
149

Chapter 8

Cortical Algorithms

If you just have a single problem to solve, then fine, go ahead and use a neural network.
But if you want to do science and understand how to choose architectures, or how to go to
a new problem, you have to understand what different architectures can and cannot do.

—Marvin Minsky1

Computational models inspired by the structural and functional properties of the human brain have seen
impressive gains since the mid-1980s, owing to significant discoveries in neuroscience and advancements
in computing technology. Among these models, cortical algorithms (CAs) have emerged as a biologically
inspired approach, modeled after the human visual cortex, which stores sequences of patterns in an
invariant form and recalls those patterns autoassociatively. This chapter details the structure and
mathematical formulation of CA then presents a case study of CA generalization accuracy in identifying
isolated Arabic speech using an entropy-based weight update.

Cortical Algorithm Primer
Initially developed by Edelman and Mountcastle (1978), and inspired by the visual human cortex, CAs are
positioned to be superior to the early generations of artificial neural networks (ANNs), which do not use
temporal and spatial relationships in data for building machine learning models.

The CA model consists of a multilayered network, with the cortical column as the basic structure. The
network is trained in a two-stage manner: the first learning stage is unsupervised and trains the columns to
identify independent features from the patterns occurring; the second stage relies on supervised feedback
learning to create invariant representations.

Cortical Algorithm Structure
The human brain is a six-layered structure consisting of a very large number of neurons strongly connected via
feedforward and feedback connections. An important property of the neocortex is its structural and functional
uniformity: all units in the network seem similar, and they perform the same basic operation. Like this brain
architecture, CA architecture has minicolumns of varying thickness (Edelman and Mountcastle 1978).
A minicolumn is a group of neurons that share the same receptive field: neurons belonging to a minicolumn
are associated with the same sensory input region. The minicolumn is the basic structure in a cortical network,
in contrast to neurons in a classical ANN. An association of minicolumns is called a hypercolumn or layer

1Marvin Minsky, “Scientist on the Set: An Interview with Marvin Minsky,” in HAL’s Legacy: 2001’s Computer as
Dream and Reality, by David G. Stork (Massachusetts Institute of Technology Press, 1998), p. 18.

Chapter 8 ■ Cortical Algorithms

150

(in what follows, the terms column and minicolumn are used interchangeably). Connections in a CA network
occur in two directions: horizontally, between columns in the same layer, and vertically, between columns of
consecutive layers. Although connections between nonconsecutive layers are present in the human cortex,
these connections are omitted in CA, for the sake of simplicity.

Figure 8-1 displays a representation of a cortical network. The lateral inhibiting connections are not
shown explicitly in the figure because their functionality is not physical; that is, these connections do not
represent data propagated between neurons, but serve as a means of communication between the columns.

Figure 8-1.  Schematic of cortical network connectivity

The notation adopted hereafter is given in Figure 8-2, whereWi j k
r t
, ,

, represents the weight of the connection
between the jth neuron of the ith column of layer r and the kth column of the previous layer (r-1) during
the training epoch t. Bold variables stand for vector entities, underlined variables represent matrices, and
italic variables represent scalar entities.

Chapter 8 ■ Cortical Algorithms

151

During the learning process a connection is disabled by assigning to it a zero weight. If the network
is fully connected, each neuron j in the column is connected to all the columns in the previous layer. All
connections are elastic; that is, if a connection is disabled during the feedforward process, it can be restored
during the feedback learning, and vice versa.

The weight matrix representing the state of a column composed of M nodes during the training epoch t
is defined by

			  Wi
r t,

,
,

,
,

,
,

,
, .= ¼ ¼éë ùûW W W Wi

r t
i
r t

i j
r t

i M
r t

1 2
� (8-1)

The weight vector Wi j
r t
,

, of the connections entering neuron j of column i in layer r, composed of L
r

columns, is given by

			 Wi j
r t
,

,
, ,

,
, ,

,
, ,

,
, ,

, ,= ¼ ¼éë ùû-
W W W Wi j

r t
i j
r t

i j k
r t

i j L
r t

r1 2 1

¢

� (8-2)

where Lr-1 is the number of columns in the layer (r-1), L
r
 represents the number of columns in the

layer r, and the superscript ' stands for the transpose operator.
Expanding Wi

r t, yields

			  
W

W W W

W Wi
r t

i
r t

i j
r t

i M
r t

i k
r t

i j k
r,

, ,
,

, ,
,

, ,
,

, ,
,

, ,
,=

1 1 1 1

1

 

    



tt
i M k
r t

i L
r t

i j L
r t

i M L
r t

W

W W W
r r r



    

 

, ,
,

, ,
,

, ,
,

, ,
,

1 1 1 1- - -

é

ë

ê
êê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

.
� (8-3)

The output vector Z r,t of layer r for epoch t is given by

			    Z r t, , , , ., , , , , ,= ¼ ¼éë ùûZ Z Z Zr t r t
i
r t

L
r t

r1 2

¢
� (8-4)

where Zi
r t, is the output of column i in the layer for the same training epoch.

Figure 8-2.  Nomenclature conventions for the weight , ,
,Wi j k

r t

Chapter 8 ■ Cortical Algorithms

152

Considering the output of a neuron to be the result of the nonlinear activation function f(.), in response
to the weighted sum of the connections entering the neuron, the output of the column is defined as the sum
of the outputs of the neurons constituting the column.

 Zi j
r t
,
, is the output of the jth neuron of the ith column in the rth layer at the training epoch t, given by

			   Z Z Z f W Zi
r t

j

M

i j
r t

i j
r t

k

L

i j k
r t

k
r t

r
,

,
,

,
,

, ,
, ,;= =

æ

è
ç

ö

ø= =

-å å
-

1 1

1
1

÷÷. � (8-5)

Zi j
r
, � is the output of the jth neuron constituting the ith column of the rth layer, and f W Z

k

L

i j k
r t

k
r t

r

=

-
-

å
æ

è
ç

ö

ø
÷

1

1
1

, ,
, ,

is
defined by

		

f W Z

W Z
k

L

i j k
r t

k
r t

k

L

i j k
r t

r

r=

-

=

-

-
å

å

æ

è
çç

ö

ø
÷÷ =

+
1

1

1

1

1

1

1

, ,
, ,

, ,
,exp kk

r t

k

L

i j k
r t

k
r t

r

W Z T-

=

-
-

å
æ

è
çç

ö

ø
÷÷ -

æ

è
çç

ö

ø
÷÷

ì
í
ï

îï

ü
ý

1

1

1
1

,
, ,

, ,. j ïï

þï

æ

è
çç

ö

ø
÷÷ =

-

=

- =-

-

å
å

j
k

L

i j k
r t

k
r t k

L

i j k
r

r

r

W Z

if W

1

1 1
1

1

2

, ,
, ,

, ,
,tt

k
r t

k

L

i j k
r t

k
r t

Z

W Z otherwise
r

-

=

-

=
ì

í

ï
ï

î

ï
ï

ì

í

ï
ï
ï
ï

-

å

1

1

1

1

1

,

, ,
, , ,

ïï

î

ï
ï
ï
ï
ï

� (8-6)

where T is a tolerance parameter empirically selected and constant for all epochs and columns. It is
assumed that all weights are normalized and bounded between –1 and 1.

The nonlinear activation function is analogous to the propagation of the action potential through an
axon in the neural system.

Training of Cortical Algorithms
Connectivity within the columns is modeled through the value of the synaptic weights. Initially, there is no
specific connectivity between cortical columns. It is assumed that the network is fully connected before
training. Also, all synaptic weights are initialized to random values that are very close to 0 to avoid preference
to any particular pattern.

The training process, as introduced by Edelman and Mountcastle (1978) and developed further
by Hashmi (2010), is described in the following sections, according to its main phases: unsupervised
feedforward, supervised feedback, and weight update.

Unsupervised Feedforward
Feedforward learning trains columns to identify features via random firing and repeated exposure. When
a pattern is presented, the input is propagated through the network. Each column has a small probability
of firing, which means that most of the columns in a particular layer stay inactive. When the random firing
of a particular column coincides with a particular input pattern, this activation is enforced. In other words,
when activation is enforced, the column firing strengthens its weights, according to the strengthening weight
update rule. At the same time, the column firing inhibits neighboring columns in the same layer from firing
by weakening the weights, as presented in the inhibiting update rule.

Chapter 8 ■ Cortical Algorithms

153

The weight update rules are as follows:

•	 Inhibiting:

	       W Z W Wi j k
r t

k
r t

i j k
r t

i j
r t

, ,
, ,

, ,
,

,
,.+ -= - ()()1 1 W 	 (8-7)

•	 Strengthening:	

	        W Z W C

e

i j k
r t

k
r t

i j k
r t

i j k
r t

W Ti j k
r t, ,

, ,
, ,

,
, ,
,. .

, ,
,

+ -

-
= + +

+

1 1 1

1

r (()
()

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷W Wi

r t,

, 	 (8-8)

where W(Wi j
r t
,

,) is given by

	       W W C W C
if W

other
i
r t

i j k
r t

i j k
r t

i j k
r t i j k

r t
,

, ,
,

, ,
,

, ,
, , ,

,

;() = =
>1

0

e
wwisek

L

j

M r
ì
í
ï

îï
==

-åå 11

1 	 (8-9)

and where r is a tuning parameter, and e is the firing threshold chosen empirically to be constant for all
epochs and columns.

With repeated exposure the network learns to extract certain features of the input data, and the columns
learn to fire for specific patterns. Layers in the network extract aspects of the input in increasing complexity.
Thus, lower layers detect simple features, whereas higher stages learn concepts and more complex
abstractions of the data.

Supervised Feedback
Feedforward learning trains columns to identify features of the data, such that the hierarchical network
starts to recognize patterns. When the network is exposed to a variation of a pattern that is quite different
from the previous one, the top layer of columns that are supposed to fire for that pattern do not, and only
some of the columns in the hierarchy may fire, which leads to a misclassification. Through the CA feedback
mechanism, the error occurring at the top layer generates a feedback signal that forces the column firing
for the original pattern to fire, while inhibiting the column that is firing for the variation. Over multiple
exposures the top layer should reach the desired firing scheme (also called stable activation). More
specifically, designated columns in the top layer learn to fire for a particular pattern. Once the columns
start to give a stable activation for pattern variations, the feedback signal is propagated back to the previous
layers. Each layer is then trained until a convergence criterion, expressed as an error term in function of the
actual output, and a desired output (firing scheme) are reached. The feedback signal is sent to the preceding
layers only once the error in the layer concerned converges to a value below a certain, predefined tolerance
threshold. The excitatory and inhibiting signals follow the same update rules as for the feedforward learning.

When used for the feedback learning of the network, CA can be summarized by the following steps:

	 1.	 Following the feedforward unsupervised batch learning (i.e., after the training
data are entirely propagated through the network), a desired output scheme per
layer is formed by averaging the column outputs. If Zi

r

k
 is the output of the ith

column in the rth layer of the network for a certain training instance denoted by k
and given N instances in total; the desired output for this particular column Zi

r

d

is given by:

	     
Z avg Z

N
Zi d

r
i
r

i
r

k

N

k k
= () = =å1

1
. 	 (8-10)

Chapter 8 ■ Cortical Algorithms

154

	 2.	 Starting with the last layer, compare the measured output of each column as a
response to each instance k, Zi

r t, with the desired value of Zi
r

d
. If the desired output

of a column is a firing state, whereas the actual is different, the column is strengthened
(see Equation 8-8; the column is inhibited (see Equation 8-7) if the opposite occurs
(i.e., if the actual output is firing, whereas a nonfiring state is desired).

	 3.	 Repeat step 2 until the error threshold is met.

	 4.	 Follow the same procedure for the previous layers, one layer at a time.

Weight Update
In CA, good accuracy is taxed with computationally expensive and lengthy training. This cost is mainly due
to the computation of the exponential function invoked during the weight update process for each neuron
while the weights of the network are learned.

For a particular node , ,
,Wi j k

r t , Equation 8-8 may be written as:

	     

W W W

W
W

i j k
r t

i j k
r t

i j k
r t

i j k
r t

i

, ,
,

, ,
,

, ,
,

, ,
, .

exp

+ = + ()
() =

+

1

1

1

a q

q b
,, ,

,

, ,

,
, ,

.

,

.

j k
r t

k
r t

k
r t

k
r t

i j k

T

Z Z

Z C

-é

ë
ê
ê

ù

û
ú
ú

+

= =

=

- -

-

W

d

a b r

d

1 1

1 rr t,

ì

í

ï
ï
ï
ï

î

ï
ï
ï
ï

	 (8-11)

Here, a, b, and d are variables that depend on the training epoch as well as the column considered;
therefore, a suitable nomenclature would be in the form

,ck
r t-1

. For the sake of simplicity, one can omit the
subscripts and superscripts for these variables, referring to W(Wi

r t,) as Ω.
As demonstrated in Equation 8-11, the parameters of the exponential weight update rule—a, b, d, Ω,

and T—depend on the state of the column considered. Therefore, it can be inferred that the strengthening
rule is a family of exponential functions with varying parameters for each column. The update of a column
requires the computation of the exponential function for each of the nodes—hence, the lengthy training.

Figure 8-3 shows a plot of q, with respect to the value of the neuron weight for a random node.

Chapter 8 ■ Cortical Algorithms

155

The computational cost involved in the strengthening rule also comes from the calculation of the
exponential function. For example, MATLAB software uses the binomial theorem (see Equation 8-12) to
compute the approximate value of an exponential, and this approximation is computed up to orders ranging
from 5 to 10 (Mohler 2011):

	       e x
x x x

n

x

i
x

n

i

i

= + + + + + + =
=
å1

2 3

2 3

0! ! ! !
. 

¥
	 (8-12)

The number of operations required to compute the exponential function is summarized in Table 8-1.

Table 8-1.  Required Operations for Exponential Function

Expression Operations Total Number of Operations

i ! 2 * 3 * … * i i-two multiplications

xi x * x * x * … i multiplications

x

i

i

!

x x x

i

* * ¼
* *¼*2 3

2i-one operation

ex

i

n ix

i=
å

0 ! i

n

i n n n
=
å - + = +

0

22 1()

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Value of neuron

A
m

ou
nt

 o
f

st
re

ng
th

en
in

g
ad

de
d

Figure 8-3.  Plot of q Wi j k
r t
, ,

,() versus Wi j k
r t
, ,

,

Chapter 8 ■ Cortical Algorithms

156

Experimental Results
Experimental results for various pattern recognition databases obtained from the University of California,
Irvine, Machine Learning Repository (Bache and Lichman 2013) show CA superior performance, as detailed
for the following datasets:

•	 Letter Recognition dataset: This dataset consists of a collection of 20,000 black-and-white
images to be classified as one of the 26 capital letters of the English alphabet (Slate 1991).
Each instance is represented by a set of 16 features of integer type, normalized into
a range of 0-15 representing aspects of the image, such as horizontal and vertical
position, and width and length. The best accuracy reported for this dataset is 97.58
percent (Bagirov and Ugon 2011).

Figure 8-4.  Training of a cortical network

The workflow for CA training is displayed in Figure 8-4.

Chapter 8 ■ Cortical Algorithms

157

•	 Image Segmentation dataset: This dataset is collection of images sized 3 × 3 each,
represented by 19 attributes describing features of the image, such as average
intensity, saturation, and hue (Vision Group 1990). The dataset is divided into a
training set consisting of 210 instances and a testing set of 2,100 instances;
each image belongs to one of 7 classes. Dash et al. (2003) achieved an accuracy
of 98.6 percent.

•	 ISOLET (Isolated Letter Speech Recognition) dataset: The task in this experiment is
to classify a collection of isolated spoken English letters as one of 26 classes (A-Z).
The dataset is composed of 2,800 instances uttered by 150 speakers, each instance
represented by a set of 617 features, including spectral coefficients, contour features,
sonorant features, presonorant features, and postsonorant features (Cole and Fanty
1994). The reported accuracy of this database is 96.73 percent (Dietterich 1994).

•	 PENDIGITS (Pen-Based Recognition of Handwritten Digits) dataset: This experiment
consists of pen-based recognition of handwritten digits. The database collects
10,992 samples from 44 writers, each sample being a sequence of (x, y) coordinates
representing the trajectory of the pen during the writing process. The sequences
have been resampled to obtain a fixed-length attribute vector equal to 16 (eight pairs
of (x, y) coordinates) and normalized to eliminate the effect of artifacts resulting
from different handwritings. The 10,992 samples are divided into a training set of
7,494 instances and 3,498 instances for testing. The accuracy of this dataset reached
98.6 percent (Alpaydin and Alimoglu 1998).

•	 Multiple Features dataset: This dataset consists of 649 features, for a total of
2,000 patterns of handwritten numerals (`0'--`9') extracted from a collection of
Dutch utility maps (Duin 2013). These digits are represented in terms of six feature
sets: 76 Fourier coefficients of the character shapes; 216 profile correlations;
64 Karhunen-Loève coefficients; 240 pixel averages, in 2 × 3 windows; 47 Zernike
moments; and six morphological features. The best accuracy achieved is 98 percent
(Perkins and Theiler 2003).

•	 Abalone dataset: The task for this dataset is to classify the age of a collection of
4,177 abalones from a total of eight physical measurements, such as height, weight,
diameter, and length. This dataset is characterized by a highly unbalanced class
distribution and has achieved an accuracy of 79.0 percent
(Tan and Dowe 2003).

Table 8-2 compiles the recognition rate, training time, and total number of required iterations for
convergence, based on a fourfold cross-validation, using the mean squared error (MSE) and the well-formed
cross-entropy (CE) cost functions at the output layer.

Two experiments were performed:

•	 Experiment 1: CA with the exponential weight update rule and MSE as a cost
function

•	 Experiment 2: CA with the exponential weight rule and CE as a cost function

Chapter 8 ■ Cortical Algorithms

158

On average the CE cost function results in better classification accuracy. However, this is achieved at the
expense of an increase in computational complexity and training time. 

Table 8-2.  Experimental Results

Dataset Measure Experiment 1 Experiment 2

Letter Recognition % Accuracy 98.3 98.8

Training time (min) 223 235

Number of epochs 237 225

Number of operations 8.9 * 1012 1.1 * 1013

Image Segmentation % Accuracy 99.3 99.7

Training time (min) 45 52

Number of epochs 77 69

Number of operations 22 * 1012 2.5 * 1012

ISOLET % Accuracy 98.1 98.7

Training time (min) 54 67

Number of epochs 147 131

Number of operations 2.6 * 1012 3.2 * 1012

PENDIGITS % Accuracy 99.8 100

Training time (min) 135 154

Number of epochs 94 82

Number of operations 6.5 * 1012 7.4 * 1012

Multiple Features % Accuracy 98.7 99.1

Training time (min) 35 42

Number of epochs 66 53

Number of operations 1.4 * 1012 2.0 * 1012

Abalone % Accuracy 91.8 92.2

Training time (min) 56 68

Number of epochs 70 62

Chapter 8 ■ Cortical Algorithms

159

Note■■   Despite their superior hypothetical performance, CAs remain less widely used than ANNs, owing to
their longer and more expensive training and computational requirements. These make them unattractive
for online learning, energy-aware computing nodes, and large datasets with stringent restrictions on the
training duration.

Modified Cortical Algorithms Applied to Arabic Spoken
Digits: Case Study
Because CAs have not been extensively implemented for automatic speech recognition (in particular for
the Arabic language), the following sections show how CA strengthening and inhibiting rules originally
employed during feedback were modified with weighted entropy concepts that were added to the CA cost
function and the weight update rule.

Entropy-Based Weight Update Rule
During the feedback learning stage of a CA, the output of each layer is compared with a desired state of
firing, and the weights are updated until an error term is reduced to a minimum threshold value. Using the
least squares criterion, large error values influence the learning process much more than smaller ones. For
a class of problems, the gradient descent algorithm, with the MSE as a criterion for weight updates, can be
trapped in a local minimum and so it will fail to find the optimal solution. In contrast, the well-formed CE
criterion, employing a gradient descent algorithm, guarantees convergence to the optimal solution during
learning (Wittner and Denker 1988).

The three properties of a well-formed error function of the form J W h Wi j k
r t

i j k
r t

, ,
,

, ,
,()() =å are as follows:

For all •	 Wi j k
r t
, ,

, the derivative of h Wi j k
r t(), ,

, , defined as h Wi j k
r t’
, ,

,() , must be negative.

There must exist an •	  > 0 , such that - () ³h Wi j k
r t’
, ,

,  for all Wi j k
r t
, ,

, £ 0 .

The function •	 h must be differentiable and bounded.

CE as a cost function criterion can be written as

J Z
Z

Z
r t

di
r i

r t

di
ri

Lr,
,

ln ,=
=å 1

where Zdi
r is the desired output of the ith column of layer r at epoch t.

Chapter 8 ■ Cortical Algorithms

160

If you adopt the same procedure for the feedback learning, and assume that training convergence of
each layer happens when the entropy measure falls below a predetermined threshold value, the weight
update rule becomes:

•	 Inhibiting:

	          W
J

Z
Z W Wi j k

r t
r t

i
r t k

r t
i j k
r t

i
r t

, ,
,

,

,
,

, ,
, ,.+ -= - ()()1 1D

D
W 	 (8-13)

•	 Strengthening:

	         W
J

Z
Z W Ci j k

r t
r t

i
r t k

r t
i j k
r t

i j k
r t

, ,
,

,

,
,

, ,
,

, ,
,. . .+ -= + +

+

1 1 1

1

D
D

r

eexp , ,
,

,

W T

W
i j k
r t

i
r t

-

()
é

ë
ê
ê

ù

û
ú
ú

æ

è

ç
ç
ç
ç
çç

ö

ø

÷
÷
÷
÷
÷÷W

	 (8-14)

One advantage of using the proposed gradient descent weighted rules is that the CE cost function
diverges if one of the outputs converges to the wrong extreme; hence, the gradient descent reacts quickly.
In contrast, the MSE cost function approaches a constant, and the gradient descent on the least square will
wander on a plateau, even though the error may not be small.

Experimental Validation
Using a CA of six hidden layers, starting with 2,000 columns of 20 nodes for the first hidden layer and
decreasing the number of columns by half between consecutive layers, four experiments, employing the
weighted entropy weight update rule, were performed based on a fivefold cross-validation:

•	 Experiment 1: CA trained using the MSE cost function and the original weight
update rule

•	 Experiment 2: CA trained using the MSE cost function and the proposed weight
update rule

•	 Experiment 3: CA trained using the CE cost function and the original weight
update rule

•	 Experiment 4: CA trained using the CE function and the proposed weight update rule

Simulations were executed, using MATLAB R2011a software on an Intel i7 at 2GHz and 6GB RAM on
a Windows 7 Home Premium operating system, using a modified central nervous system (CNS) library.
Developed at the Massachusetts Institute of Technology, by Mutch, Knoblich, and Poggio (2010), the CNS
library is a framework for simulating cortically organized networks.

The database was obtained from the UCI Machine Learning Repository and consists of a collection
of 13 Mel frequency cepstral coefficient (MFCC) frames representing 8,800 spoken Arabic digits—one of
ten classes (0-9), uttered by 88 different speakers, obtained after filtering the spoken digits, using a moving
Hamming window. Several techniques were validated on this database; the best achieved result shows a
97.03 percent recognition rate, based on a threefold cross-validation, using a multiclass SVM classifier
(Ji and Sun 2011).

Chapter 8 ■ Cortical Algorithms

161

TREE REPRESENTATION FOR ARABIC PHONEMES

As the first language in 22 countries, Arabic ranks fifth among the most spoken languages in the world
(Mosa and Ali 2009). Although applications treating speech recognition have increased significantly
(e.g., iPhone 4S Siri interface), implementation for the Arabic language is limited, mainly because of
its morphological complexity. For Arabic automatic speech recognition, the recognition of phonemes
constitutes an important step in continuous speech analysis. Most research proceeds by extracting
isolated phonemes or small phonetic segments (El-Obaid, Al-Nassiri, and Maaly 2006; Awais 2003;
Gevaert, Tsenov, and Mladenov 2010; Al-Manie, Alkanhal, and Al-Ghamdi 2009) for analysis of longer
speech signals (Abushariah et al. 2010) and broadcast news (Al-Manie, Alkanhal, and Al-Ghamdi 2009),
using several techniques, such as ANN (Essa, Tolba, and Elmougy 2008), fuzzy HMM (Shenouda, Zaki,
and Goneid 2006), fuzzy logic, concurrent self-organizing maps (Sehgal, Gondal, and Dooley 2004), and
HMM (Satori, Harti, and Chenfour 2007; Bourouba et al. 2010; Biadsy, Moreno, and Jansche 2012).

Spoken in the Middle East and North Africa, Arabic has different dialects. However, Literary Arabic (also
called Modern Standard Arabic) is the official form used in documents and for formal speaking in all
Arabic-speaking countries. One of the differences between spoken and written Arabic is the presence in
the latter of diacritics (marks used to indicate how a letter should be pronounced). The complexity of Arabic
is the result of its unusual morphology: words are formed using a root-and-pattern scheme, in which
the root is composed of 3 consonants, leading to several possibilities from one root. Phonetically, Arabic
has 28 consonant segments and 6 vowels (Newman 1984). Phonemes can be grouped according to the
articulation of the lips and tongue during speech, as shown in the classification of Arabic phonemes.

 

Chapter 8 ■ Cortical Algorithms

162

Note■■  M FCCs can model the acoustic content of speech independently of the source (speaker). MFCCs are
calculated by mapping the logarithm of the spectrum into the Mel scale and converting the obtained signal back
to the time domain, using discrete cosine transform (Klatau 2005).

For consistency, the first experiment with the data used the 13 MFCCs provided and then added the first
and second derivatives of the MFCCs, that is, coefficients with a feature vector of size 39. Tables 8-3 and 8-4
show a comparison of the results obtained for all experiments with the average recognition rate obtained,
training time, and number of epochs required for convergence.

Table 8-3.  Results for the Spoken Arabic Digit Dataset, Using 13 MFCCs

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Recognition rate (%) 97.4 98.4 97.9 99.0

Training time (min) 90 110 100 115

Number of epochs
until convergence

240 232 235 220

Table 8-4.  Results for the Arabic Spoken Digit Dataset, Using 39 MFCCs

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Recognition rate (%) 98.2 99.1 98.6 99.7

Training time (min) 125 142 137 156

Number of epochs
until convergence

335 298 322 280

Tables 8-3 and 8-4 demonstrate that training of the cortical network, using the entropy cost function and
the proposed weight update rule, performed better than the original training parameters. This improvement
is achieved at the expense of a small worsening of the required training time. Despite the lengthy training
time, however, the proposed weight update rule requires fewer training epochs to converge, compared with
the original weight update rule. This is because the amount of strengthening added using the proposed
rule is proportional to the gradient of the cost function, meaning that fewer training epochs are necessary
to reach convergence. The proposed weight update rule involves computing the entropy gradient, which is
computationally more expensive, compared with the original weight update rule.

The confusion matrices in Figure 8-5, obtained for the image segmentation dataset using both cost
functions, demonstrate that although a significant trend is observed in the confusion between classes 1, 7,
and 8 with the classical distance measure, the proposed entropy-based update rule was able to correct this
trend partially.

Chapter 8 ■ Cortical Algorithms

163

65
11.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

98
17.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

77
13.3%

0
0.0%

1
0.2%

0
0.0%

0
0.0%

98.7%
1.3%

2
0.3%

0
0.0%

0
0.0%

79
13.7%

1
0.2%

0
0.0%

0
0.0%

96.3%
3.7%

0
0.0%

1
0.2%

1
0.2%

1
0.2%

91
15.6%

0
0.0%

0
0.0%

97.8%
2.2%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

87
15.1%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

75
13.0%

100%
0.0%

97.0%
3.0%

100%
0.0%

98.7%
1.3%

98.8%
1.2%

97.8%
2.2%

100%
0.0%

100%
0.0%

99.0%
1.0%

65
11.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

98
17.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

77
13.3%

0
0.0%

1
0.2%

0
0.0%

0
0.0%

98.7%
1.3%

1
0.2%

0
0.0%

0
0.0%

80
13.9%

1
0.2%

0
0.0%

0
0.0%

97.6%
2.4%

0
0.0%

1
0.2%

0
0.0%

0
0.0%

91
15.8%

0
0.0%

0
0.0%

98.9%
1.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

87
15.1%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

75
13.0%

100%
0.0%

98.5%
1.5%

100%
0.0%

98.7%
1.3%

100%
0.0%

97.8%
2.2%

100%
0.0%

100%
0.0%

99.3%
0.7%

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Confusion Matrix Confusion Matrix

Ou
tp

ut
 C

la
ss

Ou
tp

ut
 C

la
ss

Target Class Target Class

Figure 8-5.  Confusion matrices for the Image Segmentation dataset: left, exponential rule; right, linear rule

Figure 8-6.  Entropy cost function comparison for regular and proposed weight update rules

Figure 8-6 compares the CE cost function with the training epochs obtained while training the cortical
network using the entropy cost function for the proposed and the regular weight update rules. Note that
the proposed weight update converges to a smaller MSE value, compared with the regular update, which is
consistent with the recognition rates obtained earlier.

Chapter 8 ■ Cortical Algorithms

164

References
Abushariah, Mohammad A. M., Raja N. Ainon, Roziati Zainuddin, Moustafa Elshafei, and Othman O. Khalifa.
“Natural Speaker-Independent Arabic Speech Recognition System Based on Hidden Markov Models Using
Sphinx Tools.” In Proceedings of the 2010 International Conference on Computer and Communication
Engineering, Kuala Lumpur, Malaysia, May 11–12, 2010, 1–6. Piscataway, NJ: Institute of Electrical and
Electronic Engineers, 2010.

Awais, M. M. “Recognition of Arabic Phonemes Using Fuzzy Rule Base System.” In Proceedings of the 7th
International Multitopic Conference, Islamabad, Pakistan, December 8–9, 2003, 367–370. Piscataway, NJ:
Institute of Electrical and Electronic Engineers, 2003.

Bache, K., and M. Lichman. “University of California, Irvine, Machine Learning Repository.” Irvine:
University of California, 2013. http://archive.ics.uci.edu/ml/index.html.

Bagirov, A. M., J. Ugon, and D. Webb. “An Efficient Algorithm for the Incremental Construction of a Piecewise
Linear Classifier.” Journal of Information Systems 36, no. 4 (2011): 782–790.

Biadsy, Fadi, Pedro J. Moreno, and Martin Jansche. “Google's Cross-Dialect Arabic Voice Search.”
In Proceedings of the 2012 IEEE International Conference on Acoustics, Speech, and Signal Processing, Kyoto,
Japan, March 25–30, 2012, 4441–4444. Piscataway, NJ: Institute of Electrical and Electronic Engineering, 2012.

Bourouba, H., R. Djemili, M. Bedda, and C. Snani. “New Hybrid System (Supervised Classifier/HMM)
for Isolated Arabic Speech Recognition.” In Proceedings of the 2nd Conference on Information and
Communication Technologies, Damascus, Syria, April 24–28, 2006, 1264–1269. Piscataway, NJ: Institute of
Electrical and Electronic Engineering, 2006.

Cole, Ron, and Mark Fanty. “ISOLET Data Set.” University of California, Irvine, Machine Learning
Repository. Irvine: University of California, 1994. https://archive.ics.uci.edu/ml/datasets/ISOLET.

Dash, Manoranjan, Huan Liu, Peter Scheuermann, and Kian Lee Tan. “Fast Hierarchical Clustering and Its
Validation.” Data and Knowledge Engineering 44, no. 1 (2003): 109–138.

Dietterich, Thomas G., and Ghulum Bakiri. “Solving Multiclass Learning Problems via Error-Correcting
Output Codes.” Journal of Artificial Intelligence Research 2, no. 1 (1995): 263–286.

Duin, Robert P. W. “Multiple Features Data Set.” University of California, Irvine, Machine Learning
Repository. Irvine: University of California, 2013. http://archive.ics.uci.edu/ml/datasets/
Multiple+Features.

Edelman, Gerald M., and Vernon B. Mountcastle. The Mindful Brain: Cortical Organization and the Group-
Selective Theory of Higher Brain Function. Cambridge, MA: Massachusetts Institute of Technology Press, 1978.

Essa, E. M., A. S. Tolba, and S. Elmougy. “A Comparison of Combined Classifier Architectures for Arabic
Speech Recognition.” In Proceedings of the 2008 International Conference on Computer Engineering and
Systems, Cairo, Egypt, November 25–27, 2008, 149–153. Piscataway, NJ: Institute of Electrical and Electronic
Engineering, 2008.

Gevaert, Wouter, Georgi Tsenov, and Valeri Mladenov. “Neural Networks Used for Speech Recognition.”
Journal of Automatic Control 20, no. 1 (2010): 1–7.

Ji, You, and Shiliang Sun. “Multitask Multiclass Support Vector Machines.” In Proceedings of the 11th
International Conference on Data Mining Workshops), Vancouver, BC, December 11, 2011, 512–518.
Piscataway, NJ: Institute of Electrical and Electronic Engineering, 2011.

Klautau, Aldebaro. “The MFCC,” 2012. www.cic.unb.br/~lamar/te073/Aulas/mfcc.pdf.

http://archive.ics.uci.edu/ml/index.html
https://archive.ics.uci.edu/ml/datasets/ISOLET
http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://www.cic.unb.br/~lamar/te073/Aulas/mfcc.pdf

Chapter 8 ■ Cortical Algorithms

165

Hashmi, Artif G., and Mikko. H. Lipasti. “Discovering Cortical Algorithms”. In Proceedings of the International
Conference on Fuzzy Computation and International Conference on Neural Computation, Valencia, Spain,
October 24–26, 2010, 196–204.

Manie, Mohammed A. Al-, Mohammed I. Alkanhal, and Mansour M. Al-Ghamdi. “Automatic Speech
Segmentation Using the Arabic Phonetic Database.” In Proceedings of the 10th WSEAS International
Conference on Automation and Information, Prague, Czech Republic, March 23–25, 76–79. Stevens Point,
Wisconsin: World Scientific and Engineering Academy and Society, 2009.

Mohler, Cleve. “Exponential Function.” Chap. 8 in Experiments with MATLAB. MathWorks, 2011.
www.mathworks.com/moler/exm/chapters/exponential.pdf.

Mosa, Ghassaq S., and Abduladhem Abdulkareem Ali. “Arabic Phoneme Recognition Using Hierarchical Neural
Fuzzy Petri Net and LPC Feature Extraction.” Signal Processing: An International Journal 3, no. 5 (2009): 161–171.

Mutch, Jim, Ulf Knoblich, and Tomaso Poggio. “CNS: A GPU-Based Framework for Simulating
Cortically-Organized Networks.” Technical Report, Massachusetts Institute of Technology, 2010.

Newman, Daniel. “The Phonetics of Arabic.” Journal of the American Oriental Society 46 (1984): 1–6.

Obaid, Manal El-, Amer Al-Nassiri, and Iman Abuel Maaly. “Arabic Phoneme Recognition Using Neural
Networks.” In Proceedings of the 5th WSEAS International Conference on Signal Processing, Istanbul,
Turkey, May 27–29, 2006, 99–104. Stevens Point, Wisconsin: World Scientific and Engineering Academy
and Society, 2006.

Perkins, Simon, and James Theiler. “Online Feature Selection Using Grafting.” In Proceedings of the Twentieth
International Conference on Machine Learning, Washington, DC, August 21–24, 2003, 592–599. Menlo Park,
CA: Association for the Advancement of Artificial Intelligence, 2003.

Satori, Hassan, Mostafa Harti, and Nouredine Chenfour. “Introduction to Arabic Speech Recognition Using CMU
Sphinx System.” In Proceedings of the Information and Communication Technologies International Symposium,
Fez, Morocco, April 3–5, 2007, edited by Mohammad Essaaidi, Mohammed El Mohajir, Badreddine El Mohajir,
and Paolo Rosso, 139–142. Piscataway, NJ: Institute of Electrical and Electronic Engineers, 2007.

Sehgal, M. S. B., Iqbal Gondal, and Laurence Dooley. “A Hybrid Neural Network Based Speech Recognition
System for Pervasive Environments.” In Proceedings of the 8th International Multitopic Conference, Lahore,
Pakistan, December 24–26, 2004, 309–314. Piscataway, NJ: Institute of Electrical and Electronic Engineers, 2004.

Shenouda, Sinout D., Fayez W. Zaki, and A. M. R. Goneid. “Hybrid Fuzzy HMM System for Arabic
Connectionist Speech Recognition.” In Proceedings of the Twenty-Third National Radio Science Conference,
Monufia, Egypt, March 14–16, 1–8. Piscataway, NJ: Institute of Electrical and Electronic Engineers, 2006.

Slate, David J. “Letter Recognition Data Set.” University of California, Irvine, Machine Learning Repository.
Irvine: University of California, 1991. http://archive.ics.uci.edu/ml/datasets/Letter+Recognition.

Tan, Peter J., and David L. Dowe. “MML Inference of Decision Graphs with Multi-Way Joins and Dynamic
Attributes.” In AI 2003: Advances in Artificial Intelligence; Proceedings of the 16th Australian Conference on
AI, Perth, Australia, December 3–5, 2003, edited by Tamás Domonkos Gedeon and Lance Chun Che Fung,
269–281. Berlin: Springer, 2003.

Alpaydin, E., and Fevzi Alimoglu. ”Pen-Based Recognition of Handwritten Digits Data Set.” University of
California, Irvine, Machine Learning Repository. Irvine: University of California, 1998. https://archive.
ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits.

Vision Group. “Image Segmentation Data Set.” University of California, Irvine, Machine Learning Repository.
Irvine: University of California, 1990. https://archive.ics.uci.edu/ml/datasets/Image+Segmentation.

Wittner, Ben S., and John S. Denker. “Strategies for Teaching Layered Networks Classification Tasks.” In
Neural Information Processing Systems: Denver, CO, 1987, edited by Dana Z. Anderson, 850–859. Berlin:
Springer, 1988.

http://www.mathworks.com/moler/exm/chapters/exponential.pdf
http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Image+Segmentation

	Chapter 8: Cortical Algorithms
	Cortical Algorithm Primer
	Cortical Algorithm Structure
	Training of Cortical Algorithms
	Unsupervised Feedforward
	Supervised Feedback

	Weight Update
	The workflow for CA training is displayed in Figure 8-4 .
	Experimental Results

	Modified Cortical Algorithms Applied to Arabic Spoken Digits: Case Study
	Entropy-Based Weight Update Rule
	Experimental Validation

	References

