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Chapter 4

Support Vector Regression

The key to artificial intelligence has always been the representation.

—Jeff Hawkins

Rooted in statistical learning or Vapnik-Chervonenkis (VC) theory, support vector machines (SVMs) are 
well positioned to generalize on yet-to-be-seen data. The SVM concepts presented in Chapter 3 can be 
generalized to become applicable to regression problems. As in classification, support vector regression 
(SVR) is characterized by the use of kernels, sparse solution, and VC control of the margin and the number 
of support vectors. Although less popular than SVM, SVR has been proven to be an effective tool in real-value 
function estimation. As a supervised-learning approach, SVR trains using a symmetrical loss function, 
which equally penalizes high and low misestimates. Using Vapnik’s e-insensitive approach, a flexible tube 
of minimal radius is formed symmetrically around the estimated function, such that the absolute values 
of errors less than a certain threshold e  are ignored both above and below the estimate. In this manner, 
points outside the tube are penalized, but those within the tube, either above or below the function, receive 
no penalty. One of the main advantages of SVR is that its computational complexity does not depend on 
the dimensionality of the input space. Additionally, it has excellent generalization capability, with high 
prediction accuracy.

This chapter is designed to provide an overview of SVR and Bayesian regression. It also presents a case 
study of a modified SVR applicable to circumstances in which it is critically necessary to eliminate or strictly 
limit underestimating a function.

SVR Overview
The regression problem is a generalization of the classification problem, in which the model returns a 
continuous-valued output, as opposed to an output from a finite set. In other words, a regression model 
estimates a continuous-valued multivariate function.

SVMs solve binary classification problems by formulating them as convex optimization problems 
(Vapnik 1998). The optimization problem entails finding the maximum margin separating the hyperplane, 
while correctly classifying as many training points as possible. SVMs represent this optimal hyperplane with 
support vectors. The sparse solution and good generalization of the SVM lend themselves to adaptation to 
regression problems. SVM generalization to SVR is accomplished by introducing an e-insensitive region 
around the function, called the e-tube. This tube reformulates the optimization problem to find the tube that 
best approximates the continuous-valued function, while balancing model complexity and prediction error. 
More specifically, SVR is formulated as an optimization problem by first defining a convex e-insensitive loss 
function to be minimized and finding the flattest tube that contains most of the training instances. Hence, a 
multiobjective function is constructed from the loss function and the geometrical properties of the tube.  
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Then, the convex optimization, which has a unique solution, is solved, using appropriate numerical 
optimization algorithms. The hyperplane is represented in terms of support vectors, which are training 
samples that lie outside the boundary of the tube. As in SVM, the support vectors in SVR are the most 
influential instances that affect the shape of the tube, and the training and test data are assumed to 
be independent and identically distributed (iid), drawn from the same fixed but unknown probability 
distribution function in a supervised-learning context.

SVR: Concepts, Mathematical Model, and Graphical 
Representation
SVR problem formulation is often best derived from a geometrical perspective, using the one-dimensional 
example in Figure 4-1. The continuous-valued function being approximated can be written as in Equation 4-1. 
For multidimensional data, you augment x by one and include b in the w vector to simply the mathematical 
notation, and obtain the multivariate regression in Equation 4-2.
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SVR formulates this function approximation problem as an optimization problem that attempts to find 
the narrowest tube centered around the surface, while minimizing the prediction error, that is, the distance 
between the predicted and the desired outputs. The former condition produces the objective function in 
Equation 4-3, where  w  is the magnitude of the normal vector to the surface that is being approximated:

          min .w w
1

2
2  (4-3)

Figure 4-1. One-dimensional linear SVR
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To visualize how the magnitude of the weights can be interpreted as a measure of flatness, consider the 
following example:

f x w w x x wi
i M

i

M
( , ) , , .= Î Î

=å  

1

Here, M is the order of the polynomial used to approximate a function. As the magnitude of the vector w 
increases, a greater number of w

i
 are nonzero, resulting in higher-order solutions, as shown in Figure 4-2.  

The horizontal line is a 0th-order polynomial solution and has a very large deviation from the desired 
outputs, and thus, a large error. The linear function, a 1st-order polynomial, produces better approximations 
for a portion of the data but still underfits the training data. The 6th-order solution produces the best 
tradeoff between function flatness and prediction error. The highest-order solution has zero error but a 
high complexity and will most likely overfit the solution on yet to be seen data. The magnitude of w acts as a 
regularizing term and provides optimization problem control over the flatness of the solution.

The constraint is to minimize the error between the predicted value of the function for a given input 
and the actual output. SVR adopts an e-insensitive loss function, penalizing predictions that are farther 
than e from the desired output. The value of e determines the width of the tube; a smaller value indicates 
a lower tolerance for error and also affects the number of support vectors and, consequently, the solution 
sparsity. Intuitively, the latter can be visualized for Figure 4-1. If e is decreased, the boundary of the tube is 
shifted inward. Therefore, more datapoints are around the boundary, which indicates more support vectors. 
Similarly, increasing e will result in fewer points around the boundary.

Because it is less sensitive to noisy inputs, the e-insensitive region makes the model more robust. Several 
loss functions can be adopted, including the linear, quadratic, and Huber e, as shown in Equations 4-4, 4-5, 
and 4-6, respectively. As demonstrated in Figure 4-3, the Huber loss function is smoother than the linear 
and quadratic functions, but it penalizes all deviations from the desired output, with greater penalty as the 
error increases. The choice of loss function is influenced by a priori information about the noise distribution 
affecting the data samples (Huber 1964), the model sparsity sought, and the training computational 
complexity. The loss functions presented here are symmetrical and convex. Although asymmetrical loss 
functions can be adopted to limit either underestimation or overestimation, the loss functions should be 
convex to ensure that the optimization problem has a unique solution that can be found in a finite number of 
steps. Throughout this chapter, the derivations will be based on the linear loss function of Equation 4-4.

Figure 4-2. Solutions with various orders
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Figure 4-3. Loss function types: (a) linear, (b) quadratic, and (c) Huber

aSYMMetrICaL LOSS FUNCtIONS

Some researchers have proposed modification to loss functions to make them asymmetrical. Shim, 
Yong, and hwang (2011) used an asymmetrical e-insensitive loss function in support vector quantile 
regression (SVQr) in an attempt to decrease the number of support vectors. the authors altered the 
insensitivity according to the quantile and achieved a sparser model. Schabe (1991) proposed a  
two-sided quadratic loss function and a quasi-quadratic s-loss function for Bayes parameter estimation, 
and norstrom (1996) replaced the quadratic loss function with an asymmetrical loss function to 
derive a general class of functions that approach infinity near the origin for Bayesian risk analysis. 
nath and Bhattacharyya (2007) presented a maximum margin classifier that bounds misclassification 
for each class differently, thus allowing for different tolerances levels. Lee, hsieh, and Wang (2005) 
reformulated the typical SVr approach into a nonconstrained problem, thereby only solving a system 
of linear equations rather than a convex quadratic one. pan and pan (2006) compared three* different 
loss functions for economic tolerance design: taguchi’s quadratic loss function, inverted normal loss 
function, and revised inverted normal loss function.

Adopting a soft-margin approach similar to that employed in SVM, slack variables x, x* can be added 
to guard against outliers. These variables determine how many points can be tolerated outside the tube 
illustrated in Figure 4-1.

Based on Equations 4-3 and 4-4, the optimization problem in Equation 4-7 is obtained; C is a 
regularization—thus, a tuneable parameter that gives more weight to minimizing the flatness, or the error, for 
this multiobjective optimization problem. For example, a larger C gives more weight to minimizing the error. 
This constrained quadratic optimization problem can be solved by finding the Lagrangian (see Equation 4-8). 
The Lagrange multipliers, or dual variables, are l, l*, a, a* and are nonnegative real numbers.
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The minimum of Equation 4-8 is found by taking its partial derivatives with respect to the variables 
and setting them equal to zero, based on the Karush-Kuhn-Tucker (KKT) conditions. The partial derivatives 
with respect to the Lagrange multipliers return the constraints, which have to be less than or equal to zero, 
as illustrated in Equation 4-9. The final KKT condition states that the product of the Lagrange multipliers 
and the constraints is equal to zero (see Equation 4-10). The Lagrange multipliers that are equal to zero 
correspond to data inside the tube, whereas the support vectors have nonzero-valued Lagrange multipliers. 
The solution is written in terms of the support vector only—hence, the solution sparsity. The function 
approximation is represented in Equation 4-12. By replacing Equation 4-9 in Equation 4-8, the dual form of 
the optimization problem can be written as shown in Equation 4-13.
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At the beginning of this section, the weights vector w was augmented with the scalar b, and the 
derivation of the SVR’s mathematical formulation was carried out, disregarding the explicit computation of b 
(see Equation 4-2). However, b could have been calculated from the KKT conditions, as shown next.

Training data that belong to the outside of the boundary of the tube will have nonzero a
i
 or ai

* ; they 
cannot both be zero, because that would mean that the instance (x

i
, y

i
) belongs to the lower and upper 

boundary, which is not possible. Therefore, the corresponding constraints will be satisfied with equality, as 
demonstrated in Equation 4-14. Furthermore, because the point is not outside the tube, xi = 0 , leading to 
the result in Equation 4-15 when aÎ( , )0 C . Equation 4-16 computes b. Performing the same analysis for ai

* , 
one gets Equations 4-17 and 4-18.

  y w x bi
T

i i- - - - =e x 0
 (4-14)

    y w x bi
T

i- - - =e 0  (4-15)

    b y w xi
T

i= - -e  (4-16)

  - + - - =y w x bi
T

i e 0  (4-17)

   b y w xi
T

i= - + -e  (4-18)

Instead of using the KKT conditions, one could have also computed b, while solving the optimization 
problem, using the interior-point method, which can converge to an optimal solution in logarithmic time by 
navigating along the central path of the feasible region. The central path is determined by solving the primal 
and dual optimization problems simultaneously.

Kernel SVR and Different Loss Functions: Mathematical 
Model and Graphical Representation
The previous section dealt with data in the feature space, assuming f (x) is linear. For non linear functions, 
the data can be mapped into a higher dimensional space, called kernel space, to achieve a higher accuracy, 
using kernels that satisfy Mercer’s condition (see Figure 4-4), as discussed previously for classification. 
Therefore, replacing all instances of x in Equations 4-1–4-18 with k(x

i
, x

j
) yields the primal formulation 

shown in Equation 4-19, where j(.) is the transformation from feature to kernel space. Equation 4-20 
describes the new weight vector in terms of the transformed input. The dual problem is represented in 
Equation 4-21, and the function approximation f (x) is in Equation 4-22, where k(.,.), the kernel, is as 
illustrated in Equation 4-23.
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Figure 4-4. Nonlinear regression
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Bayesian Linear Regression 
Unlike SVR, Bayesian linear regression is a generative, as opposed to discriminant, method, that builds 
linear regression models based on Bayesian inference. After specifying a model, the method computes the 
posterior distribution of parameters and model predictions. This statistical analysis allows the method to 
determine model complexity during training, which results in a model that is less likely to overfit.

For simplicity, assume that a single output yp Î  are predicted using the model parameters w 
learned from a set of predictor variables X sized k´1  and observations Y sized n´1 . The observations Y 
are assumed to have the distribution in Equation 4-24, where s 2 is the variance of the uncertainty in the 
observations:

          P Y w X Xw I| , , ~ ,s s2 2( ) ( )  (4-24)

Once the model has been specified, the model parameters’ posterior distributions can be estimated. 
This is done by first assuming a prior distribution of the model parameters (see Equation 4-25). Given the 
model variance and observations, the posterior distribution of the model parameters (which is Gaussian) 
is as shown in Equation 4-26, with the mean computed in Equation 4-27, and the standard deviation scale 
factor, in Equation 4-28. The mean is simply the Moore-Penrose pseudoinverse of the predictive variables 
multiplied by the observations. Given some observations, the posterior probability of the model variance is 
computed, and an inverse chi-squared distribution (see Equation 4-29), with n k-  degrees of freedom and 
a scale factor s2 (see Equation 4-30), is obtained. The scale factor is the error between the model’s predicted 
output and an observation.
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The marginal posterior distribution of the model parameters, given the observations, is a multivariate 
Student’s t-distribution, shown in Equation 4-31 and computed in Equation 4-32, with n k-  degrees of 
freedom, w

E
 mean, and s2 scale factor, as P w Y|s 2 ,( )  has a normal distribution, and P Ys 2|( )  has an inverse 

chi-squared distribution.

          P w Y t n k w sE|( ) -( )~ , , 2  (4-31)
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Given the model parameter probability distributions and a set of predictive variables X
p
, the marginal 

posterior predictive distribution Y
p
, which is a multivariate Student’s t-distribution (see Equation 4-33) can 

be determined. The mean is computed in Equation 4-34, and the variance, in Equation 4-35. The predictive 
distribution variance depends on the uncertainty in the observed data and the model parameters.

           P Y Y t n k E Y Y var Y YP p p| | |( ) - ( ) ( )( )~ , , ,s 2  (4-33)

   E Y Y X wp p E|( ) =  (4-34)

           var Y Y I X v Xp p w p
T|s s2 2,( ) = +( )  (4-35)

The concept of Bayesian regression is displayed in Figure 4-5, in which the sample input data available 
during training would have been generated by a Gaussian distribution. If these instances represent their 
population well, the regression model is expected to generalize well.

Figure 4-5. One-dimensional regression example illustrating the Gaussian conditional probability 
distributions of the output on the input and model parameters

DISCrIMINaNt VS. GeNeratIVe MODeLS

a generative approach models the joint probability distribution of the data and class labels p(x, Ck), 
based on the prior probability distributions of the class labels p(Ck) and the likelihood probability 
distribution p x Ck|( ). the joint distribution computes the posterior probability distributions p C kk |( ) , 
which will be used to map datapoints to class labels.

a discriminant approach directly computes the posterior probability distributions p C xk |( )  without 
computing the joint probability distribution p(x, Ck). a discriminant approach produces a mapping from 
the datapoints to the class labels without computing probability distributions. therefore, this approach 
performs the inference and decision stages in one step.
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Advantages Disadvantages

Generative Robust to outliers•	
Can easily update decision model•	
Allows combination of classifiers trained  •	
on different types of data by applying 
probability rules
Can improve prediction accuracy by •	
measuring confidence in classification based 
on posterior distributions and not making 
predictions when confidence is low

Computationally demanding•	
Requires a lot of training data•	
Suffers from the curse of •	
dimensionality

Discriminant Computationally less demanding•	
Simple to implement•	

Sensitive to noisy data and outliers•	
Requires retraining for any changes •	
in the decision model

Asymmetrical SVR for Power Prediction: Case Study
Justification: In many instances of approximation, there is an uneven consequence of misprediction, 
based on whether the error is above or below the target value (Stockman et al. 2012a, 2012b). For example, 
in power prediction an incorrect low estimate may be of much more concern than an overestimate. 
Underpredicting can lead to insufficient cooling of datacenters, inadequate uninterruptible power supply 
(UPS), unavailable processor resources, needless powering down of chip components, and so on. In the case 
of forest fire behavior prediction, a lower estimate of the threat can lead to greater property damage as well 
as loss of life, owing to a lack of adequate supply of personnel and equipment.

In these instances, it is crucial to minimize misestimates on one side of a boundary, even at the risk of 
reducing the accuracy of the entire estimation. It is necessary to restrict the loss function so that a minimal 
number of under- or overestimates occur. This leads to an asymmetrical loss function for training, in which a 
greater penalty is applied when the misestimate is on the wrong side of the boundary.

Approach: Asymmetrical and lower-bounded SVR (ALB-SVR) was proposed by Stockman, Awad, and 
Khanna (2012a). This approach modifies the SVR loss functions and corresponding error functions, such 
that the e-tube is only above the function, as demonstrated in Figure 4-6. The penalty parameter C is split 
into C+ and C- so that different penalties can be applied to the upper and lower mispredictions.

Figure 4-6. (a) SVR and (b) ALB-SVR (Source: Intel, 2012)
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ALB-SVR uses the Huber insensitive loss function (Popov and Sautin 2008). This function is similar to 
the e-insensitive loss function; however, it increases quadratically for small errors outside the e-bound but 
below a certain threshold ¶  > e and then linearly beyond ¶. This makes it robust with respect to outliers.  
The Huber insensitive loss function is represented by:
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By substituting the new loss function, ALB-SVR’s empirical risk becomes
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Validation: ALB-SVR was tested on a dataset used by David et al. (2010) and Stockman et al. (2010) 
that consists of 17,765 samples of five attributes of memory activity counters, with the actual corresponding 
power consumed in watts, as measured directly by a memory power riser. The memory power model 
attributes are activity, read, write, CKE = high, and CKE = low. ALB-SVR was implemented with a modified 
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version of LIBSVM (Chang and Lin 2011) for ALB-SVR. Simulation results (see Figures 4-7 – 4-9) took the 
average of ten runs of threefold cross-validation of a radial basis function (RBF) kernel, with a combination 
of grid search and heuristic experimentation to find the best metaparameters e, g, C+, and C–.

Figure 4-8. Power estimates for running average power limit (RAPL) data with Huber insensitive SVR 
(Source: Intel, 2012)

 Type    
% 
Error  

% Out of 
Bound  

Huber 
insensitive 
SVR 

512 – 128 0.1 1.0e-06 1.03 67.07  

Huber 
insensitive 
ALB-SVR 

10,000,000 1,000 128 0.1 1.0e-06
 

1.50 0.24 

Figure 4-7. Comparative results of SVR versus ALB-SVR (Source: Intel, 2012)
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In SVR, support vectors are those points that lie outside the e-tube. The smaller the value of e, the more 
points that lie outside the tube and hence the greater the number of support vectors. With ALB-SVR the  
e-tube is cut in half, and the lower e -bound is dropped. Therefore, for the same g and e  parameters, more 
points lie outside the tube, and there are a larger number of support vectors. This means that the number of 
support vectors is greater for ALB-SVR than for SVR. This increase in the number of support vectors indicates 
that using ALB-SVR has some negative effects on the complexity of the estimating function. Although the 
percentage relative error data set was higher (5.06 percent), this is acceptable, because the main purpose 
was to reduce the number of underestimates and this was achieved.
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