the same NDK application.

Using the Command-Line Method to Generate a
Library File
The name of this example is jnitest, and it’s a simple example to demonstrate the JNI
code framework. The steps are outlined in the following sections.

Create an Android App Project
First, you need to create an Android app project, compile the code, and generate the .apk
package. Create a project in Eclipse, and name the project jnitest. Choose Build SDK to
support the x86 version of the API (in this case the Android 4.0.3), as shown in Figure 7-28.
Finally, you generate the project.

Figure 7-27.  CDT Installation Progress

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

106

After the project is generated, the file structure is created as shown in Figure 7-29.
Note the directory where the library file (in this case, android.jar) is located, because
the following steps will use this parameter.

Figure 7-28.  jnitest Project Parameters Setup

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

107

Modify the Java Files
Next you modify the Java files, creating code using a C function. In this case, the only Java
file is MainActivity.java. You need to modify its code as follows:
 
1. package com.example.jnitest;
2. import android.app.Activity;
3. import android.widget.TextView;
4. import android.os.Bundle;
5. public class MainActivity extends Activity
6. {
7. @Override
8. public void onCreate(Bundle savedInstanceState)
9. {
10. super.onCreate(savedInstanceState);
11. TextView tv = new TextView(this);
12. tv.setText(stringFromJNI());	 // stringFromJNIas a C
function
13. setContentView(tv);
14. }

Figure 7-29.  File Structure of jnitest Project

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

108

15. public native String stringFromJNI();
16.
17. static {
18. System.loadLibrary("jnitestmysharelib");
19. }
20. }
 

The code is very simple. In lines 11 through 13, you use a TextView to display a string
returned from the stringFromJNI() function. But unlike the Android application discussed
before, there is nowhere in the entire project that you can find the implementation code
of this function. So where has the implementation of the function occurred? In line 15 you
declare that the function is not a function written in Java, but is instead written by the local
(native) libraries, which means the function is outside of Java. Since it’s implemented in
the local library, the question is what libraries? The answers are described in lines 17–20.
The parameter of the static function LoadLibrary of System class describes the name of
the library. The library is a Linux shared library named libjnitestmysharelib.so. The
application code declared in the static area will be executed before Activity.onCreate.
The library will be loaded into memory when it’s first used.

Interestingly, when the loadLibrary function loads the library name, it will
automatically add the lib prefix before the parameters and the .SO suffix to the end.
Of course, if the name of the library file specified by the parameter starts with lib,
the function will not add the lib prefix to the filename.

Generate the Project in Eclipse
Only build (build), rather than run. This will compile the project, but the .apk file won’t
be deployed to the target machine.

When this step is completed, the corresponding .class files will be generated in
the project directory called bin\classes\com\example\jnitest. This step must be
completed before the next step, because the next step needs the appropriate .class files.

Create a Subdirectory in the Project Root Directory
Name this subdirectory jni. For example, if the project root directory is
E:\temp\AndroidDev\workspace\jnitest, you can use the md command to create
the jni subdirectory.
 
E:\temp\Android Dev\workspace\jnitest>mkdir jni
 

Then test whether the directory has been built:
 
E:\temp\Android Dev\workspace\jnitest>dir
...
2013-02-01 00:45 <DIR> jni

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

109

Create a C Interface File
The so-called C interface file is the C function prototype that works with the
local (external) function. Specific to this case are the C function prototypes of the
stringFromJNI function. You declare that you need to use the prototype of the external
function, but it is in Java format: you need to change it to C formatbuilding C-JNI interface
file. This step can be done with the javah command. The command format is:
 
$ javah -classpath <directory of jar and .class documents>
-d <directory of .h documents> <the package + class name of class>
 

Command parameters are described here:

•	 -classpath: Represents the classpath

•	 -d ...: Represents the storage directory for the generated header
file

•	 <class name>: The complete .class classname of a native
function being used, which consists of “the package + class name
of class” component.

For this example, follow these steps:

1.	 Enter the root directory from the command line (in this
example, it’s E:\temp\Android Dev\workspace\jnitest).

2.	 Then run the following command:
 
E:> javah -classpath "D:\Android\android-sdk\platforms\android-15\android.
jar";bin/classes com.example.jnitest.MainActivity
 

In this example, the stringFromJNI’s class of the native function used is MainActivity,
and the resulting file after compiling this class is MainActivity.class, which is located in
the root directory of the project bin \classes\com\example directory. The first line of the
source code file of its class MainActivity.java shows where the package of the class is:
 
package com.example.jnitest;
 

In the previous command, class name = package name.Class name (be careful
not to use the .class suffix), -classpath first needs to explain the Java library path of
the entire package (in this case the library file is android.jar; its location is shown in
Figure 7-30, namely D:\Android\android-sdk\ platforms\android-15\android.jar).
-classpath also needs to explain the target class (MainActivity.class) directory. In this
case, it is in the bin\classes directory, under bin\classes\com\example\ MainActivity.
class (both are separated by semicolons).

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

110

After the previous steps, the .h file is generated in the current directory (the project
root directory). The file defines the C language function interface.

You can test the output of the previous steps:
 
E:\temp\Android Dev\workspace\jnitest>dir
...
2013-01-31 22:00 3,556 com_example_jnitest_MainActivity.h
 

It is apparent that a new .h file has been generated. The document reads as follows:
 
1. /* DO NOT EDIT THIS FILE - it is machine generated */
2. #include <jni.h>
3. /* Header for class com_example_jnitest_MainActivity */
4.
5. #ifndef _Included_com_example_jnitest_MainActivity
6. #define _Included_com_example_jnitest_MainActivity
7. #ifdef __cplusplus
8. extern "C" {
9. #endif
10. #undef com_example_jnitest_MainActivity_MODE_PRIVATE
11. #define com_example_jnitest_MainActivity_MODE_PRIVATE 0L
12. #undef com_example_jnitest_MainActivity_MODE_WORLD_READABLE
13. #define com_example_jnitest_MainActivity_MODE_WORLD_READABLE 1L
14. #undef com_example_jnitest_MainActivity_MODE_WORLD_WRITEABLE
15. #define com_example_jnitest_MainActivity_MODE_WORLD_WRITEABLE 2L
16. #undef com_example_jnitest_MainActivity_MODE_APPEND

Figure 7-30.  jnitest Application Running Interface

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

111

17. #define com_example_jnitest_MainActivity_MODE_APPEND 32768L
18. #undef com_example_jnitest_MainActivity_MODE_MULTI_PROCESS
19. #define com_example_jnitest_MainActivity_MODE_MULTI_PROCESS 4L
20. #undef com_example_jnitest_MainActivity_BIND_AUTO_CREATE
21. #define com_example_jnitest_MainActivity_BIND_AUTO_CREATE 1L
22. #undef com_example_jnitest_MainActivity_BIND_DEBUG_UNBIND
23. #define com_example_jnitest_MainActivity_BIND_DEBUG_UNBIND 2L
24. #undef com_example_jnitest_MainActivity_BIND_NOT_FOREGROUND
25. #define com_example_jnitest_MainActivity_BIND_NOT_FOREGROUND 4L
26. #undef com_example_jnitest_MainActivity_BIND_ABOVE_CLIENT
27. #define com_example_jnitest_MainActivity_BIND_ABOVE_CLIENT 8L
28. #undef com_example_jnitest_MainActivity_BIND_ALLOW_OOM_MANAGEMENT
29. #define com_example_jnitest_MainActivity_BIND_ALLOW_OOM_MANAGEMENT
16L
30. #undef com_example_jnitest_MainActivity_BIND_WAIVE_PRIORITY
31. #define com_example_jnitest_MainActivity_BIND_WAIVE_PRIORITY 32L
32. #undef com_example_jnitest_MainActivity_BIND_IMPORTANT
33. #define com_example_jnitest_MainActivity_BIND_IMPORTANT 64L
34. #undef com_example_jnitest_MainActivity_BIND_ADJUST_WITH_ACTIVITY
35. #define com_example_jnitest_MainActivity_BIND_ADJUST_WITH_ACTIVITY
128L
36. #undef com_example_jnitest_MainActivity_CONTEXT_INCLUDE_CODE
37. #define com_example_jnitest_MainActivity_CONTEXT_INCLUDE_CODE 1L
38. #undef com_example_jnitest_MainActivity_CONTEXT_IGNORE_SECURITY
39. #define com_example_jnitest_MainActivity_CONTEXT_IGNORE_SECURITY 2L
40. #undef com_example_jnitest_MainActivity_CONTEXT_RESTRICTED
41. #define com_example_jnitest_MainActivity_CONTEXT_RESTRICTED 4L
42. #undef com_example_jnitest_MainActivity_RESULT_CANCELED
43. #define com_example_jnitest_MainActivity_RESULT_CANCELED 0L
44. #undef com_example_jnitest_MainActivity_RESULT_OK
45. #define com_example_jnitest_MainActivity_RESULT_OK -1L
46. #undef com_example_jnitest_MainActivity_RESULT_FIRST_USER
47. #define com_example_jnitest_MainActivity_RESULT_FIRST_USER 1L
48. #undef com_example_jnitest_MainActivity_DEFAULT_KEYS_DISABLE
49. #define com_example_jnitest_MainActivity_DEFAULT_KEYS_DISABLE 0L
50. #undef com_example_jnitest_MainActivity_DEFAULT_KEYS_DIALER
51. #define com_example_jnitest_MainActivity_DEFAULT_KEYS_DIALER 1L
52. #undef com_example_jnitest_MainActivity_DEFAULT_KEYS_SHORTCUT
53. #define com_example_jnitest_MainActivity_DEFAULT_KEYS_SHORTCUT 2L
54. #undef com_example_jnitest_MainActivity_DEFAULT_KEYS_SEARCH_LOCAL
55. #define com_example_jnitest_MainActivity_DEFAULT_KEYS_SEARCH_LOCAL
3L
56. #undef com_example_jnitest_MainActivity_DEFAULT_KEYS_SEARCH_GLOBAL
57. #define com_example_jnitest_MainActivity_DEFAULT_KEYS_SEARCH_GLOBAL
4L

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

112

58. /*
59. * Class: com_example_jnitest_MainActivity
60. * Method: stringFromJNI
61. * Signature: ()Ljava/lang/String;
62. */
63. JNIEXPORT jstring JNICALL Java_com_example_jnitest_MainActivity_
stringFromJNI
64. (JNIEnv *, jobject);
65.
66. #ifdef __cplusplus
67. }
68. #endif
69. #endif
 

In the previous code, pay special attention to lines 63–64, which are C function
prototypes of a local function stringFromJNI.

Compile the Corresponding. C File
This is the true realization of a local function (stringFromJNI). The source code file is
obtained by modifying the .h file, according to the previous steps.

Create a new .C file under the jni subdirectory in the project. The filename can be
created randomly. In this case, it is named jnitestccode.c. The contents are as follows:
 
1. #include <string.h>
2. #include <jni.h>
3. jstring Java_com_example_hellojni_HelloJni_stringFromJNI(JNIEnv*
env, jobject thiz)
4. {
5. return (*env)->NewStringUTF(env, "Hello from JNI !");	
// Newly added code
6. }
 

The previous code defines the function implementation and is very simple. Line 3
is the Java code used in the prototype definition of the function stringFromJNI. It is
basically a copy of the corresponding content of the .h file obtained from the previous
steps (lines 63–64 of com_example_jnitest_MainActivity.h), and slightly modified
to make the point. The prototype formats of this function are fixed—JNIEnv* env
and jobject thiz are inherent parameters of JNI. Because the parameter of the
stringFromJNI function is empty, there are only two parameters in the generated C
function. The role of the code in line 5 is to return the string "Hello fromJNI!" as the
return value.

The code in line 2 is the header file that contains the JNI function, which is required
for any functions that use JNI. As it relates to the string function, line 1 contains the
corresponding header file in this case. After you complete the previous steps, the .h file
has no further use and can be deleted.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

113

Create the NDK Makefile File in the jni Directory
These documents mainly include the Android.mk and Application.mk files, where
Android.mk is required. However, if you use the default configuration of the application,
you do not need Application.mk. The four specific steps are as follows:

1.	 Create a new Android.mk text file in the jni directory in the
project. This file tells the compiler about some requirements,
such as which C files to compile, the filename for compiled
code, and so on. Enter the following:
 
 LOCAL_PATH := $(call my-dir)
 include $(CLEAR_VARS)
 LOCAL_MODULE := jnitestmysharelib
 LOCAL_SRC_FILES := jnitestccode.c
 include $(BUILD_SHARED_LIBRARY)
 

The file contents are explained next.
Line 3 represents the generated .SO filename (identifying each module described

in your Android.mk file). It must be consistent with parameter values of the System.
loadLibrary function in the Java code. This name must be unique and may not contain
any spaces.

Note■■   The build system automatically generates the appropriate prefix and suffix.
In other words, if one is the shared library module named jnitestmysharelib, then a
libjnitestmysharelib.so file will be generated. If you name the library libhello-jni,
the compiler will not add the lib prefix and will generate libhello-jni.so too.

The LOCAL_SRC_FILES variable in line 4 must contain the C or C++ source code files
to be compiled and packaged into modules. The previous steps create a C filename.

Note■■   Users do not have to list the header files and include files here, because the
compiler will automatically identify the dependent files for you. Just list source code files
that are directly passed to the compiler. In addition, the default extension name of C++
source files is .CPP. It is possible to specify a different extension name, as long as you define
the LOCAL_DEFAULT_CPP_EXTENSION variable. Don’t forget the small dot at the start
(.cxx, rather than cxx).

The code in Lines 3 through 4 is very important and must be modified for each NDK
application based on their actual configuration. The contents of the other lines can be
copied from the previous example.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

114

2.	 Create an Application.mk text file in the jni directory in the
project. This file tells the compiler the specific settings for this
application. Enter the following:
 
APP_ABI := x86
 

This file is very simple. You use the object code generated by the application
instructions for the x86 architecture, so you can run the application on Intel Atom
machines. For APP_ABI parameters, use x86, armeabi, or armeabi-v7a.

3.	 Next, compile the .c file to the .SO shared library file.

Go to project root directory (where AndroidManifest.xml is located) and run the
ndk-build command:
 
E:\temp\Android Dev\workspace\jnitest>ndk-build
D:/Android/android-ndk-r8d/build/core/add-application.mk:128: Android NDK:
WARNI
NG: APP_PLATFORM android-14 is larger than android:minSdkVersion 8 in
./AndroidM
anifest.xml
"Compile x86 : jnitestmysharelib <= jnitestccode.c
SharedLibrary : libjnitestmysharelib.so
Install : libjnitestmysharelib.so => libs/x86/libjnitestmysharelib.so
 

The previous command will add two subdirectories (libs and obj) in the project.
Include an execution version of the .SO file (the command execution information prompt
file named libjnitestmysharelib.so) under the obj directory, and it will eventually put
the final version under the libs directory.

If the previous steps do not define the Application.mk file of the specified ABI, using
the ndk-build command will generate object code of the ARM architecture (armeabi).
If you must generate the x86 architecture instructions, you can also use the ndk-build
APP_ABI = x86 command to remedy the situation. The architecture of the object code
generated by this command is still x86.

4.	 Deployment: run the project.

After you complete this step, you are almost ready to deploy and run the project.
The application running on the interface on the target device is shown in Figure 7-30.

Generating a Library File in the IDE
Recall from the steps described in the previous section the process of compiling the C
files into the dynamic library .SO files that can be run on the Android target device.
You run the ndk-build command in the command line to complete the process. In fact,
you can also complete this step within the Eclipse IDE.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

115

When generating the library files in the IDE, the code in the first four steps are
exactly the same as in the previous section. You just have to compile the .C files into .SO
shared library files instead. This is explained in detail as follows:

1.	 Compile the .C file into the .SO shared library file. Right-click
on the project name, and select Build Path, Configure Build
Path. In the pop-up dialog box, select the Builders branch.
Then click the New button in the dialog box. Double-click
Program in the prompt dialog box. This process is shown in
Figure 7-31.

Figure 7-31.  Enter Parameters Settings for the Interface of Compiling C Code in Eclipse

2.	 In the Edit Configuration dialog box, enter the following for
the Main tab settings:

•	 Location: The path to the Cygwin bash.exe.

•	 Working Directory: The bin directory of Cygwin.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

116

•	 Arguments:
 
--login -c "cd '/cygdrive/E/temp/Android Dev/workspace/
jnitest' && $ANDROID_NDK_ROOT/ndk-build"
 

where E/temp/Android Dev/workspace/jnitest is the letter and path for the
project. The entire setting is shown in Figure 7-32.

Figure 7-32.  Main Tab Setting in the Edit Configuration Window

3.	 Then configure the Refresh tab, ensuring that these items are
selected—The Entire Workspace and Recursively Include
Sub-Folders—as shown in Figure 7-33.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

117

4.	 Reconfigure the Build Options tab. Check the During Auto
Builds and Specify Working Set of Relevant Resources items,
as shown in Figure 7-34.

Figure 7-33.  Edit Configuration Window Refresh Tab Settings

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

118

Figure 7-34.  Edit Configuration Window Build Options Tab Settings

5.	 Click on the Specify Resources button. In the Edit Working Set
dialog box, select the jni directory, as shown in Figure 7-35.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

119

6.	 When the previous steps are correctly configured, the
configuration is saved. It will automatically compile C-related
code under the jni directory and output the corresponding
.SO library files to the project’s libs directory. The libs
directory is created automatically. In the Console window you
can see the output information for the build, as follows:

 
/cygdrive/d/Android/android-ndk-r8d/build/core/add-application.
mk:128: Android NDK: WARNING: APP_PLATFORM android-14 is larger than
android:minSdkVersion 8 in ./AndroidManifest.xml
Cygwin : Generating dependency file converter script
Compile x86 : jnitestmysharelib <= jnitestccode.c
SharedLibrary : libjnitestmysharelib.so
Install : libjnitestmysharelib.so => libs/x86/libjnitestmysharelib.so

Figure 7-35.  Select Source Code Directories Where Related Files Are Located

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

120

Workflow Analysis for NDK Application Development
The process of generating an NDK project described previously works naturally to
achieve the C library integration with Java. In the final step, you compile .C files into the
.SO shared library files. The intermediate version of the libraries is placed into the obj
directory, and the final version is placed into the libs directory. The project file structure
is then created, as shown in Figure 7-36.

Figure 7-36.  The jnitest Project Structure after NDK Library Files Generation

The shared library .SO files are in the directory of the project in the host machine
and will be packed in the generated .apk file. The .apk file is essentially a compressed
file. You can use compression software like WinRAR to view its contents. For this example,
you can find the .apk file in the bin subdirectory of the project directory. Open it with
WinRAR, and show the file structure.

The content of the lib subdirectory of .apk is a clone of the lib subdirectory of the
project. In Figure 7-36 the generated .SO file is shown in the lib\x86 subdirectory.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

121

When .apk is deployed to the target machine, it will be unpacked, in which case the
.SO files will be placed in the /data/dat/XXX/lib directory, where XXX is the application
package name. For example, for the previous example, the directory is /data/data/com.
example.jnitest/lib. You can view the file structure of the target machine under the
Eclipse DDMS; the file structure of the example is shown in Figure 7-37.

Figure 7-37.  The jnitest Project Structure after NDK Library Files Generation

In Figure 7-37, you can find the .SO library file under the /data/data/XXX/lib
directory, such that when the application is running, the System.loadLibrary function
can be loaded into memory to run. Here you see the .SO file in a graphical display of
DDMS. Interested readers can try it on the command line, using the adb shell command
to view the corresponding contents in the target file directory.

In addition, if you run the jnitest application in an emulator (in this case the target
machine is a virtual machine), you’ll see the following output in the Eclipse Logcat
window:
 
1. 07-10 05:43:08.579: E/Trace(6263): error opening trace file: No such
file or directory (2)
2. 07-10 05:43:08.729: D/dalvikvm(6263): Trying to load lib /data/data/com.
example.jnitest/lib/libjnitestmysharelib.so 0x411e8b30
3. 07-10 05:43:08.838: D/dalvikvm(6263): Added shared lib /data/data/com.
example.jnitest/lib/libjnitestmysharelib.so 0x411e8b30
4. 07-10 05:43:08.838: D/dalvikvm(6263): No JNI_OnLoad found in /data/data/
com.example.jnitest/lib/libjnitestmysharelib.so 0x411e8b30, skipping init

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

122

5. 07-10 05:43:11.773: I/Choreographer(6263): Skipped 143 frames!
The application may be doing too much work on its main thread.
6. 07-10 05:43:12.097: D/gralloc_goldfish(6263): Emulator without GPU
emulation detected.
 

Lines 2–3 are reminders about the .SO shared library loaded into the application.

NDK Compiler Optimization
From the previous example, you can see that the NDK tool’s core role is to compile the
source code into the .SO library file that can run on an Android machine. The .SO library
file is placed into the lib subdirectory of the project directory, so that when you use
Eclipse to deploy applications, you can deploy the library files to the appropriate location
on a target device, and the application can run using the library function.

Note■■   The nature of the NDK application is to establish a code framework that complies
with the JNI standard. This will enable Java applications to use a local function beyond the
scope of the virtual machine.

The key NDK command used to compile the source code into a .SO library file is
ndk-build. It’s not actually a separate command, but an executable script. It calls the
make command in the GNU cross-development tools to compile a project, and make
calls, for example, to the gcc compiler to compile the source code to complete the whole
process, as shown in Figure 7-38. Of course, you can also directly use .SO shared libraries
developed by third parties already in Android applications, thus avoiding the need to
write your own library (function code).

Android
Application .so library file

gcc

C/C++
Code

Other
Compiler

Other
Source
Code

NDKTool

Other Libraries

Figure 7-38.  The Working Mechanism of NDK Tools

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

123

As Figure 7-38 shows, core GNU compiler gcc is the core tool in the NDK to complete
C/C++ source code compilation. gcc is the standard compiler of Linux, and it can compile
and link C, C++, Object-C, FORTRAN, and other source code on the local machine. In
fact, the gcc compiler can not only do local compiling, but can also cross-compiling. This
feature has been used by the Android NDK and other embedded development tools.
In compiler usage, gcc cross-compiling is compatible with native compiling; that is,
command parameters and switches of locally compiled code can essentially be ported
without modification to cross-compiling code. Therefore, the gcc compiling method
described next is generic for both local and cross-compiling.

In Chapter 9: Performance Optimizations for Android Applications on x86, we
will discuss compiler optimizations in greater detail (that is, how some optimizations
can be done automatically by the compiler). For systems based on Intel x86 architecture
processors, in addition to the GNU gcc compiler, Intel C/C++ compiler is also a good
tool. Relatively speaking, because the Intel C/C ++ compiler fully utilizes the features of
the Intel processors, the code optimization results will be better. For Android NDK, both
Intel C/C++ compiler and gcc can complete the C/C++ code compilation. Currently,
the Intel C/C ++ compiler provides the appropriate usage mechanisms. Ordinary users
need a professional license, while gcc is open sourced, free software and is more readily
available. The following section uses gcc as an experimental tool to explain how to
perform C/C++ module compiler optimization for Android applications.

The gcc optimization is controlled by the optimization options of the compiler
switches. Some of these options are machine-independent, and some are associated with
the machine. Here we will discuss some important options. For machine-related options,
we will describe only the ones that are relevant to Intel processors.

Machine-Independent Compiler Switch Options
The machine-independent options for the gcc compiler switches are the -Ox options,
which correspond to different optimization levels. The details are as follows.

-0 or -01
Level 1 optimization, which is the default level of optimization, uses the -O option.
The compiler tries to reduce code size and execution time. For large functions, it
needs to spend more compiling time and use a large amount of memory resources for
optimizing compiling.

When the -O option is not used, the compiler’s goal is to reduce the overhead of
compiling, so that results can be debugged quickly. In this compilation mode, statements
are independent. By inserting a breakpoint interrupt program run between the two
statements, a user can reassign variables or modify the program counter to jump to other
currently executing statements, so you can precisely control the running process. The
user can also get results when they want to debug. In addition, if the -O option is not used,
only declared variables of a register can have register allocation.

When you specify the -O option, the -fthread-jumps and -fdefer-pop options are
turned on. On a machine with a delay slot, the -fdelayed-branch option is turned on. Even
for machines that support debugging without a frame pointer, the -fomit-frame-pointer
option is turned on. Some machines may also activate other options.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

124

-02
Optimizes even more. GCC performs nearly all supported optimizations that do not
involve a space-speed tradeoff. When compared to -O, this option increases compilation
time and the performance of the generated code.

-03
Optimizes yet more. The option -O3 turns on all optimizations specified by -O2 and
also turns on the -finline-functions, -funswitch-loops, -fpredictive-commoning,
-fgcse-after-reload, -ftree-vectorize, -fvect-cost-model, -ftree-partial-pre,
and -fipa-cp-clone options.

-00
Reduces compilation time and makes debugging produce the expected results. This is
the default.

An automatic inline function is often used as a function optimization measure. C99
(C language ISO standard developed in 1999) and C++ both support the inline keyword.
The inline function is a reflection of thinking of using inline space in exchange for time.
The compiler does not compile an inline-described function into a function, but directly
expands the code for the function body, thereby eliminating the function call, returning
the call ret instruction and the parameter’s push instruction execution. For example,
in the following function:
 
inline long factorial (int i)
{
 return factorial_table[i];
}
 
all occurrences of the factorial () call are replaced with the factorial_table [] array
references.

When in the optimizing state, some compilers will treat that function as an
inline function even if the function does not use inline instructions. It does this only if
appropriate in the circumstances (such as the body of the function code is relatively short
and the definition is in the header file), in exchange for execution time.

Loop unrolling is a classic speed optimization method and is considered by many
compilers as the automatic optimization strategy. For example, the following loop code
needs to loop 100 cycles:
 
for (i = 0; i < 100; i++)
{
 do_stuff(i);
}
 

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

125

In all 100 cycles, at the end of each cycle, the cycle conditions have to be checked
to do a comparative judgment. By using a loop-unrolling strategy, the code can be
transformed as follows:
 
for (i = 0; i < 100;)
{
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
}
 

As you can see, the new code reduces the comparison instruction from 100 to 10
times, and the time used on conditions comparison can be reduced by 90 percent.

Both methods described previously will increase the optimization of the object code.
This is a typical space for time-optimization ideas.

Intel Processor-Related Compiler Switch Options
The m option of gcc is defined for the Intel i386 and x86 - 64 processors family. The main
command options are explained in Table 7-3.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

126

Table 7-3.  Intel Processor-Related gcc Switch Options

Switch Options Note Description

-march=cpu-type
-mtune=cpu-type

Generated code for the specified type of
CPU. CPU type can be i386, i486, i586,
Pentium, i686, Pentium 4, and so on

-msse

The compiler automatic vectorization.
Use or not use MMX, SSE, SSE2
instructions. For example, -msse
represents programming into
instruction, and –mno-sse means not
programmed into the SSE instruction

-msse2

-msse3

-mssse3 gxx-4.3 new addition

-msse4.1 gcc-4.3 new addition

-msse4.2 gcc-4.3 new addition

-msse4 Include 4.1, 4.2
,gcc-4.3 new addition

-mmmx

-mno-sse

-mno-sse2

-mno-mmx
-m32
-m64

Generated 32/64 machine code

In Table 7-3, -march is the CPU type of the machine, and -mtune is the CPU type that
the compiler wants to optimize (by default it is the same as with -march). The -march
option is “tight constraint,” and -mtune is “loose constraint.” The -mtune option can
provide backward compatibility.

Compiler optimization options with -march = i686, -mtune = pentium4 is
optimized for the Pentium 4 processor, but can be run on any i686 as well.

For -mtune = pentium-mmx compiled procedures, the Pentium 4 processor can be run.
 
-march=cpu-type
 

This option will generate cpu-type instructions that specify the type of machine. The
-mtune = cpu-type option is available only for optimizing code generated for cpu-type. By
contrast, -march = cpu-type generates code not run on non-gcc for the specified type of
processor, which means that -march = cpu-type implies the -mtune = cpu-type option.

The cpu-type option values that are related to Intel processors are listed in Table 7-4.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

127

Table 7-4.  The Main Optional Value of -march Parameters of gcc for cpu-type

cpu-type Value Description

native This selects the CPU to generate code at compilation time by
determining the processor type of the compiling machine. Using
-march=native enables all instruction subsets supported by
the local machine (hence the result might not run on different
machines). Using -mtune=native produces code optimized
for the local machine under the constraints of the selected
instruction set.

i386 Original Intel i386 CPU.

i486 Intel i486 CPU. (No scheduling is implemented for this chip.)

i586 Intel Pentium CPU with no MMX support.

pentium

pentium-mmx Intel Pentium MMX CPU, based on Pentium core with MMX
instruction set support.

pentiumpro Intel Pentium Pro CPU.

i686 When used with -march, the Pentium Pro instruction set is
used, so the code runs on all i686 family chips. When used with
-mtune, it has the same meaning as “generic.”

pentium2 Intel Pentium II CPU, based on Pentium Pro core with MMX
instruction set support.

pentium3 Intel Pentium III CPU, based on Pentium Pro core with MMX
and SSE instruction set support.

pentium3m

pentium-m Intel Pentium M; low-power version of Intel Pentium III CPU
with MMX, SSE, and SSE2 instruction set support. Used by
Centrino notebooks.

pentium4 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set
support.

pentium4m

prescott Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2,
and SSE3 instruction set support.

nocona Improved version of Intel Pentium 4 CPU with 64-bit extensions,
MMX, SSE, SSE2, and SSE3 instruction set support.

core2 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3,
and SSSE3 instruction set support.

(continued)

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

128

Traditional gcc is a local compiler. These command options can be added to gcc to
control gcc compiler options. For example, say you have an int_sin.c file.
 
$ gcc int_sin.c
 

The previous command uses the -O1 optimization level (default level) and will
compile int_sin.c into an executable file, called a.out by default.
 
$ gcc int_sin.c -o sinnorm
 

The previous command uses the -O1 optimization level (default level) to compile
int_sin.c into an executable file; the executable filename is specified as sinnorm.
 
$ gcc int_cos.c -fPIC -shared -o coslib.so
 

The previous command uses the -O1 optimization level (default level) to compile
int_cos.c into a shared library file called coslib.so. Unlike the previous source code
files compiled into an executable program, this command requires that the source code
file int_cos.c not contain the main function.
 
$ gcc -O0 int_sin.c
 

The previous command compiles int_sin.c into the executable file with the default
filename. The compiler does not perform any optimization.
 
$ gcc -O3 int_sin.c
 

The previous command uses the highest optimization level -O3 to compile the
int_sin.c file to the executable file with the default filename.
 
$ gcc -msse int_sin.c
 

cpu-type Value Description

corei7 Intel Core i7 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, and SSE4.2 instruction set support.

corei7-avx Intel Core i7 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, AVX, AES, and PCLMUL instruction set
support.

core-avx-i Intel Core CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, AVX, AES, PCLMUL, FSGSBASE, RDRND,
and F16C instruction set support.

atom Intel Atom CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3,
and SSSE3 instruction set support.

Table 7-4.  (continued)

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

129

The previous command compiles int_sin.c into an executable file using SSE
instructions.
 
$ gcc -mno-sse int_sin.c
 

The previous command compiles int_sin.c into an executable file without any SSE
instructions.
 
$ gcc -mtune=atom int_sin.c
 

The previous command compiles int_sin.c into an executable file that can use the
Intel Atom processor instructions.

From the previous example compiled by gcc locally, you have some experience
using the compiler switch options for the gcc compiler optimizations. For the gcc
native compiler, the gcc command can be used directly in the switch options to achieve
compiler optimization. However, from the previous example, you know that the NDK
does not directly use the gcc command. Then how do you set the gcc compiler switch
option to achieve the NDK optimization?

Recall that using the NDK example, you used the ndk-build command to compile
C/C++ source code; the command first needed to read the makefile Android.mk. This
file actually contains the gcc command options. Android.mk uses LOCAL_CFLAGS to
control and complete the gcc command options. The ndk-build command will pass
LOCAL_CFLAGS runtime values to gcc, as its command option to run the gcc command.
LOCAL_CFLAGS passes the values to gcc and uses them as the command option to run gcc
command.

For example, you amended Android.mk as follows:
 
1. LOCAL_PATH := $(call my-dir)
2. include $(CLEAR_VARS)
3. LOCAL_MODULE := jnitestmysharelib
4. LOCAL_SRC_FILES := jnitestccode.c
5. LOCAL_CFLAGS := -O3
6. include $(BUILD_SHARED_LIBRARY)
 

Line 5 is newly added. It sets the LOCAL_CFLAGS variable script.
When you execute the ndk-build command, which is equivalent to adding a

gcc -O3 command option. It instructs gcc to compile the C source code at the highest
optimization level O3. Similarly, if you edit the line 5 to:
 
LOCAL_CFLAGS := -msse3
 

You instruct gcc to compile C source code into object code using SSE3 instructions.
Interested readers can set LOCAL_CFLAGS to a different value, comparing the target

library file size and content differences. Note that the previous example jnitest C code
is very simple and does not involve complex tasks. As a result, the size or content of the
library files are not very different when compiled from different LOCAL_CFLAGS values.

CHAPTER 7 ■ Creating and Porting NDK-Based Android Applications

130

So, can there ever be a significant difference in the size or content of the library file?
In fact, the answer is yes. In this regard, we will give practical examples in the following
chapters.

Overview
With this chapter behind you, you should have a comprehensive knowledge of the
Android native development kit and understand how it can be used to create Android
applications for the Intel platform. We also covered the Intel C++ compiler and its
options. It is important to remember that the Intel C++ compiler is just one of the
possible compilers that can be used for Intel Android applications. We talked at length
about the Java native interface that exists to interact with your NDK applications, and
how it operates. We also covered various code samples to best explain the various basic
optimizations that exist for the Intel C++ compiler.

	Chapter 7: Creating and Porting NDK-Based Android Applications
	JNI and NDK Introduction
	JNI Introduction
	Java Methods and Their Corresponding Relationship with the C Function Prototype Java
	Java and C Data Type Mapping
	NDK Introduction

	NDK Installation
	Android NDK Installation
	Install Cygwin
	Install CDT

	NDK Examples
	Using the Command-Line Method to Generate a Library File
	Create an Android App Project
	Modify the Java Files
	Generate the Project in Eclipse
	Create a Subdirectory in the Project Root Directory
	Create a C Interface File
	Compile the Corresponding. C File
	Create the NDK Makefile File in the jni Directory

	Generating a Library File in the IDE
	Workflow Analysis for NDK Application Development

	NDK Compiler Optimization
	Machine-Independent Compiler Switch Options
	-0 or -01
	-02
	-03
	-00

	Intel Processor-Related Compiler Switch Options

	Overview

