Computer
Vision Metrics

Survey, Taxonomy, and Analysis

Scott Krig

APIess

open

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress®

Contents at a Glance

About the AUthor ... ———— XXvii
Acknowledgments.........cccuuunsmmmmmmmmmmmmmsssssssssnnseesnsssssssssnsammmm" XXiX
Introduction ... —————— XXXi
Chapter 1: Image Capture and Representation.............cccusueennrissnnns 1
Chapter 2: Image Pre-Processing.....c..ccsuussmsssssssssssnsssssnssssssnssssanss 39
Chapter 3: Global and Regional Featuresccccuseennsssssnnnsssssnnns 85
Chapter 4: Local Feature Design Concepts, Classification,
and Learning......coussesssssssssssssssssanssssanssssanssssansssssnsssssnnssssnsssssnnssss 131
Chapter 5: Taxonomy of Feature Description Attributes............. 191
Chapter 6: Interest Point Detector and Feature
DeScCriptor SUIVeYccciuussmmmmmmssssnsmmsssssnssssssssnsnssssssnnnssssssnnnnsssnnns 217
Chapter 7: Ground Truth Data, Content, Metrics, and Analysis... 283
Chapter 8: Vision Pipelines and Optimizations........ccussseeeeennnnnnns 313
Appendix A: Synthetic Feature Analysis........ccuueemmmmssnnnnsssssnannns 365
Appendix B: Survey of Ground Truth Datasets........ccuscenrrsssannnnns 401
Appendix C: Imaging and Computer Vision Resources..........cuuu. 411
Appendix D: Extended SDM Metricscccrmmmssunmnmsssssnsnsssssnnannas 419
Bibliographycccciunssseemmmnnssessnmmmsssssnmmssssssnmsssssssnnssssssssessssnnsssnsans 437
T 465

Introduction

Dirt. This is a jar of dirt.

Yes.

...Is the jar of dirt going to help?
Ifyou don’t want it, give it back.

— Pirates Of The Carribean, Jack Sparrow and Tia Dalma

This work focuses on a slice through the field - Computer Vision Metrics - from the view of
feature description metrics, or how to describe, compute and design the macro-features
and micro-features that make up larger objects in images. The focus is on the pixel-side

of the vision pipeline, rather than the back-end training, classification, machine learning
and matching stages. This book is suitable for reference, higher-level courses, and
self-directed study in computer vision. The book is aimed at someone already familiar
with computer vision and image processing; however, even those new to the field will

find good introductions to the key concepts at a high level, via the ample illustrations and
summary tables.

I view computer vision as a mathematical artform and its researchers and
practitioners as artists. So, this book is more like a tour through an art gallery rather than a
technical or scientific treatise. Observations are provided, interesting questions are raised,
a vision taxonomy is suggested to draw a conceptual map of the field, and references are
provided to dig deeper. This book is like an attempt to draw a map of the world centered
around feature metrics, inaccurate and fuzzy as the map may be, with the hope that others
will be inspired to expand the level of detail in their own way, better than what I, or even
a few people, can accomplish alone. If I could have found a similar book covering this
particular slice of subject matter, I would not have taken on the project to write this book.

What is not in the Book

Readers looking for computer vision “how-to” source code examples, tutorial
discussions, performance analysis, and short-cuts will not find them here, and instead
should consult the well-regarded http://opencv.org library resources, including many
fine books, online resources, source code examples, and several blogs. There is nothing
better than OpenCV for the hands-on practitioner. For this reason, this book steers a
clear path around duplication of the “how-to” materials already provided by the OpenCV
community and elsewhere, and instead provides a counterpoint discussion, including

a comprehensive survey, analysis and taxonomy of methods. Also, do not expect all
computer vision topics to be covered deeply with proofs and performance analysis,

”

XXXi

http://opencv.org

INTRODUCTION

since the bibliography references cover these matters quite well: for example, machine
learning, training and classification methods are only lightly introduced, since the focus
here is on the feature metrics.

In summary, this book is about the feature metrics, showing “what” methods
practitioners are using, with detailed observations and analysis of “why” those methods
work, with a bias towards raising questions via observations rather than providing too
many answers. I like the questions best because good questions lead to many good
answers, and each answer is often pregnant with more good questions...

This book is aimed at a survey level, with a taxonomy and analysis, so no detailed
examples of individual use-cases or horse races between methods are included. However,
much detail is provided in over 540+ bibliographic references to dig deeper into practical
matters. Additionally, some “how-to” and “hands-on” resources are provided in
Appendix C. And a little ‘perfunctory’ source code accompanying parts of this book is
available online, for Appendix A covering the interest point detector evaluations for
the synthetic interest point alphabets introduced in Chapter 7; and in Appendix D for
extended SDM metrics covered in Chapter 3.

m

”m

What is in the Book

Specifically, Chapter 1 provides preamble on 2d image formation and 3d depth imaging,
and Chapter 2 promotes intelligent image pre-processing to enhance feature description.
Chapters 3 through 6 form the core discussion on feature description, with an emphasis
on local features. Global and regional metrics are covered in Chapter 3, feature descriptor
concepts in Chapter 4, a vision taxonomy is suggested in Chapter 5, and local feature
description is covered in Chapter 6. Ground truth data is covered in Chapter 7, and
Chapter 8 discusses hypothetical vision pipelines and hypothetical optimizations from
an engineering perspective, as a set of exercises to tie vision concepts together into
real systems (coursework assignments can be designed to implement and improve
the hypothetical examples in Chapter 8). A set of synthetic interest point alphabets is
developed in Chapter 7, and ten common detectors are run against those alphabets, with
the results provided in Appendix A. It is difficult to cleanly partition all topics in image
processing and computer vision, so there is some overlap in the chapters. Also, there
are many hybrids used in practice, so there’s inevitable overlap in the Chapter 5 vision
taxonomy, and creativity always arrives on the horizon to find new and unexpected ways
of using old methods. However, the taxonomy is a starting point and helped to guide the
organization of the book.

Therefore, the main goal has been to survey and understand the range of methods
used to describe features, without passing judgment on which methods are better.
Some history is presented to describe why certain methods were developed, and what
properties of invariance or performance were the goals, and we leave the claims to be
proven by others, since “how” each method is implemented determines performance
and accuracy, and “what” each method is tested against in terms of ground truth data
really tells the rest of the story. If we can glean good ideas from the work of others, that is
a measure of the success of their work.

XxXXii

INTRODUCTION

Scope

For brevity’s sake, I exclude a deep treatment of selected topics not directly related to

the computer vision metrics themselves; this is an unusual approach, since computer
vision discussions typically include a wider range of topics. Specifically, the topics not
covered deeply here include statistical and machine learning, classification and training,
feature database construction and optimization, and searching and sorting. Bibliography
references are provided instead. Distance functions are discussed, since they are directly
linked to the feature metric. (A future edition of this book may contain a deep dive into
the statistical and machine learning side of computer vision, but not now.)

Terminology Caveat

Sometimes terminology in the literature does not agree when describing similar
concepts. So in some cases, terminology is adopted in this work that is not standardized
across independent research communities. In fact, some new and nonstandard
terminology may be introduced here, possibly because the author is unaware of better
existing terminology (perhaps some of the terminology introduced in this work will
become standardized). Terminology divergence is most pronounced with regard to
mathematical topics like clustering, regression, group distance, and error minimization,
as well as for computer vision topics like keypoints, interest points, anchor points, and
the like. The author recognizes that one is reluctant to change terminology, since so many
concepts are learned based on the terminology. I recall a friend of mine, Homer Mead,
chief engineer for the lunar rover and AWACS radar at Boeing, who sub-consciously
refused to convert from using the older term condenser to use the newer term capacitor.

Inspiration comes from several sources, mostly the opportunity of pioneering:
there is always some lack of clarity, structure and organization in any new field as the
boundaries expand, so in this vast field the opportunity to explore is compelling: to map
out structure and pathways of knowledge that others may follow to find new fields of
study, create better markers along the way, and extend the pathways farther.

The inspiration for this book has come from conversations with a wide range of
people over the years. Where did it all start? It began at Boeing in the early 1980s, while I
was still in college. I was introduced to computer graphics in the Advanced Development
Research labs where I worked, when the first computer-shaded 3D renderings of the
space shuttle were made in raster form. At that time, mainly vector graphics machines
were being used, like Evans & Sutherland Picture Systems, and eventually a BARCO
frame buffer was added to the lab, and advanced raster computer renderings of shaded
images from graphics models were pioneered by Jeff Lane and his group, as well as
Loren Carpenter. Fractals, NURBS, and A-buffer techniques were a few of the methods
developed in the labs, and the math of computer graphics, such as bi-cubic patches and
bi-quintic patches, scared me away from graphics initially. But I was attracted to single
pixels in the BARCO frame buffer, one pixel and line and frame at a time, since they
seemed so intuitive and obvious. I initially pursued imaging and computer vision rather
than all the computer graphics and associated math. However, it turned out that the
computer vision and image processing math was far more diverse and equally complex
anyway. Since then I have also spent considerable time in computer graphics. Back in
the mid-1980s, Don Snow, my boss, who was co-founder and VP of research at Pacific

xxxiii

INTRODUCTION

Western Systems and later at Applied Precision, asked me to analyze the View-PRB
fixed-function hardware unit for pattern recognition to use for automatic wafer probing
(in case we needed to build something like it ourselves) to locate patterns on wafers

and align the machine for probing. Correlation was used for pattern matching, with a
scale-space search method we termed “super-pixels.” The matching rate was four 32x32
patches per second over NTSC with sub-pixel accuracy, and I computed position,
rotation, and offsets to align the wafer prober stage to prepare for wafer probing; we
called this auto-align. I designed a pattern recognition servo system to locate the patterns
with rotational accuracy of a few micro-radians, and positional accuracy of a fraction

of a micron. In the later 1980s, I went to work for Mentor Graphics, and after several
years I left the corporate R&D group reporting to the president Gerry Langeler to start a
company, Krig Research, to focus on computer vision and imaging for high-end military
and research customers based on expensive and now extinct workstations (SGI, Apollo,
Sun... gone, all gone now...), and I have stayed interested ever since. Many things have
changed in our industry; the software seems to all be free, and the hardware or SOC is
almost free as well, so I am not sure how anyone can make any money at this anymore.

More recently, others have also provided inspiration. Thanks to Paul Rosin for synthetic
images and organizational ideas. Thanks to Yann LeCun for providing key references into
deep learning and convolutional networks, and thanks to Shree Nayar for permission to use
a few images, and continuing to provide the computer vision community with inspiration
via the Cave Research projects. And thanks to Luciano Oviedo for vast coverage of industry
activity and strategy about where it is all going, and lively discussions.

Others, too many to list, have also added to my journey. And even though the
conversations have sometimes been brief, or even virtual via email or SKYPE in many cases,
the influence of their work and thinking has remained, so special thanks are due to several
people who have provided comments to the manuscript or book outline, contributed
images, or just plain inspiration they may not realize. Thank you to Rahul Suthankar,
Alexandre Alahi for use of images and discussions; Steve Seitz, Bryan Russel, Liefeng Bo,
and Xiaofeng Ren for deep-dive discussions about RGB-D computer vision and other
research topics; Gutemberg Guerra-filho, Harsha Viswana, Dale Hitt, Joshua Gleason, Noah
Snavely, Daniel Scharstein, Thomas Salmon, Richard Baraniuk, Carl Vodrick, Hervé Jégou,
and Andrew Richardson; and also thanks for many interesting discussions on computer
vision topics with several folks at Intel including Ofri Weschler, Hong Jiang, Andy Kuzma,
Michael Jeronimo, Eli Turiel, and many others whom I have failed to mention.

Summary

In summary, my goal is to survey the methods people are using for feature description—
the key metrics generated—and make it easier for anyone to understand the methods
in practice, and how to evaluate the methods using the vision taxonomy and robustness
criteria to get the results they are looking for, and find areas for extending the state of the
art. And after hearing all the feedback from the first version of this work, I hope to create a
second version that is even better.
Scott Krig
Anno Domini 2014

XXXiv

CHAPTER 1

Image Capture
and Representation

“The changing of bodies into light, and light into bodies, is very
conformable to the course of Nature, which seems delighted with
transmutations.”

—Isaac Newton

Computer vision starts with images. This chapter surveys a range of topics dealing with
capturing, processing, and representing images, including computational imaging,

2D imaging, and 3D depth imaging methods, sensor processing, depth-field processing
for stereo and monocular multi-view stereo, and surface reconstruction. A high-level
overview of selected topics is provided, with references for the interested reader to dig
deeper. Readers with a strong background in the area of 2D and 3D imaging may benefit
from a light reading of this chapter.

Image Sensor Technology

This section provides a basic overview of image sensor technology as a basis for
understanding how images are formed and for developing effective strategies for image
sensor processing to optimize the image quality for computer vision.

Typical image sensors are created from either CCD cells (charge-coupled device) or
standard CMOS cells (complementary metal-oxide semiconductor). The CCD and CMOS
sensors share similar characteristics and both are widely used in commercial cameras.
The majority of sensors today use CMOS cells, though, mostly due to manufacturing
considerations. Sensors and optics are often integrated to create wafer-scale cameras for
applications like biology or microscopy, as shown in Figure 1-1.

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

S ¢~ € Micro-lenses
_<— RGB Color Filters

| <—— CMOS imager
Figure 1-1. Common integrated image sensor arrangement with optics and color filters

Image sensors are designed to reach specific design goals with different
applications in mind, providing varying levels of sensitivity and quality. Consult the
manufacturer’s information to get familiar with each sensor. For example, the size and
material composition of each photo-diode sensor cell element is optimized for a given
semiconductor manufacturing process so as to achieve the best tradeoff between silicon
die area and dynamic response for light intensity and color detection.

For computer vision, the effects of sampling theory are relevant—for example, the
Nyquist frequency applied to pixel coverage of the target scene. The sensor resolution
and optics together must provide adequate resolution for each pixel to image the features
of interest, so it follows that a feature of interest should be imaged or sampled at two
times the minimum size of the smallest pixels of importance to the feature. Of course,
2x oversampling is just a minimum target for accuracy; in practice, single pixel wide
features are not easily resolved.

For best results, the camera system should be calibrated for a given application to
determine the sensor noise and dynamic range for pixel bit depth under different lighting
and distance situations. Appropriate sensor processing methods should be developed to
deal with the noise and nonlinear response of the sensor for any color channel, to detect
and correct dead pixels, and to handle modeling of geometric distortion. If you devise
a simple calibration method using a test pattern with fine and coarse gradations of gray
scale, color, and pixel size of features, you can look at the results. In Chapter 2, we survey
arange of image processing methods applicable to sensor processing. But let’s begin by
surveying the sensor materials.

Sensor Materials

Silicon-based image sensors are most common, although other materials such as gallium
(Ga) are used in industrial and military applications to cover longer IR wavelengths than
silicon can reach. Image sensors range in resolution, depending upon the camera used,
from a single pixel phototransistor camera, through 1D line scan arrays for industrial
applications, to 2D rectangular arrays for common cameras, all the way to spherical
arrays for high-resolution imaging. (Sensor configurations and camera configurations are
covered later in this chapter.)

Common imaging sensors are made using silicon as CCD, CMOS, BSI, and Foveon
methods, as discussed a bit later in this chapter. Silicon image sensors have a nonlinear
spectral response curve; the near infrared part of the spectrum is sensed well, while
blue, violet, and near UV are sensed less well, as shown in Figure 1-2. Note that the
silicon spectral response must be accounted for when reading the raw sensor data and
quantizing the data into a digital pixel. Sensor manufacturers make design compensations
in this area; however, sensor color response should also be considered when calibrating
your camera system and devising the sensor processing methods for your application.

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

0.7

Photovoltaic
0.6 | Blue Enhanced - "'-,_
UV Enhanced i
05 -
-~ 04
£
=
@
g 0.3
g o
&
@
[
0.2
01
00

200 300 400 500 600 700 800 900 1000 1100
Wavelength (nm)

Figure 1-2. Typical spectral response of a few types of silicon photo-diodes. Note the
highest sensitivity in the near-infrared range around 900nm and nonlinear sensitivity
across the visible spectrum of 400-700nm. Removing the IR filter from a camera increases
the near-infrared sensitivity due to the normal silicon response. (Spectral data image © OSI
Optoelectronics Inc. and used by permission)

Sensor Photo-Diode Cells

One key consideration in image sensoring is the photo-diode size or cell size. A sensor
cell using small photo-diodes will not be able to capture as many photons as a large
photo-diode. If the cell size is below the wavelength of the visible light to be captured,
such as blue light at 400nm, then additional problems must be overcome in the sensor
design to correct the image color. Sensor manufacturers take great care to design cells
at the optimal size to image all colors equally well (Figure 1-3). In the extreme, small
sensors may be more sensitive to noise, owing to a lack of accumulated photons and
sensor readout noise. If the photo-diode sensor cells are too large, there is no benefit
either, and the die size and cost for silicon go up, providing no advantage. Common
commercial sensor devices may have sensor cell sizes of around 1 square micron

and larger; each manufacturer is different, however, and tradeoffs are made to reach
specific requirements.

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

T
NERAW/AN
ATRYERY
AT/ AN

3

Sensitivity

Wavelength (nm)

Figure 1-3. Primary color assignment to wavelengths. Note that the primary color regions
overlap, with green being a good monochrome proxy for all colors

Sensor Configurations: Mosaic, Foveon, BSI

There are various on-chip configurations for multi-spectral sensor design, including
mosaics and stacked methods, as shown in Figure 1-4. In a mosaic method, the color
filters are arranged in a mosaic pattern above each cell. The Foveon' sensor stacking
method relies on the physics of depth penetration of the color wavelengths into the
semiconductor material, where each color penetrates the silicon to a different depth,
thereby imaging the separate colors. The overall cell size accommodates all colors, and so
separate cells are not needed for each color.

'Foveon is a registered trademark of Foveon Inc.

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

B :| B filter G filter R filter
G :| Photo-diode —‘ Photo-diode —| Photo-diode —‘
[i %]
Stacked

Photo-diodes

Figure 1-4. (Left) The Foveon method of stacking RGB cells to absorb different wavelengths
at different depths, with all RGB colors at each cell location. (Right) A standard mosaic cell
placement with RGB filters above each photo-diode, with filters only allowing the specific
wavelengths to pass into each photo-diode

Back-side-illuminated (BSI) sensor configurations rearrange the sensor wiring on
the die to allow for a larger cell area and more photons to be accumulated in each cell.
See the Aptina [410] white paper for a comparison of front-side and back-side die circuit
arrangement.

The arrangement of sensor cells also affects the color response. For example, Figure 1-5
shows various arrangements of primary color (R, G, B) sensors as well as white (W) sensors
together, where W sensors have a clear or neutral color filter. The sensor cell arrangements
allow for a range of pixel processing options—for example, combining selected pixels in
various configurations of neighboring cells during sensor processing for a pixel formation
that optimizes color response or spatial color resolution. In fact, some applications just use
the raw sensor data and perform custom processing to increase the resolution or develop
alternative color mixes.

B o=

Bayer RGBG Bayer RGBW CYYM CYGM
Kodak RGBW1 Kodak RGBW2 Kodak RGBW2 RGBC

Figure 1-5. Several different mosaic configurations of cell colors, including white, primary
RGB colors, and secondary CYM cells. Each configuration provides different options for
sensor processing to optimize for color or spatial resolution. (Image used by permission,

© Intel Press, from Building Intelligent Systems)

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

The overall sensor size and format determines the lens size as well. In general,
a larger lens lets in more light, so larger sensors are typically better suited to digital
cameras for photography applications. In addition, the cell placement aspect ratio on
the die determines pixel geometry—for example, a 4:3 aspect ratio is common for digital
cameras while 3:2 is standard for 35mm film. The sensor configuration details are worth
understanding so you can devise the best sensor processing and image pre-processing
pipelines.

Dynamic Range and Noise

Current state-of-the-art sensors provide at least 8 bits per color cell, and usually are

12 to 14 bits. Sensor cells require area and time to accumulate photons, so smaller cells
must be designed carefully to avoid problems. Noise may come from optics, color filters,
sensor cells, gain and A/D converters, post-processing, or the compression methods,

if used. Sensor readout noise also affects effective resolution, as each pixel cell is read
out of the sensor, sent to an A/D converter, and formed into digital lines and columns
for conversion into pixels. Better sensors will provide less noise and higher effective bit
resolution. A good survey of de-noising is found in the work by Ibenthal [409].

In addition, sensor photon absorption is different for each color, and may be
problematic for blue, which can be the hardest color for smaller sensors to image. In
some cases, the manufacturer may attempt to provide a simple gamma-curve correction
method built into the sensor for each color, which is not recommended. For demanding
color applications, consider colorimetric device models and color management (as will be
discussed in Chapter 2), or even by characterizing the nonlinearity for each color channel
of the sensor and developing a set of simple corrective LUT transforms. (Noise-filtering
methods applicable to depth sensing are also covered in Chapter 2.)

Sensor Processing

Sensor processing is required to de-mosaic and assemble the pixels from the sensor
array, and also to correct sensing defects. We discuss the basics of sensor processing in
this section.

Typically, a dedicated sensor processor is provided in each imaging system, including
a fast HW sensor interface, optimized VLIW and SIMD instructions, and dedicated
fixed-function hardware blocks to deal with the massively parallel pixel-processing
workloads for sensor processing. Usually, sensor processing is transparent, automatic,
and set up by the manufacturer of the imaging system, and all images from the sensor are
processed the same way. A bypass may exist to provide the raw data that can allow custom
sensor processing for applications like digital photography.

De-Mosaicking

Depending on the sensor cell configuration, as shown in Figure 1-5, various
de-mosaicking algorithms are employed to create a final RGB pixel from the raw sensor
data. A good survey by Losson and Yang [406] and another by Li et al. [407] provide some
background on the challenges involved and the various methods employed.

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

One of the central challenges of de-mosaicking is pixel interpolation to combine the
color channels from nearby cells into a single pixel. Given the geometry of sensor cell
placement and the aspect ratio of the cell layout, this is not a trivial problem. A related
issue is color cell weighting—for example, how much of each color should be integrated
into each RGB pixel. Since the spatial cell resolution in a mosaicked sensor is greater
than the final combined RGB pixel resolution, some applications require the raw sensor
data to take advantage of all the accuracy and resolution possible, or to perform special
processing to either increase the effective pixel resolution or do a better job of spatially
accurate color processing and de-mosaicking.

Dead Pixel Correction

A sensor, like an LCD display, may have dead pixels. A vendor may calibrate the sensor at
the factory and provide a sensor defect map for the known defects, providing coordinates
of those dead pixels for use in corrections in the camera module or driver software. In
some cases, adaptive defect correction methods [408] are used on the sensor to monitor
the adjacent pixels to actively look for defects and then to correct a range of defect

types, such as single pixel defects, column or line defects, and defects such as 2x2 or 3x3
clusters. A camera driver can also provide adaptive defect analysis to look for flaws in real
time, and perhaps provide special compensation controls in a camera setup menu.

Color and Lighting Corrections

Color corrections are required to balance the overall color accuracy as well as the white
balance. As shown in Figure 1-2, color sensitivity is usually very good in silicon sensors
for red and green, but less good for blue, so the opportunity for providing the most
accurate color starts with understanding and calibrating the sensor.

Most image sensor processors contain a geometric processor for vignette correction,
which manifests as darker illumination at the edges of the image, as shown in Chapter 7
(Figure 7-6). The corrections are based on a geometric warp function, which is calibrated
at the factory to match the optics vignette pattern, allowing for a programmable
illumination function to increase illumination toward the edges. For a discussion of
image warping methods applicable to vignetting, see reference [490].

Geometric Corrections

A lens may have geometric aberrations or may warp toward the edges, producing images
with radial distortion, a problem that is related to the vignetting discussed above and
shown in Chapter 7 (Figure 7-6). To deal with lens distortion, most imaging systems have
a dedicated sensor processor with a hardware-accelerated digital warp unit similar to the
texture sampler in a GPU. The geometric corrections are calibrated and programmed in
the factory for the optics. See reference [490] for a discussion of image warping methods.

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

Cameras and Computational Imaging

Many novel camera configurations are making their way into commercial applications
using computational imaging methods to synthesize new images from raw sensor data—
for example, depth cameras and high dynamic range cameras. As shown in Figure 1-6,

a conventional camera system uses a single sensor, lens, and illuminator to create 2D
images. However, a computational imaging camera may provide multiple optics, multiple
programmable illumination patterns, and multiple sensors, enabling novel applications
such as 3D depth sensing and image relighting, taking advantage of the depth
information, mapping the image as a texture onto the depth map, and introducing new
light sources and then re-rendering the image in a graphics pipeline. Since computational
cameras are beginning to emerge in consumer devices and will become the front end of
computer vision pipelines, we survey some of the methods used.

Image Enhancements 2D Single Lens Single Flash
Color Enhancements Sensor
Filtering, Contrast

Computational Imaging L Pr :P o ff/as;‘h
- Pattern Projectors

High Dynamic Range HDR 0 Multi-lens Optics Arrays :

ggg p Fr?IT = Sensor - Plenoptic Lens Arrays Sunles
lepth Maps - Sphere/Ball Lenses

Focal Plane Refocusing Array A

Focal Sweep } ¢

Rolling Shutter
Panorama Stitching
Image

Figure 1-6. Comparison of computational imaging systems with conventional cameras.
(Top) Simple camera model with flash, lens, and imaging device followed by image
enhancements like sharpening and color corrections. (Bottom) Computational imaging
using programmable flash, optics arrays, and sensor arrays, followed by computational
imaging applications

Overview of Computational Imaging

Computational imaging [447,414] provides options for synthesizing new images from

the raw image data. A computational camera may control a programmable flash pattern
projector, a lens array, and multiple image sensors, as well as synthesize new images from
the raw data, as illustrated in Figure 1-6. To dig deeper into computational imaging and
explore the current research, see the CAVE Computer Vision Laboratory at Columbia
University and the Rochester Institute of Technology Imaging Research. Here are some of
the methods and applications in use.

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

Single-Pixel Computational Cameras

Single-pixel computational cameras can reconstruct images from a sequence of single
photo detector pixel images of the same scene. The field of single-pixel cameras [103, 104]
falls into the domain of compressed sensing research, which also has applications outside
image processing extending into areas such as analog-to-digital conversion.

As shown in Figure 1-7, a single-pixel camera may use a micro-mirror array or a
digital mirror device (DMD), similar to a diffraction grating. The gratings are arranged in
a rectangular micro-mirror grid array, allowing the grid regions to be switched on or off
to produce binary grid patterns. The binary patterns are designed as a pseudo-random
binary basis set. The resolution of the grid patterns is adjusted by combining patterns
from adjacent regions—for example, a grid of 2x2 or 3x3 micro-mirror regions.

Photo-diode Bitstream

Array

Figure 1-7. A single-pixel imaging system where incoming light is reflected through a DMD
array of micro-mirrors onto a single photo-diode. The grid locations within the micro-mirror
array can be opened or closed to light, as shown here, to create binary patterns, where the
white grid squares are reflective and open, and the black grid squares are closed. (Image
used by permission, © R. G. Baraniuk, Compressive Sensing Lecture Notes)

A sequence of single-pixel images is taken through a set of pseudo-random micro
lens array patterns, then an image is reconstructed from the set. In fact, the number of
pattern samples required to reconstruct the image is lower than the Nyquist frequency,
since a sparse random sampling approach is used and the random sampling approach
has been proven in the research to be mathematically sufficient [103, 104]. The grid
basis-set sampling method is directly amenable to image compression, since only a
relatively sparse set of patterns and samples are taken. Since the micro-mirror array us
es rectangular shapes, the patterns are analogous to a set of HAAR basis functions.
(For more information, see Figures 2-20 and 6-22.)

The DMD method is remarkable, in that an image can be reconstructed from a
fairly small set of images taken from a single photo detector, rather than a 2D array of
photo detectors as in a CMOS or CCD image sensor. Since only a single sensor is used,
the method is promising for applications with wavelengths outside the near IR and
visible spectrum imaged by CMOS and CCD sensors. The DMD method can be used,
for example, to detect emissions from concealed weapons or substances at invisible
wavelengths using non-silicon sensors sensitive to nonvisible wavelengths.

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

2D Computational Cameras

Novel configurations of programmable 2D sensor arrays, lenses, and illuminators are
being developed into camera systems as computational cameras [424,425,426], with
applications ranging from digital photography to military and industrial uses, employing
computational imaging methods to enhance the images after the fact. Computational
cameras borrow many computational imaging methods from confocal imaging [419]
and confocal microscopy [421, 420]—for example, using multiple illumination patterns
and multiple focal plane images. They also draw on research from synthetic aperture
radar systems [422] developed after World War II to create high-resolution images
and 3D depth maps using wide baseline data from a single moving-camera platform.
Synthetic apertures using multiple image sensors and optics for overlapping fields of
view using wafer-scale integration are also topics of research [419]. We survey here a few
computational 2D sensor methods, including high resolution (HR), high dynamic range
(HDR), and high frame rate (HF) cameras.

The current wave of commercial digital megapixel cameras, ranging from around
10 megapixels on up, provide resolution matching or exceeding high-end film used in a
35mm camera [412], so a pixel from an image sensor is comparable in size to a grain of
silver on the best resolution film. On the surface, there appears to be little incentive to
go for higher resolution for commercial use, since current digital methods have replaced
most film applications and film printers already exceed the resolution of the human eye.

However, very high resolution gigapixel imaging devices are being devised
and constructed as an array of image sensors and lenses, providing advantages for
computational imaging after the image is taken. One configuration is the 2D array
camera, composed of an orthogonal 2D array of image sensors and corresponding
optics; another configuration is the spherical camera as shown in Figure 1-8 [411, 415],
developed as a DARPA research project at Columbia University CAVE.

10

CHAPTER 1 * IMAGE CAPTURE AND REPRESENTATION

Sensor Array L
’J'c“".?-.-;-“h“-
o a) ! Ve
L4 r 4 i [-
" .
e Lens Array b
& i LY
p L
'
i
' Ll =
=2 |8
T
i 3 |3
. 3 |3
L
:"
il
¥ ol
b r
s # .,
v s
- bu. ﬂ’ ’
. - - .
o, "eagaw®
A g ol W E
(b) A 47 FOV design

¢ 82,000 pixels S|

Resistor Dollar Bill 2D Barcode Fingerprint

Figure 1-8. (Top) Components of a very high resolution gigapixel camera, using a novel
spherical lens and sensor arrangement.(Bottom) The resulting high-resolution images
shown at 82,000 x 22,000 = 1.7 gigapixels. (All figures and images used by permission

© Shree Nayar Columbia University CAVE research projects)

High dynamic range (HDR) cameras [416,417,418] can produce deeper pixels with
higher bit resolution and better color channel resolution by taking multiple images of
the scene bracketed with different exposure settings and then combining the images.
This combination uses a suitable weighting scheme to produce a new image with deeper
pixels of a higher bit depth, such as 32 pixels per color channel, providing images that go
beyond the capabilities of common commercial CMOS and CCD sensors. HDR methods
allow faint light and strong light to be imaged equally well, and can combine faint light
and bright light using adaptive local methods to eliminate glare and create more uniform
and pleasing image contrast.

11

CHAPTER 1

IMAGE CAPTURE AND REPRESENTATION

High frame rate (HF) cameras [425] are capable of capturing a rapid succession
of images of the scene into a set and combining the set of images using bracketing
techniques to change the exposure, flash, focus, white balance, and depth of field.

3D Depth Camera Systems

Using a 3D depth field for computer vision provides an understated advantage for many
applications, since computer vision has been concerned in large part with extracting

3D information from 2D images, resulting in a wide range of accuracy and invariance
problems. Novel 3D descriptors are being devised for 3D depth field computer vision, and
are discussed in Chapter 6.

With depth maps, the scene can easily be segmented into foreground and background
to identify and track simple objects. Digital photography applications are incorporating
various computer vision methods in 3-space and thereby becoming richer. Using selected
regions of a 3D depth map as a mask enables localized image enhancements such as
depth-based contrast, sharpening, or other pre-processing methods.

As shown in Table 1-1, there are many ways to extract depth from images. In some
cases, only a single camera lens and sensor are required, and software does the rest. Note
that the illumination method is a key component of many depth-sensing methods, such
as structured light methods. Combinations of sensors, lenses, and illumination are used
for depth imaging and computational imaging, as shown in Figure 1-9. We survey a few
selected depth-sensing methods in this section.

Table 1-1. Selected Methods for Capturing Depth Information

Depth Sensing # of Sensors lllumination Method Characteristics
Technique
Parallax and 2/1/array Passive - Normal Positional shift
Hybrid Parallax lighting measurement in FOV
between two camera
positions, such as stereo,
multi-view stereo, or array
cameras
Size Mapping 1 Passive - Normal Utilizes color tags of
lighting specific size to determine
range and position
Depth of Focus 1 Passive - Normal Multi-frame with scanned
lighting focus
Differential 1 Passive - Normal Two-frame image
Magnification lighting capture at different

magnifications, creating a
distance-based offset

12

(continued)

Table 1-1. (continued)

CHAPTER 1

IMAGE CAPTURE AND REPRESENTATION

Depth Sensing # of Sensors

Technique

lllumination Method

Characteristics

Structured light 1

Time of Flight 1

Shading shift 1

Pattern spreading 1

Beam tracking 1
Spectral Focal 1
Sweep

Diffraction 1
Gratings

Conical Radial 1
Mirror

Active - Projected
lighting

Active - Pulsed
lighting

Active - Alternating
lighting

Active - Multi-beam
lighting

Active - Lighting on
object(s)

Passive - Normal
Lighting

Passive - Normal
Lighting

Passive - Normal
Lighting

Multi-frame pattern
projection

High-speed light pulse
with special pixels
measuring return time of
reflected light

Two-frame shadow
differential measurement
between two light sources
as different positions

Projected 2D spot pattern
expanding at different rate
from camera lens field
spread

Two-point light sources
mounted on objects in
FOV to be tracked

Focal length varies for
each color wavelength,
with focal sweep to
focus on each color and
compute depth [418]

Light passing through
sets of gratings or light
guides provides depth
information [420]

Light from a conical
mirror is imaged at
different depths as a toroid
shape, depth is extracted
from the toroid [413]

Source: Courtesy of Ken Salsmann Aptina [427], with a few other methods added by the

author.

13

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

Ball Lens
RGB. TOF RGB. | RGB e)

O Lens Array
¢ 4 5 6 - 4
a b. e \
5] 9 \
A\,

N\ Sensor Array
¢ \\\/

1.

Figure 1-9. A variety of lens and sensor configurations for common cameras:
a. conventional, b. time-of-flight, c. stereo, d. array, e. plenoptic, f. spherical with ball lens

Depth sensing is not a new field, and is covered very well in several related
disciplines with huge industrial applications and financial resources, such as satellite
imaging, remote sensing, photogrammetry, and medical imaging. However, the topics
involving depth sensing are of growing interest in computer vision with the advent of
commercial depth-sensing cameras such as Kinect, enabling graduate students on a
budget to experiment with 3D depth maps and point clouds using a mobile phone or PC.

Multi-view stereo (MVS) depth sensing has been used for decades to compute digital
elevation maps or DEMs, and digital terrain maps or DTMs, from satellite images using
RADAR and LIDAR imaging, and from regional aerial surveys using specially equipped
airplanes with high-resolution cameras and stable camera platforms, including digital
terrain maps overlaid with photos of adjacent regions stitched together. Photo mosaicking
is a related topic in computer vision that’s gaining attention. The literature on digital
terrain mapping is rich with information on proper geometry models and disparity
computation methods. In addition, 3D medical imaging via CAT and MRI modalities is
backed by a rich research community, uses excellent depth-sensing methods, and offers
depth-based rendering and visualization. However, it is always interesting to observe the
“reinvention” in one field, such as computer vision, of well-known methods used in other
fields. As Solomon said, “There is nothing new under the sun.” In this section we approach
depth sensing in the context of computer vision, citing relevant research, and leave the
interesting journey into other related disciplines to the interested reader.

Binocular Stereo

Stereo [432, 433, 437] may be the most basic and familiar approach for capturing 3D
depth maps, as many methods and algorithms are in use, so we provide a high-level
overview here with selected standard references. The first step in stereo algorithms is
to parameterize the projective transformation from world coordinate points to their
corresponding image coordinates by determining the stereo calibration parameters of
the camera system. Open-source software is available for stereo calibration.? Note that
the L/R image pair is rectified prior to searching for features for disparity computation.
Stereo depth ris computed, as shown in Figure 1-10.

*http://opencv.org, Camera Calibration and 3D Reconstruction

14

http://opencv.org/

CHAPTER 1 " IMAGE CAPTURE AND REPRESENTATION
Pxyz

}.\‘
SN
PN
IR
’ \

L/R Rectified Co-Planar Imagé Pair,Ewith battern search windows

-
,
g
/

Principal
Ray

b = Baseline —
i r=>bf/d T
a’ d = di-dr T

Figure 1-10. Simplified schematic of basic binocular stereo principles

An excellent survey of stereo algorithms and methods is found in the work
of Scharstein and Szeliski [440] and also Lazaros [441]. The stereo geometry is a
combination of projective and Euclidean [437]; we discuss some of the geometric
problems affecting their accuracy later in this section. The standard online resource
for comparing stereo algorithms is provided by Middlebury College,®* where many new
algorithms are benchmarked and comparative results provided, including the extensive
ground truth datasets discussed in Appendix B.

*http://vision.middlebury.edu/~schar/stereo/web/results.php

15

http://vision.middlebury.edu/~schar/stereo/web/results.php

CHAPTER 1

16

IMAGE CAPTURE AND REPRESENTATION

The fundamental geometric calibration information needed for stereo depth
includes the following basics.

Camera Calibration Parameters. Camera calibration is outside
the scope of this work, however the parameters are defined as

11 free parameters [435, 432]—3 for rotation, 3 for translation,
and 5 intrinsic—plus one or more lens distortion parameters to
reconstruct 3D points in world coordinates from the pixels in 2D
camera space. The camera calibration may be performed using
several methods, including a known calibration image pattern or
one of many self-calibration methods [436]. Extrinsic parameters
define the location of the camera in world coordinates, and
intrinsic parameters define the relationships between pixel
coordinates in camera image coordinates. Key variables include
the calibrated baseline distance between two cameras at the
principal point or center point of the image under the optics; the
focal length of the optics; their pixel size and aspect ratio, which is
computed from the sensor size divided by pixel resolution in each
axis; and the position and orientation of the cameras.

Fundamental Matrix or Essential Matrix. These two matrices
are related, defining the popular geometry of the stereo camera
system for projective reconstruction [438, 436, 437]. Their
derivation is beyond the scope of this work. Either matrix may

be used, depending on the algorithms employed. The essential
matrix uses only the extrinsic camera parameters and camera
coordinates, and the fundamental matrix depends on both the
extrinsic and intrinsic parameters, and reveals pixel relationships
between the stereo image pairs on epipolar lines.

In either case, we end up with projective transformations to reconstruct the 3D
points from the 2D camera points in the stereo image pair.
Stereo processing steps are typically as follows:

1.
2.

Capture: Photograph the left/right image pair simultaneously.

Rectification: Rectify left/right image pair onto the same plane,
so that pixel rows x coordinates and lines are aligned. Several
projective warping methods may be used for rectification [437].
Rectification reduces the pattern match problem to a 1D search
along the x-axis between images by aligning the images along the
x-axis. Rectification may also include radial distortion corrections
for the optics as a separate step; however, many cameras include
a built-in factory-calibrated radial distortion correction.

Feature Description: For each pixel in the image pairs, isolate a
small region surrounding each pixel as a target feature descriptor.
Various methods are used for stereo feature description [215, 120].

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

4. Correspondence: Search for each target feature in the opposite
image pair. The search operation is typically done twice, first
searching for left-pair target features in the right image and then
right-pair target features in the left image. Subpixel accuracy is
required for correspondence to increase depth field accuracy.

5. Triangulation: Compute the disparity or distance between
matched points using triangulation [439]. Sort all L/R target
feature matches to find the best quality matches, using one of
many methods [440].

6. Hole Filling: For pixels and associated target features with no
corresponding good match, there is a hole in the depth map at
that location. Holes may be caused by occlusion of the feature in
either of the L/R image pairs, or simply by poor features to begin
with. Holes are filled using local region nearest-neighbor pixel
interpolation methods.

Stereo depth-range resolution is an exponential function of distance from the
viewpoint: in general, the wider the baseline, the better the long-range depth resolution.

A shorter baseline is better for close-range depth (see Figures 1-10 and 1-20). Human-eye
baseline or inter-pupillary distance has been measured as between 50 and75mm, averaging
about 70mm for males and 65mm for females.

Multi-view stereo (MVS) is a related method to compute depth from several views
using different baselines of the same subject, such as from a single or monocular camera,
or an array of cameras. Monocular, MVS, and array camera depth sensing are covered
later in this section.

Structured and Coded Light

Structured or coded light uses specific patterns projected into the scene and imaged back,
then measured to determine depth; see Figure 1-11. We define the following approaches
for using structured light for this discussion [445]:

e Spatial single-pattern methods, requiring only a single
illumination pattern in a single image.

¢ Timed multiplexing multi-pattern methods, requiring a
sequence of pattern illuminations and images, typically using
binary or n-array codes, sometimes involving phase shifting
or dithering the patterns in subsequent frames to increase
resolution. Common pattern sequences include gray codes,
binary codes, sinusoidal codes, and other unique codes.

17

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

I ——
|
I ————
I
I —ee——
a.
[_ e
|]
_ I e—
b.
| |
— Em
:: | Il u
oo - uE
i — .
c. d. — CL L
HNEE | |

Figure 1-11. Selected structured light patterns and methods: a. gray codes, b. binary codes,
c. regular spot grid, d. randomized spot grid (as used in original Kinect), e. sinusoidal
phase shift patters, f. randomized pattern for compressive structured light [446]

For example, in the original Microsoft Kinect 3D depth camera, structured light
consisting of several slightly different micro-grid patterns or pseudo-random points
of infrared light are projected into the scene, then a single image is taken to capture
the spots as they appear in the scene. Based on analysis of actual systems and patent
applications, the original Kinect computes the depth using several methods, including
(1) the size of the infrared spot—larger dots and low blurring mean the location is nearer,
while smaller dots and more blurring mean the location is farther away; (2) the shape of
the spot—a circle indicates a parallel surface, an ellipse indicates an oblique surface; and
(3) by using small regions or a micro pattern of spots together so that the resolution is
not very fine—however, noise sensitivity is good. Depth is computed from a single image
using this method, rather than requiring several sequential patterns and images.

Multi-image methods are used for structured light, including projecting sets of
time-sequential structured and coded patterns, as shown in Figure 1-11. In multi-image
methods, each pattern is sent sequentially into the scene and imaged, then the combination
of depth measurements from all the patterns is used to create the final depth map.

Industrial, scientific, and medical applications of depth measurements from
structured light can reach high accuracy, imaging objects up to a few meters in size with
precision that extends to micrometer range. Pattern projection methods are used, as well
as laser-stripe pattern methods using multiple illumination beams to create wavelength
interference; the interference is the measured to compute the distance. For example,
common dental equipment uses small, hand-held laser range finders inserted into the
mouth to create highly accurate depth images of tooth regions with missing pieces, and
the images are then used to create new, practically perfectly fitting crowns or fillings using
CAD/CAM micro-milling machines.

Of course, infrared light patterns do not work well outdoors in daylight; they become
washed out by natural light. Also, the strength of the infrared emitters that can be used
is limited by practicality and safety. The distance for effectively using structured light
indoors is restricted by the amount of power that can be used for the IR emitters; perhaps

18

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

5 meters is a realistic limit for indoor infrared light. Kinect claims a range of about

4 meters for the current TOF (time of flight) method using uniform constant infrared
illumination, while the first-generation Kinect sensor had similar depth range using
structured light.

In addition to creating depth maps, structured or coded light is used for
measurements employing optical encoders, as in robotics and process control systems.
The encoders measure radial or linear position. They provide IR illumination patterns
and measure the response on a scale or reticle, which is useful for single-axis positioning
devices like linear motors and rotary lead screws. For example, patterns such as the
binary position code and the reflected binary gray code [444] can be converted easily
into binary numbers (see Figure 1-11). The gray code set elements each have a Hamming
distance of 1 between successive elements.

Structured light methods suffer problems when handling high-specular reflections
and shadows; however, these problems can be mitigated by using an optical diffuser
between the pattern projector and the scene using the diffuse structured light methods
[443] designed to preserve illumination coding. In addition, multiple-pattern structured
light methods cannot deal with fast-moving scenes; however, the single-pattern methods
can deal well with frame motion, since only one frame is required.

Optical Coding: Diffraction Gratings

Diffraction gratings are one of many methods of optical coding [447] to create a set of
patterns for depth-field imaging, where a light structuring element, such as a mirror,
grating, light guide, or special lens, is placed close to the detector or the lens. The original
Kinect system is reported to use a diffraction grating method to create the randomized
infrared spot illumination pattern. Diffraction gratings [430,431] above the sensor, as
shown in Figure 1-12, can provide angle-sensitive pixel sensing. In this case, the light is
refracted into surrounding cells at various angles, as determined by the placement of the
diffraction gratings or other beam-forming elements, such as light guides. This allows the
same sensor data to be processed in different ways with respect to a given angle of view,
yielding different images.

Gratings

1 1 [
[L) ()
-----:'---dl:--ﬂll'----------
1

Photo-diodes
Figure 1-12. Diffraction gratings above silicon used to create the Talbot Effect (first

observed around 1836) for depth imaging. (For more information, see reference [430].)
Diffraction gratings are a type of light-structuring element

19

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

This method allows the detector size to be reduced while providing higher resolution
images using a combined series of low-resolution images captured in parallel from
narrow aperture diffraction gratings. Diffraction gratings make it possible to produce
a wide range of information from the same sensor data, including depth information,
increased pixel resolution, perspective displacements, and focus on multiple focal planes
after the image is taken. A diffraction grating is a type of illumination coding device.

As shown in Figure 1-13, the light-structuring or coding element may be placed in
several configurations, including [447]:

e Objectside coding: close to the subjects

e Pupil plane coding: close to the lens on the object side
e Focal plane coding: close to the detector

e Illumination coding: close to the illuminator

Optical Optical Optical
Encoder M Optical 7 [Encoder Encoder + (==

Encoder Nlluminator =750

Lens Lens Lens

Lens

Detector Detector Detector Detector

Figure 1-13. Various methods for optical structuring and coding of patterns [447]: (Left to
right): Object side coding, pupil plane coding, focal plane coding, illumination coding or
structured light. The illumination patterns are determined in the optical encoder

Note that illumination coding is shown as structured light patterns in Figure 1-11,
while a variant of illumination coding is shown in Figure 1-7, using a set of mirrors that
are opened or closed to create patterns.

Time-of-Flight Sensors

By measuring the amount of time taken for infrared light to travel and reflect, a time-of-flight
(TOF) sensor is created [450]. A TOF sensor is a type of range finder or laser radar [449)].
Several single-chip TOF sensor arrays and depth camera solutions are available, such as
the second version of the Kinect depth camera. The basic concept involves broadcasting
infrared light at a known time into the scene, such as by a pulsed IR laser, and then
measuring the time taken for the light to return at each pixel. Sub-millimeter accuracy at
ranges up to several hundred meters is reported for high-end systems [449], depending
on the conditions under which the TOF sensor is used, the particular methods employed
in the design, and the amount of power given to the IR laser.

Each pixel in the TOF sensor has several active components, as shown in
Figure 1-14, including the IR sensor well, timing logic to measure the round-trip time
from illumination to detection of IR light, and optical gates for synchronization of the
electronic shutter and the pulsed IR laser. TOF sensors provide laser range-finding

20

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

capabilities. For example, by gating the electronic shutter to eliminate short round-trip
responses, environmental conditions such as fog or smoke reflections can be reduced.
In addition, specific depth ranges, such as long ranges, can be measured by opening and
closing the shutter at desired time intervals.

Sensor Gate / Shutter < > Pulsed Light Gate
IR Sensor < > Pulsed IR Laser

Timing controls

Figure 1-14. A hypothetical TOF sensor configuration. Note that the light pulse length and
sensor can be gated together to target specific distance ranges

Ilumination methods for TOF sensors may use very short IR laser pulses for a
first image, acquire a second image with no laser pulse, and then take the difference
between the images to eliminate ambient IR light contributions. By modulating the IR
beam with an RF carrier signal using a photonic mixer device (PMD), the phase shift
of the returning IR signal can be measured to increase accuracy—which is common
among many laser range-finding methods [450]. Rapid optical gating combined with
intensified CCD sensors can be used to increase accuracy to the sub-millimeter range
in limited conditions, even at ranges above 100 meters. However, multiple IR reflections
can contribute errors to the range image, since a single IR pulse is sent out over the entire
scene and may reflect off of several surfaces before being imaged.

Since the depth-sensing method of a TOF sensor is integrated with the sensor
electronics, there is very low processing overhead required compared to stereo and other
methods. However, the limitations of IR light for outdoor situations still remain [448],
which can affect the depth accuracy.

21

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

Array Cameras

As shown earlier in Figure 1-9, an array camera contains several cameras, typically
arranged in a 2D array, such as a 3x3 array, providing several key options for computational
imaging. Commercial array cameras for portable devices are beginning to appear. They may
use the multi-view stereo method to compute disparity, utilizing a combination of sensors
in the array, as discussed earlier. Some of the key advantages of an array camera include
awide baseline image set to compute a 3D depth map that can see through and around
occlusions, higher-resolution images interpolated from the lower-resolution images of each
sensory, all-in-focus images, and specific image refocusing at one or more locations. The
maximum aperture of an array camera is equal to the widest baseline between the sensors.

Radial Cameras

A conical, or radial, mirror surrounding the lens and a 2D image sensor create a radial
camera [413], which combines both 2D and 3D imaging. As shown in Figure 1-15, the
radial mirror allows a 2D image to form in the center of the sensor and a radial toroidal
image containing reflected 3D information forms around the sensor perimeter. By
processing the toroidal information into a point cloud based on the geometry of the
conical mirror, the depth is extracted and the 2D information in the center of the image
can be overlaid as a texture map for full 3D reconstruction.

Camera Mirror Subject

=

Figure 1-15. (Left) Radial camera system with conical mirror to capture 3D reflections.
(Center) Captured 3D reflections around the edges and 2D information of the face in the
center. (Right) 3D image reconstructed from the radial image 3D information and the

2D face as a texture map. (Images used by permission © Shree Nayar Columbia University
CAVE)

22

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

Plenoptics: Light Field Cameras

Plenoptic methods create a 3D space defined as a light field, created by multiple optics.
Plenoptic systems use a set of micro-optics and main optics to image a 4D light field
and extract images from the light field during post-processing [451, 452, 423]. Plenoptic
cameras require only a single image sensor, as shown in Figure 1-16. The 4D light field
contains information on each point in the space, and can be represented as a volume
dataset, treating each point as a voxel, or 3D pixel with a 3D oriented surface, with color
and opacity. Volume data can be processed to yield different views and perspective
displacements, allowing focus at multiple focal planes after the image is taken. Slices of
the volume can be taken to isolate perspectives and render 2D images. Rendering a light
field can be done by using ray tracing and volume rendering methods [453, 454].

o
Subjects Main Lens Micro-Lens Array Sensor

Figure 1-16. A plenoptic camera illustration. Multiple independent subjects in the scene
can be processed from the same sensor image. Depth of field and focus can be computed for
each subject independently after the image is taken, yielding perspective and focal plane
adjustments within the 3D light field

In addition to volume and surface renderings of the light field, a 2D slice from the
3D field or volume can be processed in the frequency domain by way of the Fourier
Projection Slice Theorem [455], as illustrated in Figure 1-17. This is the basis for medical
imaging methods in processing 3D MRI and CAT scan data. Applications of the Fourier
Projection Slice method to volumetric and 3D range data are described by Levoy [455, 452]
and Krig [137]. The basic algorithm is described as follows:

1. Thevolume data is forward transformed, using a 3D FFT into
magnitude and phase data.

2. Tovisualize, the resulting 3D FFT results in the frequency volume
are rearranged by octant shifting each cube to align the frequency
0 data around the center of a 3D Cartesian coordinate system
in the center of the volume, similar to the way 2D frequency
spectrums are quadrant shifted for frequency spectrum display
around the center of a 2D Cartesian coordinate system.

23

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

3. Aplanar 2D slice is extracted from the volume parallel to the FOV
plane where the slice passes through the origin (center) of the
volume. The angle of the slice taken from the frequency domain
volume data determines the angle of the desired 2D view and the
depth of field.

4. The 2D slice from the frequency domain is run through an inverse
2D FFT toyield a 2D spatial image corresponding to the chosen

angle and depth of field.
A
— 39 39
v Forward Mag. Phase
3D Light Field 3D FFT
Volume -
\ A
Extract 2D Slices \
from Mag/Phase <:::>‘ \ _
1
Ly \\
LS I
2D Reverse 2D 2D
image <:: 20 FFT Mag. Phase

Figure 1-17. Graphic representation of the algorithm for the Fourier Projection Slice
Theorem, which is one method of light field processing. The 3D Fourier space is used to filter
the data to create 2D views and renderings [455, 452, 137]. (Image used by permission,

© Intel Press, from Building Intelligent Systems)

3D Depth Processing

For historical reasons, several terms with their acronyms are used in discussions of depth
sensing and related methods, so we cover some overlapping topics in this section. Table 1-1
earlier provided a summary at a high level of the underlying physical means for depth sensing.
Regardless of the depth-sensing method, there are many similarities and common problems.
Post-processing the depth information is critical, considering the calibration accuracy of the
camera system, the geometric model of the depth field, the measured accuracy of the depth
data, any noise present in the depth data, and the intended application.

We survey several interrelated depth-sensing topics here, including:

e Sparse depth-sensing methods
e Dense depth-sensing methods

e Optical flow

24

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

e Simultaneous localization and mapping (SLAM)
e Structure from motion (SFM)

e 3D surface reconstruction, 3D surface fusion

e Monocular depth sensing

e Stereo and multi-view stereo (MVS)

¢ Common problems in depth sensing

Human depth perception relies on a set of innate and learned visual cues, which
are outside the scope of this work and overlap into several fields, including optics,
ophthalmology, and psychology [464]; however, we provide an overview of the above
selected topics in the context of depth processing.

Overview of Methods

For this discussion of depth-processing methods, depth sensing falls into two major
categories based on the methods shown in Table 1-1:

e Sparse depth methods, using computer vision methods to
extract local interest points and features. Only selected points are
assembled into a sparse depth map or point cloud. The features
are tracked from frame to frame as the camera or scene moves,
and the sparse point cloud is updated. Usually only a single
camera is needed.

¢ Dense depth methods, computing depth at every pixel. This
creates a dense depth map, using methods such as stereo, TOF, or
MVS. It may involve one or more cameras.

Many sparse depth methods use standard monocular cameras and computer vision
feature tracking, such as optical flow and SLAM (which are covered later in this section),
and the feature descriptors are tracked from frame to frame to compute disparity and
sparse depth. Dense depth methods are usually based more on a specific depth camera
technology, such as stereo or structured light. There are exceptions, as covered next.

Problems in Depth Sensing and Processing

The depth-sensing methods each have specific problems; however, there are some
common problems we can address here. To begin, one common problem is geometric
modeling of the depth field, which is complex, including perspective and projections. Most
depth-sensing methods treat the entire field as a Cartesian coordinate system, and this
introduces slight problems into the depth solutions. A camera sensor is a 2D Euclidean
model, and discrete voxels are imaged in 3D Euclidean space; however, mapping between
the camera and the real world using simple Cartesian models introduces geometric
distortion. Other problems include those of correspondence, or failure to match features in
separate frames, and noise and occlusion. We look at such problems in this next section.

25

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

The Geometric Field and Distortions

Field geometry is a complex area affecting both depth sensing and 2D imaging. For
commercial applications, geometric field problems may not be significant, since locating
faces, tracking simple objects, and augmenting reality are not demanding in terms of 3D
accuracy. However, military and industrial applications often require high precision and
accuracy, so careful geometry treatment is in order. To understand the geometric field
problems common to depth-sensing methods, let’s break down the major areas:

e Projective geometry problems, dealing with perspective

e Polar and spherical geometry problems, dealing with perspective
as the viewing frustum spreads with distance from the viewer

e Radial distortion, due to lens aberrations

e Coordinate space problems, due to the Cartesian coordinates
of the sensor and the voxels, and the polar coordinate nature of
casting rays from the scene into the sensor

The goal of this discussion is to enumerate the problems in depth sensing, not to
solve them, and to provide references where applicable. Since the topic of geometry is
vast, we can only provide a few examples here of better methods for modeling the depth
field. It is hoped that, by identifying the geometric problems involved in depth sensing,
additional attention will be given to this important topic. The complete geometric
model, including corrections, for any depth system is very complex. Usually, the topic
of advanced geometry is ignored in popular commercial applications; however, we can
be sure that advanced military applications such as particle beam weapons and missile
systems do not ignore those complexities, given the precision required.

Several researchers have investigated more robust nonlinear methods of dealing with
projective geometry problems [465,466] specifically by modeling epipolar geometry-related
distortion as 3D cylindrical distortion, rather than as planar distortion, and by providing
reasonable compute methods for correction. In addition, the work of Lovegrove and
Davison [484] deals with the geometric field using a spherical mosaicking method to align
whole images for depth fusion, increasing the accuracy due to the spherical modeling.

The Horopter Region, Panum’s Area, and Depth Fusion

As shown in Figure 1-18, the Horopter region, first investigated by Ptolemy and others

in the context of astronomy, is a curved surface containing 3D points that are the same
distance from the observer and at the same focal plane. Panum’s area is the region
surrounding the Horopter where the human visual system fuses points in the retina into
a single object at the same distance and focal plane. It is a small miracle that the human
vision system can reconcile the distances between 3D points and synthesize a common
depth field! The challenge with the Horopter region and Panum’s area lies in the fact
that a post-processing step to any depth algorithm must be in place to correctly fuse the
points the way the human visual system does. The margin of error depends on the usual
variables, including baseline and pixel resolution, and the error is most pronounced

26

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

toward the boundaries of the depth field and less pronounced in the center. Some of
the spherical distortion is due to lens aberrations toward the edges, and can be partially
corrected as discussed earlier in this chapter regarding geometric corrections during
early sensor processing.

Fused depth points

Horopter

Panum’s Area

o

Figure 1-18. Problems with stereo and multi-view stereo methods, showing the Horopter
region and Panum’s area, and three points in space that appear to be the same point from the
left eye’s perspective but different from the right eye’s perspective. The three points surround
the Horopter in Panum’s area and are fused by humans to synthesize apparent depth

Cartesian vs. Polar Coordinates: Spherical Projective
Geometry

As illustrated in Figure 1-19, a 2D sensor as used in a TOF or monocular depth-sensing
method has specific geometric problems as well; the problems increase toward the edges
of the field of view. Note that the depth from a point in space to a pixel in the sensor is
actually measured in a spherical coordinate system using polar coordinates, but the
geometry of the sensor is purely Cartesian, so that geometry errors are baked into the cake.

27

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

Sensor

Figure 1-19. A 2D depth sensor and lens with exaggerated imaging geometry problems
dealing with distance, where depth is different depending on the angle of incidence on

the lens and sensor. Note that P, and P, are equidistant from the focal plane; however, the
distance of each point to the sensor via the optics is not equal, so computed depth will not
be accurate depending on the geometric model used

Because stereo and MVS methods also use single 2D sensors, the same problems
as affect single sensor depth-sensing methods also affect multi-camera methods,
compounding the difficulties in developing a geometry model that is accurate and
computationally reasonable.

Depth Granularity

As shown in Figure 1-20, simple Cartesian depth computations cannot resolve the

depth field into a linear uniform grain size; in fact, the depth field granularity increases
exponentially with the distance from the sensor, while the ability to resolve depth at long
ranges is much less accurate.

28

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

S Y Pixel size: 480 / 10 meter = 20.8mm
oI Zygranularity = 465mm

45 T == YPixel size: 480 / 5 meter = 10.4mm
N . Zygranularity = 116mm

~ Y Pixel size: 480 / 3 meter = 6.25mm
Zygranularity = 41mm

Y Pixel size: 480 / 2 meter = 2.4mm
Zygranularity = 19mm

Y Pixel size: 480 / 1 meter = 2mm
- Zygranularity = 4mm

Depth granularity or resolution in mm

12 3 4 5 6 7 8 9 10

| 480p Sensor | | 480p Sensor

Distance From Sensor in meters
Stereo system, 480p sensors, 70mm baseline, 4.3mm focal length

Sensor Y die size = .672mm
Sensor Y Pixel size: .0014mm
Zy Granularity = (.0014mm * Zme) /(4.3mm * 70mm)

Figure 1-20. Z depth granularity nonlinearity problems for a typical stereo camera system.
Note that practical depth sensing using stereo and MVS methods has limitations in the
depth field, mainly affected by pixel resolution, baseline, and focal length. At 10 meters,
depth granularity is almost 5 meter, so an object must move at least + or- %2 meter in order
Jor a change in measured stereo depth to be computed

For example, in a hypothetical stereo vision system with a baseline of 70mm using
480p video resolution, as shown in Figure 1-20, depth resolution at 10 meters drops off
to about ¥2 meter; in other words, at 10 meters away, objects may not appear to move
in Z unless they move at least plus or minus %2 meter in Z. The depth resolution can
be doubled simply by doubling the sensor resolution. As distance increases, humans
increasingly use monocular depth cues to determine depth, such as for size of objects,
rate of an object’s motion, color intensity, and surface texture details.

Correspondence

Correspondence, or feature matching, is common to most depth-sensing methods.

For a taxonomy of stereo feature matching algorithms, see Scharstein and Szeliski [440].
Here, we discuss correspondence along the lines of feature descriptor methods and
triangulation as applied to stereo, multi-view stereo, and structured light.

Subpixel accuracy is a goal in most depth-sensing methods, so several algorithms
exist [468]. It’s popular to correlate two patches or intensity templates by fitting the
surfaces to find the highest match; however, Fourier methods are also used to correlate
phase [467, 469], similar to the intensity correlation methods.

29

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

For stereo systems, the image pairs are rectified prior to feature matching so that the
features are expected to be found along the same line at about the same scale, as shown
in Figure 1-11; descriptors with little or no rotational invariance are suitable [215, 120].

A feature descriptor such as a correlation template is fine, while a powerful method such
as the SIFT feature description method [161] is overkill. The feature descriptor region may
be a rectangle favoring disparity in the x-axis and expecting little variance in the y-axis,
such as a rectangular 3x9 descriptor shape. The disparity is expected in the x-axis, not the
y-axis. Several window sizing methods for the descriptor shape are used, including fixed
size and adaptive size [440].

Multi-view stereo systems are similar to stereo; however, the rectification stage
may not be as accurate, since motion between frames can include scaling, translation,
and rotation. Since scale and rotation may have significant correspondence problems
between frames, other approaches to feature description have been applied to MVS, with
better results. A few notable feature descriptor methods applied to multi-view and wide
baseline stereo include the MSER [194] method (also discussed in Chapter 6), which uses
a blob-like patch, and the SUSAN [164, 165] method (also discussed in Chapter 6), which
defines the feature based on an object region or segmentation with a known centroid or
nucleus around which the feature exists.

For structured light systems, the type of light pattern will determine the feature, and
correlation of the phase is a popular method [469]. For example, structured light methods
that rely on phase-shift patterns using phase correlation [467] template matching claim
to be accurate to 1/100™ of a pixel. Other methods are also used for structured light
correspondence to achieve subpixel accuracy [467].

Holes and Occlusion

When a pattern cannot be matched between frames, a hole exists in the depth map. Holes
can also be caused by occlusion. In either case, the depth map must be repaired, and
several methods exist for doing that. A hole map should be provided, showing where the
problems are. A simple approach, then, is to fill the hole uses use bi-linear interpolation
within local depth map patches. Another simple approach is to use the last known-good
depth value in the depth map from the current scan line.

More robust methods for handling occlusion exist [472, 471] using more
computationally expensive but slightly more accurate methods, such as adaptive local
windows to optimize the interpolation region. Yet another method of dealing with holes
is surface fusion into a depth volume [473] (covered next), whereby multiple sequential
depth maps are integrated into a depth volume as a cumulative surface, and then a depth
map can be extracted from the depth volume.

Surface Reconstruction and Fusion

A general method of creating surfaces from depth map information is surface
reconstruction. Computer graphics methods can be used for rendering and displaying
the surfaces. The basic idea is to combine several depth maps to construct a better
surface model, including the RGB 2D image of the surface rendered as a texture map.
By creating an iterative model of the 3D surface that integrates several depth maps from

30

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

different viewpoints, the depth accuracy can be increased, occlusion can be reduced or
eliminated, and a wider 3D scene viewpoint is created.

The work of Curless and Levoy [473] presents a method of fusing multiple range
images or depth maps into a 3D volume structure. The algorithm renders all range
images as iso-surfaces into the volume by integrating several range images. Using a
signed distance function and weighting factors stored in the volume data structure for
the existing surfaces, the new surfaces are integrated into the volume for a cumulative
best-guess at where the actual surfaces exist. Of course, the resulting surface has several
desirable properties, including reduced noise, reduced holes, reduced occlusion,
multiple viewpoints, and better accuracy (see Figure 1-21).

Raw Z depth map

Raw 6DOF ia ICP Volume
YYZ vertex map & _) posevia (_ YYZ vertex map &
Surface normal map ¢ Surface normal map

- Volume surfage - A +

“integration £t 3D surface rendering

'—
4

a. Method of volume integration, b. TSDF or truncated signed
6DOF camera pose, and surface distance function used to
rendering used in KinectFusion compute the zero-crossing at the
[474][475]. estimated surface [473].

Figure 1-21. (Right) The Curless and Levoy [473] method for surface construction

Jfrom range images, or depth maps. Shown here are three different weighted surface
measurements projected into the volume using ray casting. (Left) Processing flow of Kinect
Fusion method

A derivative of the Curless and Levoy method applied to SLAM is the Kinect
Fusion approach [474], as shown in Figure 1-22, using compute-intensive SIMD parallel
real-time methods to provide not only surface reconstruction but also camera tracking
and the 6DOF or 6-degrees-of-freedom camera pose. Raytracing and texture mapping are
used for surface renderings. There are yet other methods for surface reconstruction from
multiple images [480, 551].

31

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

Iterative surface alignment
solution over Image Pyramid

Figure 1-22. Graphic representaion of the dense whole-image alignment solution to obtain
the 6DOF camera pose using ESM [485]

Noise

Noise is another problem with depth sensors [409], and various causes include low
illumination and, in some cases, motion noise, as well as inferior depth sensing algorithms
or systems. Also, the depth maps are often very fuzzy, so image pre-processing may be
required, as discussed in Chapter 2, to reduce apparent noise. Many prefer the bi-lateral
filter for depth map processing [302], since it respects local structure and preserves the
edge transitions. In addition, other noise filters have been developed to remedy the
weaknesses of the bi-lateral filter, which are well suited to removing depth noise, including
the Guided Filter [486], which can perform edge-preserving noise filtering like the bi-lateral
filter, the Edge-Avoiding Wavelet method [488], and the Domain Transform filter [489)].

Monocular Depth Processing

Monocular, or single sensor depth sensing, creates a depth map from pairs of image
frames using the motion from frame to frame to create the stereo disparity. The
assumptions for stereo processing with a calibrated fixed geometry between stereo pairs
do not hold for monocular methods, since each time the camera moves the camera pose
must be recomputed. Camera pose is a 6 degrees-of-freedom (6DOF) equation, including
X, y, and z linear motion along each axis and roll, pitch, and yaw rotational motion about
each axis. In monocular depth-sensing methods, the camera pose must be computed for
each frame as the basis for comparing two frames and computing disparity.

Note that computation of the 6DOF matrix can be enhanced using inertial sensors, such
as the accelerometer and MEMS gyroscope [483], as the coarse alignment step, followed by
visual feature-based surface alignment methods discussed later in regard to optical flow.
Since commodity inertial sensors are standard with mobile phones and tablets, inertial pose
estimation will become more effective and commonplace as the sensors mature. While the
accuracy of commodity accelerometers is not very good, monocular depth-sensing systems
can save compute time by taking advantage of the inertial sensors for pose estimation.

Multi-View Stereo

The geometry model for most monocular multi-view stereo (MVS) depth algorithms is
based on projective geometry and epipolar geometry; a good overview of both are found
in the classic text by Hartley and Zisserman [437]. A taxonomy and accuracy comparison
of six MVS algorithms is provided by Seitz et al. [478]. We look at a few representative
approaches in this section.

32

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

Sparse Methods: PTAM

Sparse MVS methods create a sparse 3D point cloud, not a complete depth map. The
basic goals for sparse depth are simple: track the features from frame to frame, compute
feature disparity to create depth, and perform 6DOF alignment to localize the new frames
and get the camera pose. Depending on the application, sparse depth may be ideal to use
as part of a feature descriptor to add invariance to perspective viewpoint or to provide
sufficient information for navigating that’s based on a few key landmarks in the scene.
Several sparse depth-sensing methods have been developed in the robotics community
under the terms SLAM, SFM, and optical flow (discussed below).

However, we first illustrate sparse depth sensing in more detail by discussing a
specific approach: Parallel Tracking and Mapping (PTAM)[456, 457], which can both
track the 6DOF camera pose and generate a sparse depth map suitable for light-duty
augmented reality applications, allowing avatars to be placed at known locations and
orientations in the scene from frame to frame. The basic algorithm consists of two
parts, which run in parallel threads: a tracking thread for updating the pose, and a
mapping thread for updating the sparse 3D point cloud. We provide a quick overview
of each next.

The mapping thread deals with a history buffer of the last N keyframes and an
N-level image pyramid for each frame in a history buffer, from which the sparse 3D
point cloud is continually refined using the latest incoming depth features via a bundle
adjustment process (which simply means fitting new 3D coordinates against existing 3D
coordinates by a chosen minimization method, such as the Levenberg-Marquardt [437]).
The bundle adjustment process can perform either a local adjustment over a limited
set of recent frames or global adjustment over all the frames during times of low scene
motion when time permits.

The tracking thread scans the incoming image frames for expected features, based
on projecting where known-good features last appeared, to guide the feature search,
using the 6DOF camera pose as a basis for the projection. A FAST9 [138] corner detector
is used to locate the corners, followed by a Shi-Tomasi [157] non-maximal suppression
step to remove weak corner candidates (discussed in Chapter 6 in more detail). The
feature matching stage follows a coarse-to-fine progression over the image pyramid to
compute the 6DOF pose.

Target features are computed in new frames using an 8x8 patch surrounding each
selected corner. Reference features are computed also as 8x8 patches from the original
patch taken from the first-known image where they were found. To align the reference
and target patches prior to feature matching, the surface normal of each reference patch
is used for pre-warping the patch against the last-known 6DOF camera pose, and the
aligned feature matching is performed using zero-mean SSD distance.

One weakness of monocular depth sensing shows up when there is a failure to
localize; that is, if there is too much motion, or illumination changes too much, the
system may fail to localize and the tracking stops. Another weakness is that the algorithm
must be initialized entirely for a specific localized scene or workspace, such as a desktop.
For initialization, PTAM follows a five-point stereo calibration method that takes a few
seconds to perform with user cooperation. Yet another weakness is that the size of the 3D
volume containing the point cloud is intended for a small, localized scene or workspace.
However, on the positive side, the accuracy of the 3D point cloud is very good, close to the
pixel size; the pose is accurate enough for AR or gaming applications; and it is possible to

33

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

create a 360-degree perspective point cloud by walking around the scene. PTAM has been
implemented on a mobile phone [456] using modest compute and memory resources,
with tradeoffs for accuracy and frame rate.

Dense Methods: DTAM

Dense monocular depth sensing is quite compute-intensive compared to sparse
methods, so the research and development are much more limited. The goals are about
the same as for sparse monocular depth—namely, compute the 6DOF camera pose for
image alignment, but create a dense every-pixel depth map instead of a sparse point
cloud. For illustration, we highlight key concepts from a method for Dense Tracking and
Mapping (DTAM), developed by Newcombe, Lovegrove and Davison [482].

While the DTAM goal is to compute dense depth at each pixel rather than sparse
depth, DTAM shares some of the same requirements with PTAM [457], since both are
monocular methods. Both DTAM and PTAM are required to compute the 6DOF pose
for each new frame in order to align the new frames to compute disparity. DTAM also
requires a user-assisted monocular calibration method for the scene, and it uses the
PTAM calibration method. And DTAM is also intended for small, localized scenes
or workspaces. DTAM shares several background concepts taken from the Spherical
Mosaicking method of Lovegrove and Davison [484], including the concept of whole
image alignment, based on the Efficient Second Order Minimization (ESM) method
[485], which is reported to find a stable surface alignment using fewer iterations than LK
methods [458] as part of the process to generate the 6DOF pose.

Apparently, both DTAM and Spherical Mosaicking use a spherical coordinate
geometry model to mosaic the new frames into the dense 3D surface proceeding from
coarse to fine alignment over the image pyramid to iterate toward the solution of the
6DOF camera pose. The idea of whole-image surface alignment is shown in Figure 1-22.
The new and existing depth surfaces are integrated using a localized guided-filter method
[486] into the cost volume. That is, the guided filter uses a guidance image to merge the
incoming depth information into the cost volume.

DTAM also takes great advantage of SIMD instructions and highly thread-parallel
SIMT GPGPU programming to gain the required performance necessary for real-time
operation on commodity GPU hardware.

Optical Flow, SLAM, and SFM

Optical flow measures the motion of features and patterns from frame to frame in the
form of a displacement vector. Optical flow is similar to sparse monocular depth-sensing
methods, and it can be applied to wide baseline stereo matching problems [463]. Since
the field of optical flow research and its applications is vast [459, 460, 461], we provide
only an introduction here with an eye toward describing the methods used and features
obtained.

Optical flow can be considered a sparse feature-tracking problem, where a feature
can be considered a particle [462], so optical flow and particle flow analysis are similar.
Particle flow analysis is applied to diverse particle field flow-analysis problems, including

34

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

weather prediction, simulating combustion and explosives, hydro-flow dynamics, and
robot navigation. Methods exist for both 2D and 3D optical flow. The various optical
flow algorithms are concerned with tracking-feature descriptors or matrices, rather than
with individual scalars or pixels, within consecutive fields of discrete scalar values. For
computer vision, the input to the optical flow algorithms is a set of sequential 2D images
and pixels, or 3D volumes and voxels, and the output is a set of vectors showing direction
of movement of the tracked features.

Many derivations and alternatives to the early Lucas Kanade (LK) method [458, 459,
460, 461] are used for optical flow; however, this remains the most popular reference
point, as it uses local features in the form of correlation templates (as discussed in
Chapter 6). Good coverage of the state-of-the-art methods based on LK is found in
Lucas Kanade 20 years on, by Baker and Matthews [480]. The Efficient Second Order
Minimization (ESM) method [485] is related to the LK method. ESM is reported to be a
stable solution using fewer iterations than LK. LK does not track individual pixels; rather,
it relies on the pixel neighborhood, such as a 3x3 matrix or template region, and tries to
guess which direction the features have moved, iteratively searching the local region and
averaging the search results using a least-squares solution to find the best guess.

While there are many variations on the LK method [459, 460, 461], key assumptions
of most LK-derived optical flow methods include small displacements of features from
frame to frame, rigid features, and sufficient texture information in the form of localized
gradients in order to identify features. Various methods are used to find the local
gradients, such as Sobel and Laplacian (discussed in Chapter 2). Fields with large feature
displacements from frame to frame and little texture information are not well suited
to the LK method. That’s because the LK algorithm ignores regions with little gradient
information by examining the eigenvalues of each local matrix to optimize the iterative
solution. However, more recent and robust research methods are moving beyond the
limitations of LK [459,460], and include Deepflow [344], which is designed for deformable
features and large displacement optical flow [394], using multi-layer feature scale
hierarchies [404] similar to convolutional networks [339)].

Applications of surface reconstruction to localization and mapping are used in
simultaneous localization and mapping (SLAM) and instructure from motion (SFM)
methods—for example, in robotics navigation. One goal of SLAM is to localize, or find the
current position and the 6DOF camera pose. Another goal is to create a local region map,
which includes depth. To dig deeper into SLAM and SFM methods, see the historical
survey by Bailey and Hugh Durrant-Whyte [476, 477].

3D Representations: Voxels, Depth Maps,
Meshes, and Point Clouds

Depth information is represented and stored in a variety of convertible formats,
depending on the intended use. We summarize here some common formats; see also
Figure 1-23.

35

CHAPTER 1 * IMAGE CAPTURE AND REPRESENTATION

Q

Figure 1-23. Various 3D depth formats. Renderings of a Zernike polynomial. (Left to
right): A depth map, a polygon mesh rendering using 3D quads, a point cloud rendering
equivalent of voxels

The ability to convert between depth formats is desirable for different algorithms and
easy to do. Common 3D depth formats include:

e 2D Pixel Array, 3D Depth Map: A 2D pixel array is the default
format for 2D images in memory, and it is the natural storage
format for many processing operations, such as convolution and
neighborhood filtering. For depth map images, the pixel value
is the Z, or depth value. Each point in the array may contain
{color, depth}.

e 3D Voxel Volume: A 3D volumetric data structure composed of a
3D array of voxels is ideal for several algorithms, including depth
map integration for 3D surface reconstruction and raytracing of
surfaces for graphical renderings. A voxel is a volume element,
like a pixel is a picture element. Each voxel may contain {color,
normal}; the depth coordinates are implicit from the volume
structure.

¢ 3D Polygon Mesh: Storing 3D points in a standard 3D polygon
mesh provides a set of connected points or vertices, each having a
surface normal, 3D coordinates, color, and texture. Mesh formats
are ideal for rendering surfaces in a GPU pipeline, such as OpenGL
or DirectX. Each point in the mesh may contain {x, y, z, color,
normal}, and is associated with neighboring points in a standard
pattern such as a quad or triangle describing the surface.

¢ 3D Point Cloud: This is a sparse structure that is directly
convertible to a standard 3D polygon mesh. The point cloud
format is ideal for sparse monocular depth-sensing methods.
Each point in the cloud may contain {x, y, z, color, normall}.

36

CHAPTER 1 © IMAGE CAPTURE AND REPRESENTATION

Summary

In this chapter, we surveyed image sensing methods and sensor image processing methods
as the first step in the vision pipeline. We covered the image sensor technologies available,
with an eye toward image pre-processing that may be useful for getting the most from

the image data, since image sensoring methods often dictate the image pre-processing
required. (More discussion on image pre-processing is provided in Chapter 2.) Sensor
configurations used for both 2D and 3D imaging were discussed, as well as a wide range

of camera configurations used for computational imaging to create new images after the
data is captured, such as HDR images and image refocusing. Depth imaging approaches
were covered here as well, and included stereo and time of flight, since mobile devices are
increasingly offering 3D depth camera technology for consumer applications. Depth maps
can be used in computer vision to solve many problems, such as 3D feature description
and 3D image segmentation of foreground and background objects. The topic of 3D depth
processing and 3D features is followed throughout this book; chapter 6 covers 3D feature
descriptors, and chapter 7 and Appendix B cover 3D ground truth data.

37

CHAPTER 2

Image Pre-Processing

“I entered, and found Captain Nemo deep in algebraical calculations of
x and other quantities.”

—Jules Verne, 20,000 Leagues Under The Sea

This chapter describes the methods used to prepare images for further analysis, including
interest point and feature extraction. Some of these methods are also useful for global
and local feature description, particularly the metrics derived from transforms and basis
spaces. The focus is on image pre-processing for computer vision, so we do not cover

the entire range of image processing topics applied to areas such as computational
photography and photo enhancements, so we refer the interested reader to various

other standard resources in Digital Image Processing and Signal Processing as we go
along [4,9,325,326], and we also point out interesting research papers that will enhance
understanding of the topics.

Note Readers with a strong background in image processing may benefit from a light
reading of this chapter.

Perspectives on Image Processing

Image processing is a vast field that cannot be covered in a single chapter. So why do we
discuss image pre-processing in a book about computer vision? The reason is to advance
the science of local and global feature description, as image pre-processing is typically
ignored in discussions of feature description. Some general image processing topics are
covered here in light of feature description, intended to illustrate rather than to proscribe,
as applications and image data will guide the image pre-processing stage.

Some will argue that image pre-processing is not a good idea, since it distorts or
changes the true nature of the raw data. However, intelligent use of image pre-processing
can provide benefits and solve problems that ultimately lead to better local and global
feature detection. We survey common methods for image enhancements and corrections
that will affect feature analysis downstream in the vision pipeline in both favorable and
unfavorable ways, depending on how the methods are employed.

39

CHAPTER 2 " IMAGE PRE-PROCESSING

Image pre-processing may have dramatic positive effects on the quality of feature
extraction and the results of image analysis. Image pre-processing is analogous to the
mathematical normalization of a data set, which is a common step in many feature
descriptor methods. Or to make a musical analogy, think of image pre-processing as
a sound system with a range of controls, such as raw sound with no volume controls;
volume control with a simple tone knob; volume control plus treble, bass, and mid; or
volume control plus a full graphics equalizer, effects processing, and great speakers in an
acoustically superior room. In that way, this chapter promotes image pre-processing by
describing a combination of corrections and enhancements that are an essential part of a
computer vision pipeline.

Problems to Solve During Image Pre-Processing

In this section we suggest opportunities for image pre-processing that are guided
according to the feature descriptor method you've chosen. Raw image data direct from
a camera may have a variety of problems, as discussed in Chapter 1, and therefore it is
not likely to produce the best computer vision results. This is why careful consideration
of image pre-processing is fundamental. For example, a local binary descriptor using
gray scale data will require different pre-processing than will a color SIFT algorithm;
additionally, some exploratory work is required to fine-tune the image pre-processing
stage for best results. We explore image pre-processing by following the vision pipelines
of four fundamental families of feature description methods, with some examples, as
follows:

1. Local Binary Descriptors (LBP, ORB, FREAK, others)
Spectra Descriptors (SIFT, SURF, others)

Basis Space Descriptors (FFT, wavelets, others)

Eal N

Polygon Shape Descriptors (blob object area, perimeter, centroid)

These families of feature description metrics are developed into a taxonomy in
Chapter 5. Before that, though, Chapter 4 discusses the feature descriptor building
concepts, while Chapter 3 covers global feature description and then Chapter 6 surveys
local feature description. The image pre-processing methods and applications introduced
here are samples, but a more developed set of examples, following various vision
pipelines, is developed in Chapter 8, including application-specific discussions of the
pre-processing stage.

Vision Pipelines and Image Pre-Processing

Table 2-1 lists common image pre-processing operations, with examples from each of
the four descriptor families, illustrating both differences and commonality among these
image pre-processing steps, which can be applied prior to feature description. Our intent
here is to illustrate rather than proscribe or limit the methods chosen.

40

CHAPTER 2 * IMAGE PRE-PROCESSING

Table 2-1. Possible Image Pre-Processing Enhancements and Corrections as Applied to
Different Vision Pipelines

Image Local Binary Spectra Basis Space Polygon Shape
Pre-Processing (LBP, ORB) (SIFT, SURF) (FFT, Code books) (Blob Metrics)
Nlumination X X X X

corrections

Blur and focus X X X X

corrections

Filtering and noise ~ x X X X

removal

Thresholding X

Edge enhancements X X
Morphology X
Segmentation X

Region processing X X X

and filters

Point processing X X
Math and statistical X X
processing

Color space X X X
conversions

Local binary features deal with the pixel intensity comparisons of point-pairs. This
makes the comparisons relatively insensitive to illumination, brightness, and contrast, so
there may not be much need for image pre-processing to achieve good results. Current
local binary pattern methods as described in the literature do not typically call for much
image pre-processing; they rely on a simple comparison threshold that can be adjusted to
account for illumination or contrast.

Spectra descriptors, such as SIFT (which acts on local region gradients) and SURF
(which uses HAAR-like features with integrated pixel values over local regions), offer
diverse pre-processing opportunities. Methods that use image pyramids often perform
some image pre-processing on the image pyramid to create a scale space representation
of the data using Gaussian filtering to smooth the higher levels of the pyramid. Basic
illumination corrections and filtering may be useful to enhance the image prior to
computing gradients—for example, to enhance the contrast within a band of intensities
that likely contain gradient-edge information for the features. But in general, the literature
does not report good or bad results for any specific methods used to pre-process the
image data prior to feature extraction, and therein resides the opportunity.

41

CHAPTER 2 " IMAGE PRE-PROCESSING

Basis space features are usually global or regional, spanning a regular shaped
polygon—for example, a Fourier transform computed over the entire image or block.
However, basis space features may be part of the local features, such as the Fourier spectrum
of the LBP histogram, which can be computed over histogram bin values of a local descriptor
to provide rotational invariance. Another example is the Fourier descriptor used to compute
polygon factors for radial line segment lengths showing the roundness of a feature to provide
rotational invariance. See Chapter 3, especially Figure 3-19.

The most complex descriptor family is the polygon shape based descriptors, which
potentially require several image pre-processing steps to isolate the polygon structure and
shapes in the image for measurement. Polygon shape description pipelines may involve
everything from image enhancements to structural morphology and segmentation
techniques. Setting up the pre-processing for polygon feature shape extraction typically
involves more work than any other method, since thresholds and segmentation require
fine-tuning to achieve good results. Also note that polygon shape descriptors are not local
patterns but, rather, larger regional structures with features spanning many tens and even
hundreds of pixels, so the processing can be more intensive as well.

In some cases, image pre-processing is required to correct problems that would
otherwise adversely affect feature description; we look at this next.

Corrections

During image pre-processing, there may be artifacts in the images that should be
corrected prior to feature measurement and analysis. Here are various candidates for
correction.

e Sensor corrections. Discussed in Chapter 1, these include dead
pixel correction, geometric lens distortion, and vignetting.

¢ Lighting corrections. Lighting can introduce deep shadows that
obscure local texture and structure; also, uneven lighting across
the scene might skew results. Candidate correction methods
include rank filtering, histogram equalization, and LUT remap.

¢ Noise. This comes in many forms, and may need special image
pre-processing. There are many methods to choose from, some of
which are surveyed in this chapter.

e Geometric corrections. If the entire scene is rotated or taken
from the wrong perspective, it may be valuable to correct the
geometry prior to feature description. Some features are more
robust to geometric variation than others, as discussed in
Chapters 4, 5, and 6.

e Color corrections. It can be helpful to redistribute color
saturation or correct for illumination artifacts in the intensity
channel. Typically color hue is one of the more difficult attributes
to correct, and it may not be possible to correct using simple
gamma curves and the sRGB color space. We cover more accurate
colorimetry methods later in this chapter.

42

CHAPTER 2 * IMAGE PRE-PROCESSING

Enhancements

Enhancements are used to optimize for specific feature measurement methods, rather
than fix problems. Familiar image processing enhancements include sharpening and
color balancing. Here are some general examples of image enhancement with their
potential benefits to feature description.

e Scale-space pyramids. When a pyramid is constructed using an
octave scale and pixel decimation to sub-sample images to create
the pyramid, sub-sampling artifacts and jagged pixel transitions
are introduced. Part of the scale-space pyramid building process
involves applying a Gaussian blur filter to the sub-sampled
images, which removes the jagged artifacts.

e Illumination. In general, illumination can always be
enhanced. Global illumination can be enhanced using simple
LUT remapping and pixel point operations and histogram
equalizations, and pixel remapping. Local illumination can be
enhanced using gradient filters, local histogram equalization, and
rank filters.

¢ Blur and focus enhancements. Many well-known filtering
methods for sharpening and blurring may be employed at the
pre-processing stage. For example, to compensate for pixel
aliasing artifacts introduced by rotation that may manifest as
blurred pixels which obscure fine detail, sharpen filters can be
used to enhance the edge features prior to gradient computations.
Or, conversely, the rotation artifacts may be too strong and can be
removed by blurring.

In any case, the pre-processing enhancements or corrections are dependent on the
descriptor using the images, and the application.

Preparing Images for Feature Extraction

Each family of feature description methods has different goals for the pre-processing
stage of the pipeline. Let’s look at a few examples from each family here, and examine
possible image pre-processing methods for each.

Local Binary Family Pre-Processing

The local binary descriptor family is primarily concerned with point-pair intensity value
comparisons, and several point-pair patterns are illustrated in Chapter 4 for common
methods such as FREAK, BRISK, BRIEF, and ORB. As illustrated in Figure 2-4, the

43

CHAPTER 2 " IMAGE PRE-PROCESSING

comparative difference (<, >, =) between points is all that matters, so hardly any image
pre-processing seems needed. Based on this discussion, here are two approaches for
image pre-processing:

1. Preserve pixels as is. Do nothing except use a pixel value-
difference compare threshold, such as done in the Census
transform and other methods, since the threshold takes care
of filtering noise and other artifacts.

if(|pointi-point2[>threshold)

2. Use filtering. In addition to using the compare threshold,
apply a suitable filter to remove local noise, such as a
smoothing or rank filter. Or, take the opposite approach and
use a sharpen filter to amplify small differences, perhaps
followed by a smoothing filter. Either method may prove to
work, depending on the data and application.

Figure 2-1 uses center-neighbor point-pair comparisons in a 3x3 local region to
illustrate the difference between local threshold and a pre-processing operation for the
local binary pattern LBP, as follows:

e Leftimage: Original unprocessed local 3x3 region data; compare
threshold = 5, dark pixels > 5 from center pixel.

e Left center image: Compare threshold = 10; note pattern shape is
different simply by changing the threshold.

e Right center image: After a Laplacian sharpening filter is applied
to 3x3 region, note that the center pixel value is changed from 52
to 49, so with the compare threshold set to 5 the pattern is now
different from original on the left.

e Rightimage: Threshold on Laplacian filtered data set to 10; note
different resulting binary pattern.

35 53 59 35 53 59 35 53 59 35 53 59
38 52 a7 38 52 47 38 49 47 38 49 47
48 60 51 48 60 51 48 60 51 48 60 51

Figure 2-1. How the LBP can be affected by pre-processing, showing the compare threshold
value effects. (Left) Compare threshold = 5. (Center left) Compare threshold = 10. (Center
right) Original data after Laplacian fitler applied. (Right) Compare threshold = 5 on
Laplacian filtered data

44

CHAPTER 2 * IMAGE PRE-PROCESSING

Spectra Family Pre-Processing

Due to the wide range of methods in the spectra category, it is difficult to generalize the
potential pre-processing methods that may be useful. For example, SIFT is concerned
with gradient information computed at each pixel. SURF is concerned with combinations
of HAAR wavelets or local rectangular regions of integrated pixel values, which reduces
the significance of individual pixel values.

For the integral image-based methods using HAAR-like features such as SURF and
Viola Jones, here are a few hypothetical pre-processing options.

1.

Do nothing. HAAR features are computed from integral
images simply by summing local region pixel values; no fine
structure in the local pixels is preserved in the sum, so one
option is to do nothing for image pre-processing.

Noise removal. This does not seem to be needed in the HAAR
pre-processing stage, since the integral image summing in
local regions has a tendency to filter out noise.

Illumination problems. This may require pre-processing;for
example, contrast enhancement may be a good idea if the
illumination of the training data is different from the current
frame. One pre-processing approach in this situation is to
compute a global contrast metric for the images in the training
set, and then compute the same global contrast metric in each
frame and adjust the image contrast if the contrast diverges
beyond a threshold to get closer to the desired global contrast
metric. Methods for contrast enhancement include LUT
remapping, global histogram equalization, and local adaptive
histogram equalization.

Blur. If blur is a problem in the current frame, it may

manifest similar to a local contrast problem, so local contrast
enhancement may be needed, such as a sharpen filter.
Computing a global statistical metric such as an SDM as part
of the ground truth data to measure local or global contrast
may be useful; if the current image diverges too much in
contrast, a suitable contrast enhancement may be applied as a
pre-processing step.

Note in Figure 2-2 that increasing the local-region contrast results in larger gradients
and more apparent edges. A feature descriptor that relies on local gradient information is
affected by the local contrast.

45

CHAPTER 2 " IMAGE PRE-PROCESSING

Figure 2-2. The effects of local contrast on gradients and edge detection: (Left) Original
image and Sobel edges. (Right) Contrasted adjusted image to amplify local region details
and resulting Sobel edges

For the SIFT-type descriptors that use local area gradients, pre-processing may
be helpful to enhance the local gradients prior to computation, so as to affect certain
features:

1. Blur. This will inhibit gradient magnitude computation and
may make it difficult to determine gradient direction, so
perhaps a local rank filter, high-pass filter, or sharpen filter
should be employed.

2. Noise. This will exacerbate local gradient computations and
make them unreliable, so perhaps applying one of several
existing noise-removal algorithms can help.

3. Contrast. Iflocal contrast is not high enough, gradient
computations are difficult and unreliable. Perhaps a local
histogram equalization, LUT remap, rank filter, or even a
sharpen filter can be applied to improve results.

Basis Space Family Pre-Processing

Itis not possible to generalize image pre-processing for basis space methods, since
they are quite diverse, according to the taxonomy we are following in this work. As
discussed in Chapters 4, 5, and 6, basis space methods include Fourier, wavelets, visual
vocabularies, KTL, and others. However, here we provide a few general observations on
pre-processing.

1. Fourier Methods, wavelets, Slant transform, Walsh
Hadamard, KLT. These methods transform the data into
another domain for analysis, and it is hard to suggest any
pre-processing without knowing the intended application.

For example, computing the Fourier spectrum produces
magnitude and phase, and phase is shown to be useful in
feature description to provide invariance to blur, as reported
in the LPQ linear phase quantization method described in
Chapter 6, so a blurry image may not be a problem in this case.

46

CHAPTER 2 * IMAGE PRE-PROCESSING

2. Sparse coding and visual vocabularies. These methods rely
on local feature descriptors, which could be SURE SIFT, LBP,
or any other desired feature, derived from pixels in the spatial
domain. Therefore, the method for feature description will
determine the best approach for pre-processing. For example,
methods that use correlation and raw pixel patches as sparse
codes may not require any pre-processing. Or perhaps some
minimal pre-processing can be used, such as illumination
normalization to balance contrast, local histogram
equalization or a LUT contrast remap.

In Figure 2-3, the contrast adjustment does not have much affect on Fourier methods,
since there is no dominant structure in the image. Fourier spectrums typically reveal that
the dominant structure and power is limited to lower frequencies that are in the center of
the quadrant-shifted 2D plot. For images with dominant structures, such as lines and other
shapes, the Fourier power spectrum will show the structure and perhaps pre-processing
may be more valuable. Also, the Fourier power spectrum display is scaled to a logarithmic
value and does not show all the details linearly, so a linear spectrum rendering might show
the lower frequencies scaled and magnified better for erase of viewing.

?;';:: \ 7

{1gaad

Figure 2-3. In this example, no benefit is gained from pre-processing as shown in the Fourier
spectrum; (Left) Before. (Right) After contrast adjusting the input image

Polygon Shape Family Pre-Processing

Polygon shapes are potentially the most demanding features when considering image
pre-processing steps, since as shown in Table 2-1, the range of potential pre-processing
methods is quite large and the choice of methods to employ is very data-dependent.
Possibly because of the challenges and intended use-cases for polygon shape
measurements, they are used only in various niche applications, such as cell biology.

One of the most common methods employed for image preparation prior to
polygon shape measurements is to physically correct the lighting and select the subject
background. For example, in automated microscopy applications, slides containing cells
are prepared with florescent dye to highlight features in the cells, then the illumination
angle and position are carefully adjusted under magnification to provide a uniform
background under each cell feature to be measured; the resulting images are then much
easier to segment.

47

CHAPTER 2 " IMAGE PRE-PROCESSING

As illustrated in Figures 2-4 and 2-5, if the pre-processing is wrong, the resulting
shape feature descriptors are not very useful. Here are some of the more salient options
for pre-processing prior to shape based feature extraction, then we’ll survey a range of
other methods later in this chapter.

Figure 2-4. Use of thresholding to solve problems during image pre-processing to prepare
images for polygon shape measurement: (Left) Original image. (Center) Thresholded red
channel image. (Right) Perimeter tracing above a threshold

Figure 2-5. Another sequence of morphological pre-processing steps preceding polygon
shape measurement: (Left) Original image. (Center) Range thresholded and dilated red
color channel. (Right) Morphological perimeter shapes taken above a threshold

1. TIllumination corrections. Typically critical for defining
the shape and outline of binary features. For example, if
perimeter tracking or boundary segmentation is based on
edges or thresholds, uneven illumination will cause problems,
since the boundary definition becomes indistinct. If the
illumination cannot be corrected, then other segmentation
methods not based on thresholds are available, such as
texture-based segmentation.

2. Blur and focus corrections. Perhaps not as critical as
illumination for polygon shape detection, since the segmentation
of object boundary and shape is less sensitive to blur.

3. Filtering and noise removal. Shape detection is somewhat
tolerant of noise, depending on the type of noise. Shot
noise or spot noise may not present a problem, and is easily
removed using various noise-cleaning methods.

48

10.

CHAPTER 2 * IMAGE PRE-PROCESSING

Thresholding. This is critical for polygon shape detection
methods. Many thresholding methods are employed,

ranging from the simple binary thresholding to local adaptive
thresholding methods discussed later in this chapter.
Thresholding is a problematic operation and requires
algorithm parameter fine-tuning in addition to careful control
of the light source position and direction to deal with shadows.

Edge enhancements. May be useful for perimeter contour
definition.

Morphology. One of the most common methods employed
to prepare polygon shapes for measurement, covered later in
this chapter in some detail. Morphology is used to alter the
shapes, presumably for the better, mostly by combinations
or pipelines of erosion and dilation operations, as shown

in Figure 2-5. Morphological examples include object area
boundary cleanup, spur removal, and general line and
perimeter cleanup and smoothing.

Segmentation. These methods use structure or texture in
the image, rather than threshold, as a basis for dividing an
image into connected regions or polygons. A few common
segmentation methods are surveyed later in this chapter.

Area/Region processing. Convolution filter masks such as
sharpen or blur, as well as statistical filters such as rank filters
or media filters, are potentially useful prior to segmentation.

Point processing. Arithmetic scaling of image data point by
point, such as multiplying each pixel by a given value followed
by a clipping operation, as well as LUT processing, often is
useful prior to segmentation.

Color space conversions. Critical for dealing accurately with
color features, covered later in this chapter.

As shown In Figure 2-4, a range thresholding method uses the red color channel,
since the table background has a lot of red color and can be thresholded easily in red to
remove the table top. The image is thresholded by clipping values outside an intensity
band; note that the bottom right USB stick is gone after thresholding, since it is red and
below the threshold. Also note that the bottom center white USB stick is also mostly
gone, since it is white (max RGB values) and above the threshold. The right image shows
an attempt to trace a perimeter above a threshold; it’s still not very good, as more pre-
processing steps are needed.

49

CHAPTER 2 " IMAGE PRE-PROCESSING

The Taxonomy of Image Processing Methods

Before we survey image pre-processing methods, it is useful to have a simple taxonomy
to frame the discussion. The taxonomy suggested is a set of operations, including point,
line, area, algorithmic, and data conversions, as illustrated in Figure 2-6. The basic
categories of image pre-processing operations introduced in Figure 2-1 fit into this simple
taxonomy. Note that each stage of the vision pipeline, depending on intended use, may
have predominant tasks and corresponding pre-processing operations.

Vision Pipeline Stage Operation
| Sensor Processing Point |
| Image Pre-Processing Line |
| Global Metrics Area |
| Local Feature Metrics Algorithmic |
| Matching, Classification Data conversion |

| Augment, Render, Control

Figure 2-6. Simplified, typical image processing taxonomy, as applied across the
vision pipeline

We provide a brief introduction to the taxonomy here, followed by a more detailed
discussion in Chapter 5. Note that the taxonomy follows memory layout and memory access
patterns for the image data. Memory layout particularly affects performance and power.

Point

Point operations deal with one pixel at a time, with no consideration of neighboring
pixels. For example, point processing operations can be divided into math, Boolean,
and pixel value compare substitution sections, as shown in Table 2-2 in the section later
on “Point Filtering”” Other point processing examples include color conversions and
numeric data conversions.

Line

Line operations deal with discrete lines of pixels or data, with no regard to prior or
subsequent lines. Examples include the FFT, which is a separable transform, where
pixel lines and columns can be independently processed in parallel as 1D FFT line
operations. If an algorithm requires lines of data, then optimizations for image
pre-processing memory layout, pipelined read/write, and parallel processing can be
made. Optimizations are covered in Chapter 8.

50

CHAPTER 2 * IMAGE PRE-PROCESSING

Area

Area operations typically require local blocks of pixels—for example, spatial filtering via
kernel masks, convolution, morphology, and many other operations. Area operations
generate specific types of memory traffic, and can be parallelized using fine-grained
methods such as common shaders in graphics processors and coarse-grained thread
methods.

Algorithmic

Some image pre-processing methods are purely serial or algorithmic code. It is difficult

or even impossible to parallelize these blocks of code. In some cases, algorithmic blocks
can be split into a few separate threads for coarse-grained parallelism or else pipelined,

as discussed in Chapter 8.

Data Conversions

While the tasks are mundane and obvious, significant time can be spent doing simple
data conversions. For example, integer sensor data may be converted to floating point for
geometric computations or color space conversions. Data conversions are a significant
part of image pre-processing in many cases. Example conversions include:

e Integer bit-depth conversions (8/16/32/64)

¢ Floating point conversions (single precision to double precision)
¢ Fixed point to integer or float

e Anycombination of float to integer and vice versa

e Color conversions to and from various color spaces

e Conversion for basis space compute, such as integer to and from
float for FFT

Design attention to data conversions and performance are in order and can provide
a good return on investment, as discussed in Chapter 8.

Colorimetry

In this section, we provide a brief overview of color science to guide feature description,
with attention to color accuracy, color spaces, and color conversions. If a feature
descriptor is using color, then the color representation and processing should be carefully
designed, accurate, and suited to the application. For example, in some applications it

is possible to recognize an object using color alone, perhaps recognizing an automobile
using its paint color, assuming that the vendor has chosen a unique paint color each

year for each model. By combining color with another simple feature, such as shape, an
effective descriptor can be devised.

51

CHAPTER 2 " IMAGE PRE-PROCESSING

Color Science is a well-understood field defined by international standards and
amply described in the literature [249,250,251]. We list only a few resources here.

e The Rochester Institute of Technology’s Munsel Color Science
Laboratory is among the leading research institutions in the
area or color science and imaging. It provides a wide range of
resources and has strong ties to industry imaging giants such as
Kodak, Xerox, and others.

e The International Commission on Illumination (CIE) provides
standard illuminant data for a range of light sources as it pertains
to color science, as well as standards for the well-known color
spaces CIE XYZ, CIE Lab, and CIE Luv.

e The ICC International Color Consortium provides the ICC
standard color profiles for imaging devices, as well as many other
industry standards, including the sRGB color space for color
displays.

e Proprietary color management systems, developed by industry
leaders, include the Adobe CMM and Adobe RGB, Apple
ColorSync, and HP ColorSmart; perhaps the most advanced is
Microsoft’s Windows Color System, which is based on Canon’s
earlier Kyuanos system using on CIECAMO02.

Overview of Color Management Systems

A full-blown color management system may not be needed for a computer vision
application, but the methods of color management are critical to understand when you
are dealing with color. As illustrated in Figure 2-7, a color management system converts
colors between the device color spaces, such as RGB or sRGB, to and from a colorimetric
color space, such as CIE Luvy, Lab, Jch, or Jab, so as to perform color gamut mapping.
Since each device can reproduce color only within a specific gamut or color range,
gamut mapping is required to convert the colors to the closest possible match, using the
mathematical models of each color device.

52

Camera
RGB
Device
Madel

A

vAyg
P4

v

Color
Gamut
Mapping

Display
sRGB
Device
Model

CHAPTER 2 * IMAGE PRE-PROCESSING

Printer

CMYK

Device
Model

Figure 2-7. Color management system with an RGB camera device model, sSRGB display
device model, CMYK printer device model, gamut mapping module, and an illuminant model

INluminants, White Point, Black Point, and Neutral Axis

An illuminant is a light source such as natural light or a fluorescent light, defined as the
white point color by its spectral components and spectral power or color temperature.
The white point color value in real systems is never perfectly white and is a measured
quantity. The white point value and the oppositinal black point value together define
the endpoints of the neutral axis (gray scale intensity) of the color space, which is not a

perfectly straight color vector.

Color management relies on accurate information and measurements of the light
source, or the illuminant. Color cannot be represented without accurate information
about the light source under which the color is measured, since color appears different
under florescent light versus natural light, and so on. The CIE standards define several
values for standard illuminants, such as D65, shown in Figure 2-8.

53

CHAPTER 2 " IMAGE PRE-PROCESSING

520

White Point 0.9
green

D 08
Q Saturation rod

Hue Angle

\ blue 0.6

Neutral Axis
=
=

= =
(%3 L%}

\
\

Black Point

/ 0.

1 =1 T et —
0'% 01 02 03 04 05 06 07 08
x

Figure 2-8. (Left) Representation of a color space in three dimensions, neutral axis for

the amount of white, hue angle for the primary color, and saturation for amount of color
present. (Right) CIE XYZ chromaticity diagram showing values of the standard illuminant
D65 OE as the white point, and the color primaries for R,G and B

Device Color Models

Real devices like printers, displays, and cameras conventionally reproduce colors as
compared against standard color patches that have been measured using calibrated
light sources and spectrographic equipment—for example, the widely used Munsel
color patches that define color in terms hue, value, and chroma (HVC) against standard
illuminants. In order to effectively manage colors for a given device, a mathematical
model or device color model must be created for each device, defining the anomalies in
the device color gamut and its color gamut range.

For the color management system to be accurate, each real device must be spectrally
characterized and modeled in a laboratory to create a mathematical device model,
mapping the color gamut of each device against standard illumination models. The
device model is used in the gamut transforms between color spaces.

Devices typically represent color using the primary and secondary colors RGB
and CYMK. RGB is a primary, additive color space; starting with black, the RGB
color primaries red, green, and blue are added to create colors. CYMK is a secondary
color space, since the color components cyan, yellow, and magenta, are secondary
combinations of the RGB primary colors; cyan = green plus blue, magenta = red plus blue,
and yellow = red plus green. CYMK is also a subtractive color space, since the colors are
subtracted from a white background to create specific colors.

54

CHAPTER 2 * IMAGE PRE-PROCESSING

Color Spaces and Color Perception

Colorimetric spaces represent color in abstract terms such as lightness, hue or color,

and color saturation. Each color space is designed for a different reason, and each color
space is useful for different types of analysis and processing. Example simple color spaces
include HSV (hue, saturation, value) and HVC (hue, value, chroma). In the case of the CIE
color spaces, the RGB color components are replaced by the standardized value CIE XYZ
components as a basis for defining the CIE Luv and CIE Lab color spaces.

At the very high end of color science, we have the more recent CIECAMO02
color models and color spaces such as Jch and Jab. CIECAMO02 goes beyond just
the colorimetry of the light source and the color patch itself to offer advanced color
appearance modeling considerations that include the surroundings under which colors
are measured [254,249)].

While CIECAMO02 may be overkill for most applications, it is worth some study. Color
perception varies widely based on the surrounding against which the colors are viewed,
the spectrum and angles of combined direct and ambient lighting, and the human visual
system itself, since people do not all perceive color in the same way.

Gamut Mapping and Rendering Intent

Gamut mapping is the art and science of converting color between two color spaces and
getting the best fit. Since the color gamuts of each device are different, gamut mapping
is a challenge, and there are many different algorithms in use, with no clear winner.
Depending on the intent of the rendering, different methods are useful—for example,
gamut mapping from camera color space to a printer color space is different from
mapping to an LCD display for viewing.

The CAMO2 system provides a detailed model for guidance. For example, a color
imaging device may capture the color blue very weakly, while a display may be able
to display blue very well. Should the color gamut fitting method use color clipping or
stretching? How should the difference between color gamuts be computed? Which
color space? For an excellent survey of over 90 gamut mapping methods, see the work of
Morovic [252].

In Figure 2-9 (left image), the SRGB color space is shown as fitting inside the Adobe
RGB color space, illustrating that SRGB does not cover a gamut as wide as Adobe RGB.
Each color gamut reproduces color differently, and each color space may be linear or
warped internally. The right image in Figure 2-9 illustrates one gamut mapping method
to determine the nearest color common to both color gamuts, using Euclidean distance
and clipping; however, there are many other gamut mapping distance methods as well.
Depending on the surrounding light and environment, color perception changes further
complicating gamut mapping.

55

CHAPTER 2 " IMAGE PRE-PROCESSING

Lightness

Nearest Color
in destination

gamut

>

True Color,

outside
gamut
et Color Saturation

Figure 2-9. The central problem of gamut mapping: (Left) Color sSRGB and Adobe RGB
color gamuts created using Gamutvision software. (Right) Gamut mapping details

In gamut mapping there is a source gamut and a destination gamut. For example, the
source could be a camera and the destination could be an LCD display. Depending on
the rendering intent of the gamut conversion, different algorithms have been developed
to convert color from source to destination gamuts. Using the perceptual intent, color
saturation is mapped and kept within the boundaries of the destination gamut in an
effort to preserve relative color strength; and out-of-gamut colors from the source are
compressed into the destination gamut, which allows for a more reversible gamut map
translation. Using the colorimetric intent, colors may be mapped straight across from
source to destination gamut, and colors outside the destination gamut are simply clipped.

A common method of color correction is to rely on a simple gamma curve applied
to the intensity channel to help the human eye better visualize the data, since the gamma
curve brightens up the dark regions and compresses the light regions of the image, similar
to the way the human visual system deals with light and dark regions. However, gamut
correction bears no relationship to the true sensor data, so a calibrated, colorimetrically
sound approach is recommended instead.

Practical Considerations for Color Enhancements

For image pre-processing, the color intensity is usually the only color information that
should be enhanced, since the color intensity alone carries a lot of information and is
commonly used. In addition, color processing cannot be easily done in RGB space while
preserving relative color. For example, enhancing the RGB channels independently with
a sharpen filter will lead to Moiré fringe artifacts when the RGB channels are recombined
into a single rendering. So to sharpen the image, first forward-convert RGB to a color

56

CHAPTER 2 © IMAGE PRE-PROCESSING

space such as HSV or YIQ, then sharpen the V or Y component, and then inverse-convert
back to RGB. For example, to correct illumination in color, standard image processing
methods such as LUT remap or histogram equalization will work, provided they are
performed in the intensity space.

As a practical matter, for quick color conversions to gray scale from RGB, here are a
few methods. (1) The G color channel is a good proxy for gray scale information, since as
shown in the sensor discussion in Chapter 1, the RB wavelengths in the spectrum overlap
heavily into the G wavelengths. (2) Simple conversion from RGB into gray scale intensity I
can be done by taking I = R+G+B / 3. (3) The YIQ color space, used in the NTSC television
broadcast standards, provides a simple forward/backward method of color conversion
between RGB and a gray scale component Y, as follows:

[R] [1 09663 0.6210][Y
G|=[1 -02721 -0.6474 || I
|B] |1 -11070 1.7046 || Q

[0.299 0.587 0.114 R
I |=|0595716 —0.274453 -0.321263|| G
Q| |0.211456 -0.522591 0.311135 || B

Color Accuracy and Precision

If color accuracy is important, 8 bits per RGB color channel may not be enough. It is
necessary to study the image sensor vendor’s data sheets to understand how good the
sensor really is. At the time of this writing, common image sensors are producing 10 to
14 bits of color information per RGB channel. Each color channel may have a different
spectral response, as discussed in Chapter 1.

Typically, green is a good and fairly accurate color channel on most devices; red is
usually good as well and may also have near infrared sensitivity if the IR filter is removed
from the sensor; and blue is always a challenge since the blue wavelength can be hardest
to capture in smaller silicon wells, which are close to the size of the blue wavelength, so
the sensor vendor needs to pay special attention to blue ssnsing details.

Spatial Filtering

Filtering on discrete pixel arrays is considered spatial filtering, or time domain filtering,
in contrast to filtering in the frequency domain using Fourier methods. Spatial filters are
alternatives to frequency domain methods, and versatile processing methods are possible
in the spatial domain.

57

CHAPTER 2 " IMAGE PRE-PROCESSING

Convolutional Filtering and Detection

Convolution is a fundamental signal processing operation easily computed as a discrete
spatial processing operation, which is practical for 1D, 2D, and 3D processing. The basic
idea is to combine, or convolve, two signals together, changing the source signal to be
more like the filter signal. The source signal is the array of pixels in the image; the filter
signal is a weighted kernel mask, such as a gradient peak shape and oriented edge shape
or an otherwise weighted shape. For several examples of filter kernel mask shapes, see
the section later in the chapter that discusses Sobel, Scharr, Prewitt, Roberts, Kirsch,
Robinson, and Frei-Chen filter masks.

Convolution is typically used for filtering operations such as low-pass, band pass,
and high-pass filters, but many filter shapes are possible to detect features, such as edge
detection kernels tuned sensitive to edge orientation, or even point, corner, and contour
detectors. Convolution is used as a detector in the method of convolution networks [85],
as discussed in Chapter 4.

The sharpen kernel mask in Figure 2-10 (center image) is intended to amplify the
center pixel in relation to the neighboring pixels. Each pixel is multiplied by its kernel
position, and the result (right image) shows the center pixel as the sum of the convolution,
which has been increased or amplified in relation to the neighboring pixels.

35 43 49 -1 -1 -1 35 43 49
38 52 47 * -1 8 -1 = 38 67 47
42 44 51 -1 -1 -1 42 44 51

-(35 + 43 + 49 + 47 + 51 + 44 + 42 + 38) + (52*8) = 67

Figure 2-10. Convolution, in this case a sharpen filter: (Left to right) Image data, sharpen
filter, and resulting image data

A convolution operation is typically followed up with a set of postprocessing point
operations to clean up the data. Following are some useful postprocessing steps; many
more are suggested in the “Point Filters” section that follows later in the chapter.

switch (post_processor)

{
case RESULT_ASIS:

break;

case RESULT PLUS VALUE:
sum += value;
break;

58

CHAPTER 2

case RESULT_MINUS_VALUE:
sum -= value;
break;

case RESULT_PLUS_ORIGINAL_TIMES VALUE:
sum = sum + (result * value);
break;

case RESULT_MINUS_ORIGINAL_TIMES_VALUE:
sum = sum - (result * value);
break;

case ORIGINAL PLUS RESULT TIMES VALUE:
sum = result + (sum * value);
break;

case ORIGINAL_MINUS_RESULT TIMES_VALUE:
sum = result - (sum * value);
break;

case ORIGINAL_LOW_CLIP:
sum = (result < value ? value : result);
break;

case ORIGINAL_HIGH CLIP:
sum = (result > value ? value : result);
break;

}

switch (post _processing sign)

{

case ABSOLUTE_VALUE:
if (sum < 0) sum = -sum;
if (sum > 1imit) sum = limit;
break;

case POSITIVE_ONLY:
if (sum < 0) sum = 0;
if (sum > 1limit) sum = limit;
break;

case NEGATIVE_ONLY:
if (sum > 0) sum = 0;
if (-sum > limit) sum = -limit;
break;

case SIGNED:
if (sum > 1limit) sum = limit;
if (-sum > 1limit) sum = -limit;
break;

IMAGE PRE-PROCESSING

59

CHAPTER 2 " IMAGE PRE-PROCESSING

Convolution is used to implement a variety of common filters including:

¢ Gradient or sharpen filters, which amplify and detect maxima
and minima pixels. Examples include Laplacian.

o Edge or line detectors, where lines are connected gradients
that reveal line segments or contours. Edge or line detectors
can be steerable to a specific orientation, like vertical, diagonal,
horizontal, or omni-directional; steerable filters as basis sets are
discussed in Chapter 3.

¢ Smoothing and blur filters, which take neighborhood pixels.

Kernel Filtering and Shape Selection

Besides convolutional methods, kernels can be devised to capture regions of pixels
generically for statistical filtering operations, where the pixels in the region are sorted into
a list from low to high value. For example, assuming a 3x3 kernel region, we can devise
the following statistical filters:

sort(8kernel, &image, &coordinates, &sorted list);

switch (filter type)
case RANK FILTER:
// Pick highest pixel in the list, rank = 8 for a 3x3 kernel 0..8
// Could also pick the lowest, middle, or other rank
image[center pixel] = sorted list[rank];
break;
case MEDIAN FILTER:
// Median value is kernel size / 2, (3x3=9)/2=4 in this case
image[center pixel] = sorted list[median];
break;
case MAJORITY_FILTER:
// Find the pixel value that occurs most often, count sorted pixel values
count(&sorted list, &counted list);
image[center pixel] = counted list[0];
break;

The rank filter is a simple and powerful method that sorts each pixel in the region
and substitutes a pixel of desired rank for the center pixel, such as substitution of the
highest pixel in the region for the center pixel, or the median value or the majority value.

60

CHAPTER 2 © IMAGE PRE-PROCESSING

Shape Selection or Forming Kernels

Any regional operation can benefit from shape selection kernels to select pixels from

the region and exclude others. Shape selection, or forming, can be applied as a pre-
processing step to any image pre-processing algorithm or to any feature extraction
method. Shape selection kernels can be binary truth kernels to select which pixels from
the source image are used as a group, or to mark pixels that should receive individual
processing. Shape selection kernels, as shown in Figure 2-11, can be applied to local
feature descriptors and detectors also; similar but sometimes more complex local region
pixel selection methods are often used with local binary descriptor methods, as discussed
in Chapter 4.

T F T
F T F
T F T

Figure 2-11. Truth and shape kernels: (Left) A shape kernel gray kernel position indicating
a pixel to process or use—for example, a pixel to convolve prior to a local binary pattern
point-pair comparison detector.(Right) A truth shape kernel specifying pixels to use for
region average, favoring diagonals—T means use this pixel, F means do not use

Point Filtering

Individual pixel processing is typically overlooked when experimenting with image
pre-processing. Point processing is amenable to many optimization methods, as will
be discussed in Chapter 8. Convolution, as discussed above, is typically followed by
point postprocessing steps. Table 2-2 illustrates several common pixel point processing
methods in the areas of math operations, Boolean operations, and compare and
substitution operations, which seem obvious but can be quite valuable for exploring
image enhancement methods to enhance feature extraction.

61

CHAPTER 2 " IMAGE PRE-PROCESSING

Table 2-2. Possible Point Operations

I Math ops

Il Compare & Substitution ops

NAMES math_ops][] = {
"src + value -> dst",

"src - value -> dst",

"src * value -> dst",

"src / value -> dst",

"(src + dst) * value -> dst",
"(src - dst) * value -> dst",
"(src * dst) * value -> dst",
"(src / dst) * value -> dst",
"sqroot(src) + value -> dst",
"src * src + value -> dst",
"exp(src) + value -> dst",
"log(src) + value -> dst”",
"log10(src) + value -> dst”",
"pow(src A value) -> dst",
"sin(src) + value -> dst",
"cos(src) + value -> dst",
"tan(src) + value -> dst",

"(value / max(all_src)) * src -> dst",

"src - mean(all_src) -> dst",
"absval(src) + value -> dst",
b

// Boolean ops

NAMES bool_ops|] = {

"src AND value -> dst",
"src OR value -> dst",

"src XOR value -> dst",

"src AND dst -> dst",

"src OR dst -> dst",

"src XOR dst -> dst",
"NOT(src) -> dst",

"LO_CLIP(src, value) -> dst",

"LO_CLIP(src, dst) -> dst",

"HI_CLIP(src, value) -> dst",

"HI_CLIP(src, dst) -> dst",
b

NAMES change_ops|] = {

"if (src = thresh) value -> dst",
"if (src = dst) value -> dst",

"if (src != thresh) value -> dst",
"if (src != thresh) src -> dst",

"if (src != dst) value -> dst",

"if (src != dst) src -> dst",

"if (src >=thresh) value -> dst",
"if (src >=thresh) src -> dst",

"if (src >=dst) value -> dst",

"if (src >=dst) src -> dst",

"if (src <= thresh) value -> dst",
"if (src <= thresh) src -> dst",
"if (src <= dst) value -> dst",

"if (src <= dst) src -> dst",

"if (lo <= src <= hi) value -> dst",
"if (lo <= src <= hi) src -> dst",

|7

62

CHAPTER 2 * IMAGE PRE-PROCESSING

Noise and Artifact Filtering

Noise is usually an artifact of the image sensor, but not always. There are several
additional artifacts that may be present in an image as well. The goal of noise removal is
to remove the noise without distorting the underlying image, and the goal of removing
artifacts is similar. Depending on the type of noise or artifact, different methods may be
employed for pre-processing. The first step is to classify the noise or artifact, and then to
devise the right image pre-processing strategy.

¢ Speckle, random noise. This type of noise is apparently random,
and can be removed using a rank filter or median filter.

e Transient frequency spike. This can be determined using a
Fourier spectrum and can be removed using a notch filter over
the spike; the frequency spike will likely be in an outlier region of
the spectrum, and may manifest as a bright spot in the image.

e Jitter and judder line noise. This is an artifact particular to video
streams, usually due to telecine artifacts, motion of the camera
or the image scene, and is complex to correct. It is primarily line
oriented rather than just single-pixel oriented.

e Motion blur. This can be caused by uniform or nonuniform
motion and is a complex problem; several methods exist for
removal; see reference[305].

Standard approaches to noise removal are discussed by Gonzalez[4]. The most basic
approach is to remove outliers, and various approaches are taken, including thresholding
and local region based statistical filters such as the rank filter and median filter. Weighted
image averaging is also sometime used for removing noise from video streams; assuming
the camera and subjects are not moving, it can work well. Although deblurring or
Gaussian smoothing convolution kernels are sometimes used to remove noise, such
methods may cause smearing and may not be the best approach.

A survey of noise-removal methods and a performance comparison model are
provided by Buades et al.[511]. This source includes a description of the author’s
NL-means method, which uses nonlocal pixel value statistics in addition to Euclidean
distance metrics between similar weighted pixel values over larger image regions to
identify and remove noise.

Integral Images and Box Filters

Integral images are used to quickly find the average value of a rectangular group of
pixels. An integral image is also known as a summed area table, where each pixel in the
integral image is the integral sum of all pixels to the left and above the current pixel. The
integral image can be calculated quickly in a single pass over the image. Each value in
the summed area table is calculated using the current pixel value from the image i(n,m)
combined with previous entries s(7,/m) made into the summed area table, as follows:

s(xy) =i(xy) + s(x-Ly) + s(x,y-1) - s(x-1,y-1)

63

CHAPTER 2 " IMAGE PRE-PROCESSING

As shown in Figure 2-12, to find a HAAR rectangle feature value from the integral
image, only four points in the integral image table A,B,C,D are used, rather than tens or
hundreds of points from the image. The integral image sum of a rectangle region can
then be divided by the size of the rectangle region to yield the average value, which is also
known as a box filter.

05 |02 |05 | 02 05 |07 |12 | 14 | 05, [07 | 12,14
03 |06 |03 |06 08 |16 | 24 | 32 08 |16 | 24 | 32
05 |02 |05 | 02 13 | 23 |36 | 46 13,123 | 36| 46
03 |06 |03 | 06 16 | 32 | 48 | 64 16 |32 | 48 |64

Figure 2-12. (Left) Pixels in an image. (Center) Integral image. (Right) Region where a box
filter value is computed from four points in the integral image: sum = s(A) + s(D) - s(B) - s(C)

Integral images and box filters are used in many computer vision methods, such as
HAAR filters and feature descriptors. Integral images are also used as a fast alternative to
a Gaussian filter of a small region, as a way to lower compute costs. In fact, descriptors
with a lot of overlapping region processing, such as BRISK [131], make effective use
of integral images for descriptor building and use integral images as a proxy for a fast
Gaussian blur or convolution.

Edge Detectors

The goal of an edge detector is to enhance the connected gradients in an image, which
may take the form of an edge, contour, line, or some connected set of edges. Many edge
detectors are simply implemented as kernel operations, or convolutions, and we survey
the common methods here.

Kernel Sets: Sobel, Scharr, Prewitt, Roberts, Kirsch,
Robinson, and Frei-Chen

The Sobel operator detects gradient magnitude and direction for edge detection.
The basic method is shown here.

64

CHAPTER 2 © IMAGE PRE-PROCESSING

1. Perform two directional Sobel filters (x and y axis) using basic
derivative kernel approximations such as 3x3 kernels, using
values as follows:

2. -1 -2 -1
S,=/0 0 0
12 1

-1 0 1

S.=|-2 0 2
-1 0 1

3. Calculate the total gradientas G =S| +|S)
4. Calculate the gradient direction as theta = ATAN (Sy/ S)

5. Calculate gradient magnitude G, =./Sy” + Sx*

Variations exist in the area size and shape of the kernels used for Sobel edge
detection. In addition to the Sobel kernels shown above, other similar kernel sets are used
in practice, so long as the kernel values cancel and add up to zero, such as those kernels
proposed by Scharr, Prewitt, Roberts, Robinson, and Frei-Chen, as well as Laplacian
approximation kernels. The Frei-Chen kernels are designed to be used together at a set,
so the edge is the weighted sum of all the kernels. See reference[4] for more information
on edge detection masks. Some kernels have compass orientations, such as those
developed by Kirsch, Robinson, and others. See Figure 2-13.

65

CHAPTER 2 " IMAGE PRE-PROCESSING

o -3
] [] -lﬁ]schnrr
—3 —10 -3

-1
-202[101]
-1 01 2 -10

TEIEE

0_1)()Roborts
10 -1
0 0 0] [lo-l]i‘rm.i.tt.
-1 -1 -1 10 -1
010 111 -2 1 -2 1 -2
1 -4 1][-6 1][1 -8 1](-2 4 -2][1 4 1]Laplacians
010 110 -2 -2 1 -2
5 5—3 5 -3 -3 -3
—3 0][][][5 0 -3 | Rirsch Compass
-3 -3 -3 3 -3 -3 5 -3 -3 5 -3
-3 -3 -3 -3 3-3 -3 -3 5 -3 5 5
-3 0][][—3 0 5][—3 0 5 |KirschCompass
5§ 5 -3 -3 5 3 -3 -3
1
0

][5 8) msesoncmpns

20 -2
10 -2

3
G

0 10 I]Roba.asonCmpass
1

-1 2

0 -1 |Fre-Chen

(1 2 1 1 -1] N 0
1
zﬁ-ﬁ1o

L 0 1
2T o o o/, Vex -v2 0 V2
2V2 |, 7o) 2V2 1 o0

1 V2 -1 o 1 (0 -1 0 1(-10 1
—1] 1 0o -1 ,-[10 -1] 5 0 0 0 |Frei-Chen
2v2 | o, _y7 0o -1 0 1 0 -1
1 (1 -2 1 1 (-2 1 -2 111
—[—2 4 —2] —[1 4 1 |, [111]Froi—moa
6 1 -2 1 -2 1 -2 111

Figure 2-13. Several edge detection kernel masks

Canny Detector

The Canny method [154] is similar to the Sobel-style gradient magnitude and direction
method, but it adds postprocessing to clean up the edges.

1. Perform a Gaussian blur over the image using a selected
convolution kernel (7x7, 5,5, etc.), depending on the level of
low-pass filtering desired.

2. Perform two directional Sobel filters (x & y axis).

66

CHAPTER 2 * IMAGE PRE-PROCESSING

3. Perform nonmaximal value suppression in the direction of
the gradient to set to zero (0) pixels not on an edge (minima
values).

4. Perform hysteresis thresholding within a band (high,low) of
values along the gradient direction to eliminate edge aliasing
and outlier artifacts and to create better connected edges.

Transform Filtering, Fourier, and Others

This section deals with basis spaces and image transforms in the context of image
filtering, the most common and widely used being the Fourier transform. A more
comprehensive treatment of basis spaces and transforms in the context of feature
description is provided in Chapter 3. A good reference for transform filtering in the
context of image processing is provided by Pratt [9].

Why use transforms to switch domains? To make image pre-processing easier
or more effective, or to perform feature description and matching more efficiently. In
some cases, there is no better way to enhance an image or describe a feature than by
transforming it to another domain—for example, for removing noise and other structural
artifacts as outlier frequency components of a Fourier spectrum, or to compact describe
and encode image features using HAAR basis features.

Fourier Transform Family

The Fourier transform is very well known and covered in the standard reference by
Bracewell [227], and it forms the basis for a family of related transforms. Several methods
for performing fast Fourier transform (FFT) are common in image and signal processing
libraries. Fourier analysis has touched nearly every area of world affairs, through
science, finance, medicine, and industry, and has been hailed as “the most important
numerical algorithm of our lifetime” [290]. Here, we discuss the fundamentals of Fourier
analysis, and a few branches of the Fourier transform family with image pre-processing
applications.

The Fourier transform can be computed using optics, at the speed of light [516].
However, we are interested in methods applicable to digital computers.

Fundamentals

The basic idea of Fourier analysis [227,4,9] is concerned with decomposing periodic
functions into a series of sine and cosine waves (Figure 2-14). The Fourier transform is
bi-directional, between a periodic wave and a corresponding series of harmonic basis
functions in the frequency domain, where each basis function is a sine or cosine function,
spaced at whole harmonic multiples from the base frequency. The result of the forward
FFT is a complex number composed of magnitude and phase data for each sine and
cosine component in the series, also referred to as real data and imaginary data.

67

CHAPTER 2 " IMAGE PRE-PROCESSING

Figure 2-14. (Left) Harmonic series of sine waves. (Right) Fourier harmonic series of sine
and cosine waves

Arbitrary periodic functions can be synthesized by summing the desired set of
Fourier basis functions, and periodic functions can be decomposed using the Fourier
transform into the basic functions as a Fourier series. The Fourier transform is invertible
between the time domain of discrete pixels and the frequency domain, where both
magnitude and phase of each basis function are available for filtering and analysis,
magnitude being the most commonly used component.

How is the FFT implemented for 2D images or 3D volumes? The Fourier transform
is a separable transform and so can be implemented as a set of parallel 1D FFT line
transforms (Figure 2-15). So, for 2D images and 3D volumes, each dimension, such as
the x, y, zdimension, can be computed in place, in parallel as independent x lines, then
the next dimension or y columns can be computed in place as parallel lines, then the z
dimension can be computed as parallel lines in place, and the final results are scaled
according to the transform. Any good 1D FFT algorithm can be set up to process 2D
images or 3D volumes using parallelization.

ol 1)

05

-osf

104

Figure 2-15. Fourier series and Fourier transform concepts showing a square wave
approximated from a series of Fourier harmonics

68

CHAPTER 2 * IMAGE PRE-PROCESSING

For accuracy of the inverse transform to go from frequency space back to pixels,
the FFT computations will require two double precision 64-bit floating point buffers to
hold the magnitude and phase data, since transcendental functions such as sine and
cosine require high floating point precision for accuracy; using 64-bit double precision
floating point numbers for the image data allows a forward transform of an image to be
computed, followed by an inverse transform, with no loss of precision compared to the
original image—of course, very large images will need more than double precision.

Since 64-bit floating point is typically slower and of higher power, owing to the
increased compute requirements and silicon real estate in the ALU, as well as the heavier
memory bandwidth load, methods for FFT optimization have been developed using integer
transforms, and in some cases fixed point, and these are good choices for many applications.

Note in Figure 2-16 that the low-pass filter (center right) is applied to preserve
primarily low-frequency information toward the center of the plot and it reduces
high-frequency components toward the edges, resulting in the filtered image at the far right.

Figure 2-16. Basic Fourier filtering: (Left) Original. (Center left) Fourier spectrum. (Center
right) Low-pass filter shape used to multiply against Fourier magnitude. (Right) Inverse
transformed image with low-pass filter

A key Fourier application is filtering, where the original image is forward-
transformed into magnitude and phase; the magnitude component is shown as a Fourier
power spectrum of the magnitude data, which reveals structure in the image as straight
lines and blocks, or outlier structures or spots that are typically noise. The magnitude can
be filtered by various filter shapes, such as high-pass, low-pass, band pass, and spot filters
to remove spot noise, to affect any part of the spectrum.

In Figure 2-16, a circular symmetric low-pass filter shape is shown with a smooth
distribution of filter coefficients from 1 to 0, with high multiplicands in the center at the
low frequencies, ramping down to zero toward the high frequencies at the edge. The
filter shape is multiplied in the frequency domain against the magnitude data to filter
out the higher frequency components, which are toward the outside of the spectrum
plot, followed by an inverse FFT to provide the filtered image. The low-frequency
components are toward the center; typically these are most interesting and so most of
the image power is contained in the low-frequency components. Any other filter shape
can be used, such as a spot filter, to remove noise or any of the structure at a specific
location of the spectrum.

69

CHAPTER 2 " IMAGE PRE-PROCESSING

Fourier Family of Transforms

The Fourier transform is the basis for a family of transforms [4], some of which are:

1. DFT, FFT. The discrete version of the Fourier transform, often
implemented as a fast version, or FFT, commonly used for
image processing. There are many methods of implementing
the FFT [227].

2. Sine transform. Fourier formulation composed of only sine
terms.

3. Cosine transform. Fourier formulation composed of only
cosine terms.

4. DCT, DST, MDCT. The discrete Fourier transform is
implemented in several formulations: discrete sine transform
(DST), discrete cosine transform (DCT), and the modified
discrete cosine transform (MDCT). These related methods
operate on a macroblock, such as 16x16 or 8x8 pixel region,
and can therefore be highly optimized for compute use
with integers rather than floating point. Typically the DCT
is implemented in hardware for video encode and decode
applications for motion estimation of the macro blocks
from frame to frame. The MDCT operates on overlapping
macroblock regions for compute efficiency.

5. Fast Hartley transform, DHT. This was developed as an
alternative formulation of the Fourier transform for telephone
transmission analysis about 1925, forgotten for many years,
then rediscovered and promoted again by Bracewell[227] as an
alternative to the Fourier transform. The Hartley transform is a
symmetrical formulation of the Fourier transform, decomposing
a signal into two sets of sinusoidal functions taken together
as a cosine-and-sine or cas() function, where cas(vx) =cos(vx)

+ sin(vx). This includes positive and negative frequency
components and operates entirely on real numbers for input
and output. The Hartley formulation avoids complex numbers as
used in the Fourier complex exponential exp (j w x). The Hartley
tansform has been developed into optimized versions called the
DHT, shown to be about equal in speed to an optimized FFT.

Other Transforms

Several other transforms may be used for image filtering, including wavelets, steerable filter
banks, and others that will be described in Chapter 3, in the context of feature description.
Note that transforms often have many common uses and applications that overlap, such as
image description, image coding, image compression, and feature description.

70

CHAPTER 2 * IMAGE PRE-PROCESSING

Morphology and Segmentation

For simplicity, we define the goal of morphology as shape and boundary definition, and
the goal of segmentation is to define regions with internal similarity, such as textural or
statistical similarity. Morphology is used to identify features as polygon shaped regions that
can be described with shape metrics, as will be discussed in Chapters 3 and 6, distinct from
local interest point and feature descriptors using other methods. An image is segmented
into regions to allow independent processing and analysis of each region according to
some policy or processing goal. Regions cover an area smaller than the global image but
usually larger than local interest point features, so an application might make use of global,
regional, and small local interest point metrics together as an object signature.

An excellent review of several segmentation methods can be found in work by
Haralick and Shapiro[321]. In practice, segmentation and morphology are not easy:
results are often less useful than expected, trial and error is required, too many methods
are available to provide any strict guidance, and each image is different. So here we only
survey the various methods to introduce the topic and illustrate the complexity. An
overview of region segmentation methods is shown in Table 2-3.

Table 2-3. Segmentation Methods

Method

Description

Morphological segmentation

Texture-based segmentation

Transform-based
segmentation

Edge boundary segmentation

Color segmentation

Super-Pixel Segmentation

Gray scale / luminance
segmentation

Depth segmentation

The region is defined based on thresholding and
morphology operators.

The texture of a region is used to group like textures
into connected regions.

Basis space features are used to segment the image.

Gradients or edges alone are used to define the
boundaries of the region with edge linking in some
cases to form boundaries.

Color information is used to define regions.

Kernels and distance transforms are used to group
pixels and change their values to a common value.

Gray scale thresholds or bands are used to define the

regions.

Depth maps and distance from viewer is used to

segment the image into foreground, background, or

other gradations of inter-scene features.

71

CHAPTER 2 " IMAGE PRE-PROCESSING

Binary Morphology

Binary morphology operates on binary images, which are created from other scalar
intensity channel images. Morphology [9] is used to morph a feature shape into a

new shape for analysis by removing shape noise or outliers, and by strengthening
predominant feature characteristics. For example, isolated pixels may be removed using
morphology, thin features can be fattened, and the predominant shape is still preserved.
Note that morphology all by itself is quite a large field of study, with applications to
general object recognition, cell biology, medicine, particle analysis, and automated
microscopy. We introduce the fundamental concepts of morphology here for binary
images, and then follow this section with applications to gray scale and color data.

Binary morphology starts with binarizing images, so typically thresholding is first
done to create images with binary-valued pixels composed of 8-bit black and white
values, 0-value = black and 255-value = white. Thresholding methods are surveyed later in
this chapter, and thresholding is critical prior to morphology.

Binary morphology is a neighborhood operation, and can use a forming kernel with
truth values, as shown in Figure 2-17. The forming kernel guides the morphology process
by defining which surrounding pixels contribute to the morphology. Figure 2-17 shows
two forming kernels: kernel a, where all pixels touching the current pixel are considered,
and kernel b, where only orthogonally adjacent pixels are considered.

111 ol1]0
1{0f1 1({0]1
111 ol1]0

Kermnel a Kemel b

Erode (AND) Original Gf)=fna Gifi=fn
Dilate (OR) Original Giff= fNna Gf)=fnb

Figure 2-17. 3x3 forming kernels and binary erosion and dilation using the kernels;
other kernel sizes and data values may be useful in a given application. (Image used by
permission, © Intel Press, from Building Intelligent Systems)

72

CHAPTER 2 * IMAGE PRE-PROCESSING

The basic operations of morphology include Boolean AND, OR, NOT. The notation
used for the fundamental morphological operations is for dilation and for erosion. In
binary morphology, dilation is a Boolean OR operator, while erosion is a Boolean AND
operator. In the example provided in Figure 2-17, only kernel elements with a “1” are used
in the morphology calculation, allowing for neighborhood contribution variations. For
erosion, the pixels under all true forming kernel elements are AND’d together; the result is 1
if all are true and the pixel feature remains, otherwise the pixel feature is eroded or set to 0.

All pixels under the forming true kernel must be true for erosion of the center pixel.
Erosion attempts to reduce sparse features until only strong features are left. Dilation
attempts to inflate sparse features to make them fatter, only 1 pixel under the forming
kernel elements must be true for dilation of the center pixel, corresponding to Boolean OR.

Based on simple erosion and dilation, a range of morphological operations are
derived as shown here, where I:{—} = dilation and e = erosion.

Erode G(f) = f 9 b

Dilate G(f) =f b

Opening G(f) = (f b)) &b

Closing G(f) = (f &5b) po

Morphological Gradient G(f) = f e b or G(f) = q—} b-f '9 b
Morphological Internal gradient G i(f) = f - f e b

Morphological External gradient Ge(f) =f q—} b- f

Gray Scale and Color Morphology

Gray scale morphology is useful to synthesize and combine pixels into homogeneous
intensity bands or regions with similar intensity values. Gray scale morphology can
be used on individual color components to provide color morphology affecting hue,
saturation, and color intensity in various color spaces.

For gray scale morphology or color morphology, the basic operations are MIN, MAX,
and MINMAX, where pixels above the MIN are changed to the same value and pixels below
the MAX are changed to the same value, while pixels within the MINMAX range are changed
to the same value. MIN and MAX are a form of thresholding, while MINMAX allows bands of
pixel values to be coalesced into equal values forming a homogenous region.

Morphology Optimizations and Refinements

Besides simple morphology [9], there are other methods of morphological segmentation
using adaptive methods [254,255,256]. The simple morphology methods rely on using

a fixed kernel across the entire image at each pixel and assume the threshold is already
applied to the image; while the adaptive methods combine the morphology operations
with variable kernels and variable thresholds based on the local pixel intensity statistics.
This allows the morphology to adapt to the local region intensity and, in some cases,
produce better results. Auto-thresholding and adaptive thresholding methods are
discussed later in this chapter and are illustrated in Figures 2-24 and 2-26.

73

CHAPTER 2 " IMAGE PRE-PROCESSING

Euclidean Distance Maps

The distance map, or Euclidean distance map (EDM), converts each pixel in a binary
image into the distance from each pixel to the nearest background pixel, so the EDM
requires a binary image for input. The EDM is useful for segmentation, as shown in
Figure 2-18, where the EDM image is thresholded based on the EDM values—in this case,
similar to the ERODE operator.

Figure 2-18. Pre-processing sequence: (Left) Image after thresholding and erosion.
(Center) EDM showing gray levels corresponding to distance of pixel to black background.
(Right) Simple binary thresholded EDM image

Super-Pixel Segmentation

A super-pixel segmentation method [257,258,259,260,261] attempts to collapse similar
pixels in a local region into a larger super-pixel region of equal pixel value, so similar values
are subsumed into the larger super-pixel. Super-pixel methods are commonly used for
digital photography applications to create a scaled or watercolor special effect. Super-pixel
methods treat each pixel as a node in a graph, and edges between regions are determined
based on the similarity of neighboring pixels and graph distance. See Figure 2-19.

Figure 2-19. Comparison of various super-pixel segmentation methods
(Image © Dr. Radhakrishna Achanta, used by permission)

Feature descriptors may be devised based on super-pixels, including super-pixel value
histograms, shape factors of each polygon shaped super-pixel, and spatial relationships of
neighboring super-pixel values. Apparently little work has been done on super-pixel based
descriptors; however, the potential for several degrees of robustness and invariance seems
good. We survey a range of super-pixel segmentation methods next.

4

CHAPTER 2 * IMAGE PRE-PROCESSING

Graph-based Super-Pixel Methods

Graph-based methods structure pixels into trees based on the distance of the pixel
from a centroid feature or edge feature for a region of like-valued pixels. The compute
complexity varies depending on the method.

e SLIC Method [258] Simple Linear Iterative Clusting (SLIC) creates
super-pixels based on a 5D space, including the CIE Lab color
primaries and the XY pixel coordinates. The SLIC algorithm takes
as input the desired number of super-pixels to generate and adapt
well to both gray scale and RGB color images. The clustering
distance function is related to the size of the desired number of
super-pixels and uses a Euclidean distance function for grouping
pixels into super-pixels.

e Normalized Cuts [262,263] Uses a recursive region partitioning
method based on local texture and region contours to create
super-pixel regions.

e GS-FH Method [264] The graph-based Felzenszwalb and
Huttenlocher method attempts to segment image regions using
edges based on perceptual or psychological cues. This method
uses the minimum length between pixels in the graph tree
structure to create the super-pixel regions. The computational
complexity is O(n Log n), which is relatively fast.

e SLMethod [265] The Super-Pixel Lattice (SL) method finds
region boundaries within tiled image regions or strips of pixels
using the graph cut method.

Gradient-Ascent-Based Super-Pixel Methods

Gradient ascent methods iteratively refine the super-pixel clusters to optimize the
segmentation until convergence criteria are reached. These methods use a tree graph
structure to associate pixels together according to some criteria, which in this case may
be the RGB values or Cartesian coordinates of the pixels, and then a distance function
or other function is applied to create regions. Since these are iterative methods, the
performance can be slow.

e Mean-Shift [266] Works by registering off of the region centroid
based on a kernel-based mean smoothing approach to create
regions of like pixels.

e Quick-Shift [267] Similar to the mean-shift method but does
not use a mean blur kernel and instead uses a distance function
calculated from the graph structure based on RGB values and XY
pixel coordinates.

75

CHAPTER 2 = IMAGE PRE-PROCESSING

e Watershed [268] Starts from local region pixel value minima
points to find pixel value-based contour lines defining
watersheds, or basin contours inside which similar pixel values
can be substituted to create a homogeneous pixel value region.

e Turbopixels [269] Uses small circular seed points placed in
a uniform grid across the image around which super-pixels
are collected into assigned regions, and then the super-pixel
boundaries are gradually expanded into the unassigned region,
using a geometric flow method to expand the boundaries using
controlled boundary value expansion criteria, so as to gather
more pixels together into regions with fairly smooth and uniform
geometric shape and size.

Depth Segmentation

Depth information, such as a depth map as shown in Figure 2-20, is ideal for segmenting
objects based on distance. Depth maps can be computed from a wide variety of depth
sensors and methods, including a single camera, as discussed in Chapter 1. Depth
cameras, such as the Microsoft Kinect camera, are becoming more common. A depth
map is a 2D image or array, where each pixel value is the distance or Z value.

Figure 2-20. Depth images from Middlebury Data set: (Left) Original image. (Right)
Corresponding depth image. Data courtesy of Daniel Scharstein and used by permission

Many uncertainties in computer vision arise out of the problems in locating three-
dimensional objects in a two-dimensional image array, so adding a depth map to the
vision pipeline is a great asset. Using depth maps, images can be easily segmented
into the foreground and background, as well as be able to segment specific features or
objects—for example, segmenting by simple depth thresholding.

Depth maps are often very fuzzy and noisy, depending on the depth sensing method,
so image pre-processing may be required. However, there is no perfect filtering method
for depth map cleanup. Many practitioners prefer the bi-lateral filter [302] and variants,
since it preserves local structure and does a better job of handling the edge transitions.

76

CHAPTER 2 * IMAGE PRE-PROCESSING

Color Segmentation

Sometime color alone can be used to segment and threshold. Using the right color
component can easily filter out features from an image. For example, in Figure 2-6, we
started from a red channel image from an RGB set, and the goal was to segment out the
USB sticks from the table background. Since the table is brown and contains a lot of red,
the red channel provides useful contrast with the USB sticks allowing segmentation via
red. It may be necessary to color-correct the image to get the best results, such as gamut
corrections or boosting the hue or saturation of each color to accentuate difference.

Thresholding

The goal of thresholding is to segment the image at certain intensity levels to reveal
features such as foreground, background, and specific objects. A variety of methods
exist for thresholding, ranging from global to locally adaptive. In practice, thresholding
is very difficult and often not satisfactory by itself, and must be tuned for the dataset and
combined with other pre-processing methods in the vision pipeline.

One of the key problems in thresholding is nonuniform illumination, so applications
that require thresholding, like cell biology and microscopy, pay special attention to cell
preparation, specimen spacing, and light placement. Since many images do not respond
well to global thresholding involving simple methods, local methods are often required,
which use the local pixel structure and statistical relationships to create effective
thresholds. Both global and local adaptive methods for thresholding are discussed here.
A threshold can take several forms:

¢ Floor Lowest pixel intensity allowed
¢ Ceiling Highest pixel intensity allowed

e Ramp Shape of the pixel ramp between floor and ceiling, such as
linear or log

e Point May be a binary threshold point with no floor, ceiling, or ramp

Global Thresholding

Thresholding entire images at a globally determined thresholding level is sometimes a
good place to start to explore the image data, but typically local features will suffer and
be unintelligible as a result. Thresholding can be improved using statistical methods to
determine the best threshold levels. Lookup tables (LUT) can be constructed, guided by
statistical moments to create the floor, ceiling, and ramps and the functions to perform
rapid LUT processing on images, or false-color the images for visualization.

7l

CHAPTER 2 " IMAGE PRE-PROCESSING

Histogram Peaks and Valleys, and Hysteresis Thresholds

Again we turn to the old stand-by, the image histogram. Peaks and valleys in the
histogram may indicate thresholds useful for segmentation and thresholding [319].

A hysteresis region marks pixels with similar values, and is easy to spot in the histogram,
as shown in Figure 2-21. Also, many image processing programs have interactive sliders
to allow the threshold point and even regions to be set with the pointer device.' Take
some time and get to know the image data via the histogram and become familiar with
using interactive thresholding methods.

.
[

T

Figure 2-21. Histogram annotated with arrows showing peaks and valleys, and dotted
lines showing regions of similar intensities defined using hysteresis thresholds

1

. IR

If there are no clear valleys between the histogram peaks, then establishing two
thresholds, one on each side of the valley, is a way to define a region of hysteresis. Pixel
values within the hysteresis region are considered inside the object. Further, the pixels
can be classified together as a region using the hysteresis range and morphology to
ensure region connectivity.

LUT Transforms, Contrast Remapping

Simple lookup tables (LUTSs) are very effective for contrast remapping and global
thresholding, and interactive tools can be used to create the LUTs. Once the interactive
experimentation has been used to find the best floor, ceiling, and ramp function, the LUTs
can be generated into table data structures and used to set the thresholds in fast code.
False-coloring the image using pseudo-color LUTs is common and quite valuable for
understanding the thresholds in the data. Various LUT shapes and ramps can be devised.
See Figure 2-22 for an example using a linear ramp function.

!See the open-source package ImageJ2, and menu item Image » Adjust-Brightness/Contrast for
interactive thresholding.

78

CHAPTER 2 * IMAGE PRE-PROCESSING

Figure 2-22. Contrast corrections: (Left) Original image shows palm frond detail
compressed into a narrow intensity range obscuring details. (Center) Global histogram
equalization restores some detail. (Right) LUT remap function spreads the intensity values
to a narrower range to reveal details of the palm fronds. The section of the histogram
under the diagonal line is stretched to cover the full intensity range in the right image;
other intensity regions are clipped. The contrast corrected image will yield more gradient
information when processed with a gradient operator such as Sobel

Histogram Equalization and Specification

Histogram equalization spreads pixel values between a floor and ceiling using a contrast
remapping function, with the goal of creating a histogram with approximately equal bin
counts approaching a straight-line distribution. See Figure 2-23. While this method works
well for gray scale images, color images should be equalized in the intensity channel of

a chosen color space, such as HSV V. Equalizing each RGB component separately and
rerendering will produce color moiré artifacts. Histogram equalization uses a fixed region
and a fixed remapping for all pixels in the region; however, adaptive local histogram
equalization methods are available [314].

Figure 2-23. (Left) Original image and histogram. (Right) Histogram equalized image
and histogram

79

CHAPTER 2 © IMAGE PRE-PROCESSING

Itis possible to create a desired histogram shape or value distribution, referred to
as histogram specification, and then remap all pixel values from the source image to
conform to the specified histogram shape. The shape may be created directly, or else the
histogram shape from a second image may be used to remap the source image to match
the second image. With some image processing packages, the histogram specification

may be interactive, and points on a curve may be placed and adjusted to create the
desired histogram shape.

Global Auto Thresholding

Various methods have been devised to automatically find global thresholds based
on statistical properties of the image histogram [320,513,514,515] and in most cases
the results are not very good unless some image pre-processing precedes the auto
thresholding. Table 2-4 provides a brief survey of auto thresholding methods, while
Figure 2-24 displays renderings of each method.

Table 2-4. Selected Few Global Auto-Thresholding Methods Derived from Basic Histogram

Features [303]

Method Description

Default A variation of the IsoData method, also knowm as iterative intermeans.

Huang Huang’s method of using fuzzy thresholding.

Intermodes Iterative histogram smoothing.

IsoData Iterative pixel averaging of values above and below a threshold to derive
anew threshold above the composite average.

Li Iterative cross-entropy thresholding.

MaxEntropy Kapur-Sahoo-Wong (Maximum Entropy) algorithm.

Mean Uses mean gray level as the threshold.

MinError Iterative method from Kittler and Illingworth to converge on a
minimum error threshold.

Minimum Iterative histogram smoothing, assuming a bimodal histogram.

Moments Tsai’s thresholding algorithm intending to threshold and preserve the
original image moments.

Otsu Otsu clustering algorithms to set local thresholds by minimizing
variance.

Percentile Adapts the threshold based on pre-set allocations for foreground and
background pixels.

RenyiEntropy Another entropy-based method.

Shanbhag Uses fuzzy set metrics to set the threshold.

Triangle Uses image histogram peak, assumes peak is not centered, sets

threshold in largest region on either side of peak.

80

CHAPTER 2 * IMAGE PRE-PROCESSING

Revplnropy wranbhug nght

Figure 2-24. Renderings of selected auto-thresholding methods (Images generated using
Image] auto threshold plug-ins [303])

Local Thresholding

Local thresholding methods take input from the local pixel region and threshold each
pixel separately. Here are some common and useful methods.

Local Histogram Equalization

Local histogram equalization divides the image into small blocks, such as 32x32 pixels,
and computes a histogram for each block, then rerenders each block using histogram
equalization. However, the contrast results may contain block artifacts corresponding
to the chosen histogram block size. There are several variations for local histogram
equalization, including Contrast Limited Adaptive Local Histogram Equalization
(CLAHE) [304].

Integral Image Contrast Filters

A histogram-related method uses integral images to compute local region statistics
without the need to compute a histogram, then pixels are remapped accordingly, which is
faster and achieves a similar effect (Figure 2-25).

81

CHAPTER 2 " IMAGE PRE-PROCESSING

Figure 2-25. Integral image filter from Image] to remap contrast in local regions, similar to
histogram equalization: (Left) Original. (Center) 20x20 regions. (Right) 40x40 regions

Local Auto Threshold Methods

Local thresholding adapts the threshold based on the immediate area surrounding each
target pixel in the image, so local thresholding is more like a standard area operation or
filter [513,514,515]. Local auto thresholding methods are available in standard software
packages.? Figure 2-26 provides some example adaptive local thresholding methods,
summarized in Table 2-5.

MidGrey

Figure 2-26. Renderings of a selected few local auto and local thresholding methods using
Image] plug-ins [303]

2See the open-source package Imagej2, menu item Image » Adjust » Auto Local Threshold | Auto
Threshold.

82

CHAPTER 2 * IMAGE PRE-PROCESSING

Table 2-5. Selected Few Local Auto-thresholding Methods [303]

Method Description

Bernsen Bernsen’s algorithm using circular windows instead of rectangles and
local midgray values

Mean Uses the local gray level mean as the threshold

Median Uses the local gray level mean as the threshold

MidGrey Uses the local area gray level mean - C (where C is a constant)
Niblack Niblack’s algorithm is:

p = (p > mean + k * standard_deviation - c) ? object : background

Sauvola Sauvola’s variation of Niblack:
p = (p > mean * (1 + k *(standard_deviation / r - 1))) ? object : background

Summary

In this chapter, we surveyed image processing as a pre-processing step that can improve
image analysis and feature extraction. We developed a taxonomy of image processing
methods to frame the discussion, and applied the taxonomy to examples in the four
fundamental vision pipelines, as will be developed in the taxonomy of Chapter 5,
including (1) local binary descriptors such as LBP, ORB, FREAK; (2) spectra descriptors
such as SIFT, SURF; (3) basis space descriptors such as FFT, wavelets; and (4) polygon
shape descriptors such as blob object area, perimeter, and centroid. Common problems
and opportunities for image pre-processing were discussed. Starting with illumination,
noise, and artifact removal, we covered a range of topics including segmentation
variations such as depth segmentation and super-pixel methods, binary, gray scale and
color morphology, spatial filtering for convolutions and statistical area filters, and basis
space filtering.

83

CHAPTER 3

Global and Regional
Features

Measure twice, cut once.

—Carpenter’s saying

This chapter covers the metrics of general feature description, often used for whole
images and image regions, including textural, statistical, model based, and basis space
methods. Texture, a key metric, is a well-known topic within image processing, and it is
commonly divided into structural and statistical methods. Structural methods look for
features such as edges and shapes, while statistical methods are concerned with pixel
value relationships and statistical moments. Methods for modeling image texture also
exist, primarily useful for image synthesis rather than for description. Basis spaces, such
as the Fourier space, are also use for feature description.

It is difficult to develop clean partitions between the related topics in image
processing and computer vision that pertain to global vs. regional vs. local feature
metrics; there is considerable overlap in the applications of most metrics. However, for
this chapter, we divide these topics along reasonable boundaries, though those borders
may appear to be arbitrary. Similarly, there is some overlap between discussions here
on global and regional features and topics that were covered in Chapter 2 on image
processing and that will be discussed in Chapter 6 on local features. In short, many
methods are used for local, regional, and global feature description, as well as image
processing, such as the Fourier transform and the LBP.

But we begin with a brief survey of some key ideas in the field of texture analysis and
general vision metrics.

Historical Survey of Features

To compare and contrast global, regional, and local feature metrics, it is useful to survey
and trace the development of the key ideas, approaches, and methods used to describe
features for machine vision. This survey includes image processing (textures and statistics)
and machine vision (local, regional, and global features). Historically, the choice of feature
metrics was limited to those that were computable at the time, given the limitations in
compute performance, memory, and sensor technology. As time passed and technology

85

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

developed, the metrics have become more complex to compute, consuming larger
memory footprints. The images are becoming multi-modal, combining intensity, color,
multiple spectrums, depth sensor information, multiple-exposure settings, high dynamic
range imagery, faster frame rates, and more precision and accuracy in x, y and Z depth.
Increases in memory bandwidth and compute performance, therefore, have given rise to
new ways to describe feature metrics and perform analysis.

Many approaches to texture analysis have been tried; these fall into the following
categories:

° Structural, describing texture via a set of micro-texture patterns
known as texels. Examples include the numerical description
of natural textures such as fabric, grass, and water. Edges, lines,
and corners are also structural patterns, and the characteristics
of edges within a region, such as edge direction, edge count,
and edge gradient magnitude, are useful as texture metrics.
Histograms of edge features can be made to define texture, similar
to the methods used in local feature descriptors such as SIFT
(described in Chapter 6).

e Statistical, based on gray level statistical moments describing
point pixel area properties, and includes methods such as the
co-occurrence matrix or SDM. For example, regions of an image
with color intensity within a close range could be considered as
having the same texture. Regions with the same histogram could
be considered as having the same texture.

e Model based, including fractal models, stochastic models,
and various semi-random fields. Typically, the models can be
used to generate synthetic textures, but may not be effective in
recognizing texture, and we do not cover texture generation.

e Transform or basis based, including methods such as Fourier,
wavelets, Gabor filters, Zernike, and other basis spaces, which are
treated here as a sub-class of the statistical methods (statistical
moments); however, basis spaces are used in transforms for
image processing and filtering as well.

Key Ideas: Global, Regional, and Local

Let’s take a brief look at a few major trends and milestones in feature metrics research.
While this brief outline is not intended to be a precise, inclusive look at all key events
and research, it describes some general trends in mainstream industry thinking and
academic activity.

86

CHAPTER 3 GLOBAL AND REGIONAL FEATURES

1960s, 1970s, 1980s—Whole-0Object Approaches

During this period, metrics describe mostly whole objects, larger regions, or images;
pattern matching was performed on large targets via FFT spectral methods and
correlation; recognition methods included object, shape, and texture metrics; and simple
geometric primitives were used for object composition. Low-resolution images such
as NTSC, PAL, and SECAM were common—primarily gray scale with some color when
adequate memory was available. Some satellite images were available to the military with
higher resolution, such as LANDSAT images from NASA and SPOT images from France.
Some early work on pattern recognition began to use local interest points and
features: notably, Moravic[520] developed a local interest point detector in 1981, and
in 1988 Harris & Stephens[156] developed local interest point detectors. Commercial
systems began to appear, particularly the View PRB in the early 1980s, which used digital
correlation and scale space super-pixels for coarse to fine matching, and real-time image
processing and pattern recognition systems were introduced bylmaging Technology.
Rack-mounted imaging and machine vision systems began to be replaced by workstations
and high-end PCs with add-on imaging hardware, array processors, and software libraries
and applications by companies such as Krig Research.

Early 1990s—Partial-Object Approaches

Compute power and memory were increasing, enabling more attention to local feature
methods, such as developments from Shi and Tomasi[157] improving the Harris detector
methods, Kitchen and Rosenfeld[208] developing gray level corner detection methods,
and methods by Wang and Brady[213]. Image moments over polygon shapes were
computed using Zernike polynomials in 1990 by Khotanzad and Hong[276]. Scale space
theory was applied to computer vision by Lindberg[520], and many other researchers
followed this line of thinking into the future, such as Lowe [161] in 2004.

Metrics described smaller pieces of objects or object components and parts of
images; there was increasing use of local features and interest points. Large sets of
sub-patterns or basis vectors were used and corresponding metrics were developed.
There was increased use of color information; more methods appeared to improve
invariance for scale, rotational, or affine variations; and recognition methods were
developed based on finding parts of an object with appropriate metrics. Higher image
resolution, increased pixel depths, and color information were increasingly used in the
public sector (especially in medical applications), along with of new affordable image
sensors, such as the KODAK MEGA-PLUS, which provided a 1024x1024 image.

Mid-1990s—Local Feature Approaches

More focus was put on metrics that identify small local features surrounding interest
points in images. Feature descriptors added more details from a window or patch
surrounding each feature, and recognition was based on searching for sets of features
and matching descriptors with more complex classifiers. Descriptor spectra included
gradients, edges, and colors.

87

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

Late 1990s—Classified Invariant Local Feature Approaches

New feature descriptors were developed and refined to be invariant to changes in scale,
lightness, rotation, and affine transformations. Work by Schmidt and Mohr[348] advanced
and generalized the local feature description methods. Features acted as an alphabet for
spelling out complex feature descriptors or vectors whereby the vectors were used for
matching. The feature matching and classification stages were refined to increase speed
and effectiveness using neural nets and other machine learning methods [142].

Early 2000s—Scene and Object Modeling Approaches

Scenes and objects were modeled as sets of feature components or patterns with well-formed
descriptors; spatial relationships between features were measured and used for matching;
and new complex classification and matching methods used boosting and related methods
to combine strong and weak features for more effective recognition. The SIFT [161] algorithm
from Lowe was published; SURF was also published by Bay et al.[160], taking a different
approach using HAAR features rather than just gradients. The Viola-Jones method [504]

was published, using HAAR features and a boosted learning approach to classification,
accelerating matching. The OpenCV library for computer vision was developed by Bradski

at INTEL™, and released as open source.

Mid-2000s—Finer-Grain Feature and Metric Composition
Approaches

The number of researchers in this field began to mushroom; various combinations of
features and metrics (bags of features) were developed by Czurka et al.[234] to describe
scenes and objects using key points as described by Sivic [521]; new local feature
descriptors were created and old ones refined; and there was increased interest in
real-time feature extraction and matching methods for commercial applications. Better
local metrics and feature descriptors were analyzed, measured, and used together for
increased pattern match accuracy. Also, feature learning and sparse feature codebooks
were developed to decrease pattern space, speed up search time, and increase accuracy.

Post-2010—Multi-Modal Feature Metrics Fusion

There has been increasing use of depth sensor information and depth maps to segment
images and describe features and create VOXEL metrics by Rusu and Bradski et al.[398]; 2D
texture metrics are expressed in 3-space; 3D depth sensing methods proliferate, increasing
use of high-resolution images and high dynamic range (HDR) images to enhance feature
accuracy; greater bit depth and accuracy of color images allows for valuable color-based
metrics and computational imaging. Increased processing power and cheap, plentiful
memory handle larger images on low-cost compute platforms. Faster and better feature
descriptors using binary patterns have been developed and matched rapidly using
Hamming distance, such as FREAK by Alahi et al.[131] and ORB by Rublee et al.[131].
Multi-modal and multivariate descriptors are composed of image features with other
sensor information, such as accelerometers and positional sensors.

88

CHAPTER 3 GLOBAL AND REGIONAL FEATURES

Future computing research may even come full circle, when sufficient compute and
memory capacity exist to perform the older methods, like correlation across multiple
scales and geometric perspectives in real-time using parallel and fixed-function hardware
methods. This would obviate some of the current focus on small invariant sets of local
features and allow several methods to be used together, synergistically. Therefore, the
history of development in this field is worth knowing, since it might repeat itself in a
different technological embodiment.

Since there is no single solution for obtaining the right set of feature metrics, all the
methods developed over time have applications today and are still in use.

Textural Analysis

One of the most basic metrics is texture, which is the description of the surface of an
image channel, such as color intensity, like an elevation map or terrain map. Texture
can be expressed globally or within local regions. Texture can be expressed locally by
statistical relationships among neighboring pixels in a region, and it can be expressed
globally by summary relationships of pixel values within an image or region. For a
sampling of the literature covering a wide range of texture methods, see references
[13,59,60,310,16-20,312,313].

According to Gonzalez [4], there are three fundamental classes of texture in image
analysis: statistical, structural, and spectral. Statistical measures include histograms,
scatter plots, and SDMs. Structural techniques are more concerned with locating patterns
or structural primitives in an image, such as parallel lines, regular patterns, and so on.
These techniques are described in [11,1,5,8]. Spectral texture is derived from analysis
of the frequency domain representation of the data. That is, a fast Fourier transform is
used to create a frequency domain image of the data, which can then be analyzed using
Fourier techniques.

Histograms reveal overall pixel value distributions but say nothing about spatial
relationships. Scatter plots are essentially two-dimensional histograms, and do not reveal
any spatial relationships. A good survey is found in reference([315].

Texture has been used to achieve several goals:

1. Texture-based segmentation (covered in Chapter 2).
2. Texture analysis of image regions (covered in this chapter).

3. Texture synthesis, creating images using synthetic textures
(not covered in this book).

In computer vision, texture metrics are devised to describe the perceptual
attributes of texture by using discrete methods. For instance, texture has been described
perceptually with several properties, including:

. Contrast
e Color
e (Coarseness

e Directionality

89

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

e Line-likeness
¢ Roughness

e Constancy

e Grouping

e Segmentation

If textures can be recognized, then image regions can be segmented based on texture
and the corresponding regions can be measured using shape metrics such as area,
perimeter, and centroid (as will be discussed in Chapter 6). Chapter 2 included a survey of
segmentation methods, some of which are based on texture. Segmented texture regions can
be recognized and compared for computer vision applications. Micro-textures of a local
region, such as the LBP discussed in detail in Chapter 6, can be useful as a feature descriptor,
and macro-textures can be used to describe a homogenous texture of a region such as a lake
or field of grass, and therefore have natural applications to image segmentation. In summary,
texture can be used to describe global image content, image region content, and local
descriptor region content. The distinction between a feature descriptor and a texture metric
may be small.

Sensor limitations combined with compute and memory capabilities of the past have
limited the development of texture metrics to mainly 2D gray scale metrics. However,
with the advances toward pervasive computational photography in every camera
providing higher resolution images, higher frame rates, deeper pixels, depth imaging,
more memory, and faster compute, we can expect that corresponding new advances in
texture metrics will be made.

Here is a brief historical survey of texture metrics.

1950s thru 1970s—Global Uniform Texture Metrics

Auto-correlation or cross-correlation was developed by Kaiser[34] in 1955 as a method

of looking for randomness and repeating pattern features in aerial photography, where
auto-correlation is a statistical method of correlating a signal or image with a time-shifted
version of itself, yielding a computationally simple method to analyze ground cover and
structures.

Bajcsy[33] developed Fourier spectrum methods in 1973 using various types of filters
in the frequency domain to isolate various types of repeating features as texture.

Gray level spatial dependency matrices, GLCMs, SDMs or co-occurrence matrices [6]
were developed and used by Haralick in 1973, along with a set of summary statistical
metrics from the SDMs to assist in numerical classification of texture. Some, but not all,
of the summary metrics have proved useful; however, analysis of SDMs and development
of new SDM metrics have continued, involving methods such as 2D visualization and
filtering of the SDM data within spatial regions [26], as well as adding new SDM statistical
metrics, some of which are discussed in this chapter.

90

CHAPTER 3 GLOBAL AND REGIONAL FEATURES

1980s—Structural and Model-Based Approaches
for Texture Classification

While early work focused on micro-textures describing statistical measures between
small kernels of adjacent pixels, macro-textures developed to address the structure of
textures within a larger region. K. Laws developed texture energy-detection methods

in 1979 and 1980 [35-37], as well as texture classifiers, which may be considered the
forerunners of some of the modern classifier concepts. The Laws method could be
implemented as a texture classifier in a parallel pipeline with stages for taking gradients
via of a set of convolution masks over Gaussian filtered images to isolate texture micro
features, followed by a Gaussian smoothing stage to deal with noise, followed by the
energy calculation from the combined gradients, followed by a classifier which matched
texture descriptors.

Eigenfilters were developed by Ade[38] in 1983 as an alternative to the Laws gradient
or energy methods and SDMs; eigenfilters are implemented using a covariance matrix
representation of local 3x3 pixel region intensities, which allows texture analysis and
aggregation into structure based on the variance within eigenvectors in the covariance
matrix.

Structural approaches were developed by Davis[39] in 1979 to focus on gross
structure of texture rather than primitives or micro-texture features. Hough transforms
were invented in 1972 by Duda and Hart[228] as a method of finding lines and curves,
and it was used by Eichmann and Kasparis[40] in 1988 to provide invariant texture
description.

Fractal methods and Markov random field methods were developed into texture
descriptors, and while these methods may be good for texture synthesis, they do not map
well to texture classification, since both Fractal and Markov random field methods use
random fields, thus there are limitations when applied to real-world textures that are not
random.

1990s—O0ptimizations and Refinements to Texture Metrics

In 1993, Lam and Ip[41,47] used pyramid segmentation methods to achieve spatial
invariance, where an image is segmented into homogenous regions using Voronoi
polygon tessellation and irregular pyramid segmentation techniques around Q points
taken from a binary thresholded image; five shape descriptors are calculated for each
polygon: area, perimeter, roundness, orientation, and major/minor axis ratio, combined
into texture descriptors.

Local binary patterns (LBP) were developed in 1994 by Ojala et al.[173] as a novel
method of encoding both pattern and contrast to define texture [43,44,15,16]; since
then, hundreds of researchers have added to the LBP literature in the areas of theoretical
foundations, generalization into 2D and 3D, domain-specific interest point descriptors used
in face detection, and spatio-temporal applications to motion analysis [42]. LBP research
remains quite active at this time. LBPs are covered in detail in Chapter 6. There are many
applications for the powerful LBP method as texture metric, a feature descriptor, and an
image processing operator, the latter which was discussed in Chapter 2.

91

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

2000 toToday—More Robust Invariant Texture Metrics
and 3D Texture

Feature metrics research is investigating texture metrics that are invariant to scale,
rotation, lighting, perspective, and so on to approach the capabilities of human texture
discrimination. In fact, texture is used interchangeably as a feature descriptor in some
circles. The work by Pun and Lee[45] is an example of development of rotational invariant
texture metrics, as well as scale invariance. Invariance attributes are discussed in the
general taxonomy in Chapter 5.

The next wave of metrics being developed increasingly will take advantage of 3D
depth information. One example is the surface shape metrics developed by Spence [46] in
2003, which provide a bump-map type metric for affine invariant texture recognition and
texture description with scale and perspective invariance. Chapter 6 also discusses some
related 3D feature descriptors.

Statistical Methods

The topic of statistical methods is vast, and we can only refer the reader to selected
literature as we go along. One useful and comprehensive resource is the online NIST
National Institute of Science and Technology Engineering Statistics Handbook,' including
examples and links to additional resources and tools.

Statistical methods may be drawn upon at any time to generate novel feature metrics.
Any feature, such as pixel values or local region gradients, can be expressed statistically by
any number of methods. Simple methods, such as the histogram shown in Figure 3-1, are
invaluable. Basic statistics such as minimum, maximum, and average values can be seen
easily in the histogram shown in Chapter 2 (Figure 2-22). We survey several applications
of statistical methods to computer vision here.

|
0 255

Figure 3-1. Histogram with linear scale values (black) and log scale values (gray),
illustrating how the same data is interpreted differently based on the chart scale

'See the NIST online resource for engineering statistics: http://www.itl.nist.gov/div898/handbook/

92

http://www.itl.nist.gov/div898/handbook/

CHAPTER 3 GLOBAL AND REGIONAL FEATURES

Texture Region Metrics

Now we look in detail at the specific metrics for feature description based on texture.
Texture is one of the most-studied classes of metrics. It can be thought of in terms of the
surface—for example, a burlap bag compared to silk fabric. There are many possible
textural relationships and signatures that can be devised in a range of domains, with new
ones being developed all the time. In this section we survey some of the most common
methods for calculating texture metrics:

e Edge metrics

e Cross-correlation

e Fourier spectrum signatures

e Co-occurrence matrix, Haralick features, extended SDM features
e Laws texture metrics

e Tessellation

e Local binary patterns (LBP)

e Dynamic textures

Within an image, each image region has a texture signature, where texture is defined
as a common structure and pattern within that region. Texture signatures may be a
function of position and intensity relationships, as in the spatial domain, or be based on
comparisons in some other function basis and feature domain, such as frequency space
using Fourier methods.

Texture metrics can be used to both segment and describe regions. Regions are
differentiated based on texture homogeneousness, and as a result, texture works well as
a method for region segmentation. Texture is also a good metric for feature description,
and as a result it is useful for feature detection, matching, and tracking.

Appendix B contains several ground truth datasets with example images for
computing texture metrics, including the CUReT reflectance and texture database from
Columbia University. Several key papers describe the metrics used against the CUReT
dataset [21,48-50] including the appearance of a surface as a bi-directional reflectance
distribution function (BRDF) and a bi-directional texture function (BTF).

These metrics are intended to measure texture as a function of direction and
illumination, to capture coarse details and fine details of each surface. If the surface
texture contains significant subpixel detail not apparent in single pixels or groups of
pixels, the BRDF reflectance metrics can capture the coarse reflectance details. If the
surface contains pixel-by-pixel difference details, the BTF captures the fine texture details.

Edge Metrics

Edges, lines, contours, or ridges are basic textural features [316,317]. A variety of simple
metrics can be devised just by analyzing the edge structure of regions in an image. There
are many edge metrics in the literature, and a few are illustrated here.

93

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

Computing edges can be considered on a continuum of methods from interest point
to edges, where the interest point may be a single pixel at a gradient maxima or minima,
with several connected gradient maxima pixels composed into corners, ridges line
segments, or a contours. In summary, a gradient point is a degenerate edge, and an edge
is a collection of connected gradient points.

The edge metrics can be computed locally or globally on image regions as follows:

e Compute the gradient g(d) at each pixel, selecting an appropriate
gradient operator g() and select the appropriate kernel size or
distance d to target either micro or macro edge features.

e The distance d or kernel size can be varied to achieve different
metrics; many researchers have used 3x3 kernels.

e Compute edge orientation by binning gradient directions
for each edge into a histogram; for example, use 45 degree
angle increment bins for a total of 8 bins at degrees
0,45,90,135,180,225,270.

Several other methods can be used to compute edge statistics. The representative
methods are shown here; see also Shapiro and Stockton [517] for a standard reference.

Edge Density

Edge density can be expressed as the average value of the gradient magnitudes g in a region.

Bo—_ 8&a(d)
d— . . .
plxels mregion

Edge Contrast

Edge contrast can be expressed as the ratio of the average value of gradient magnitudes to
the maximum possible pixel value in the region.

_ E
¢ max pixel value

d

E

Edge Entropy

Edge randomness can be expressed as a measure of the Shannon entropy of the gradient
magnitudes.

Ee = Z gm (Xi)loghgm (Xl)

i=0

94

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

Edge Directivity

Edge directivity can be expressed as a measure of the Shannon entropy of the gradient
directions.

E = Z g4(x;)log,g,(x,)

i=0

Edge Linearity

Edge linearity measures the co-occurrence of collinear edge pairs using gradient
direction, as shown by edges a - b in Figure 3-2.

E, = cooccurrence of colinear edge pairs

' a. b
"
Ae—
—

Figure 3-2. Gradient direction of edges a,b,c,d used to illustrate relationships for edge metrics

Edge Periodicity

Edge periodicity measures the co-occurrence of identically oriented edge pairs using
gradient direction, as shown by edges a - c in Figure 3-2.

E, =cooccurrence of identically oriented edge pairs

Edge Size

Edge size measures the co-occurrence of opposite oriented edge pairs using gradient
direction, as shown by edges a - d in Figure 3-2.

E, = cooccurrence of opposite oriented edge pairs

95

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

Edge Primitive Length Total

Edge primitive length measures the total length of all gradient magnitudes along the
same direction.

E, =total length of gradeitn magnitudes with same direction

Cross-Correlation and Auto-Correlation

Cross-correlation [34] is a metric showing similarity between two signals with a time
displacement between them. Auto-correlation is the cross-correlation of a signal with a
time-displaced version of itself. In the literature on signal processing, cross-correlation is
also referred to as a sliding inner product or sliding dot product. Typically, this method is
used to search a large signal for a smaller pattern.

frg=f(-t)*g(®)

Using the Wiener-Khinchin theorem as a special case of the general cross-correlation
theorem, cross-correlation can be written as simply the Fourier transform of the absolute
square of the function f, as follows:

c(t)=%[IfF]®

In computer vision, the feature used for correlation may be a 1D line of pixels or
gradient magnitudes, a 2D pixel region, or a 3D voxel volume region. By comparing the
features from the current image frame and the previous image frame using cross-correlation
derivatives, we obtain a useful texture change correlation metric.

By comparing displaced versions of an image with itself, we obtain a set of either local
or global auto-correlation texture metrics. Auto-correlation can be used to detect repeating
patterns or textures in an image, and also to describe the texture in terms of fine or coarse,
where coarse textures show the auto-correlation function dropping of more slowly than fine
textures. See also the discussion of correlation in Chapter 6 and Figure 6-20.

Fourier Spectrum, Wavelets, and Basis Signatures

Basis transforms, such as the FFT, decompose a signal into a set of basis vectors from
which the signal can be synthesized or reconstructed. Viewing the set of basis vectors
as a spectrum is a valuable method for understanding image texture and for creating a
signature. Several basis spaces are discussed in this chapter, including Fourier, HAAR,
wavelets, and Zernike.

Although computationally expensive and memory intensive, the Fast Fourier Transform
(FFT) is often used to produce a frequency spectrum signature. The FFT spectrum is useful
for a wide range of problems. The computations typically are limited to rectangular regions
of fixed sizes, depending on the radix of the transform (see Bracewell[227]).

96

CHAPTER 3 GLOBAL AND REGIONAL FEATURES

As shown in Figure 3-3, Fourier spectrum plots reveal definite image features useful
for texture and statistical analysis of images. For example, Figure 3-10 shows an FFT
spectrum of LBP pattern metrics. Note that the Fourier spectrum has many valuable
attributes, such as rotational invariance, as shown in Figure 3-3, where a texture image
is rotated 90 degrees and the corresponding FFT spectrums exhibit the same attributes,
only rotated 90 degrees.

Figure 3-3. (Top row) Example images with texture. (Bottom row) Texture and shape
information revealed in the corresponding FFT power spectrums

Wavelets [227] are similar to Fourier methods, and have become increasingly
popular for texture analysis [311], discussed later in the section on basis spaces.

Note that the FFT spectrum as a texture metric or descriptor is rotational invariant,
as shown in the bottom left image of Figure 3-3. FFT spectra can be taken over
rectangular 2D regions. Also, 1D arrays such as annuli or Cartesian coordinates of the
shape taken around the perimeter of an object shape can be used as input to an FFT and
as an FFT descriptor shape metric.

Co-Occurrence Matrix, Haralick Features

Haralick[6] proposed a set of 2D texture metrics calculated from directional differences
between adjacent pixels, referred to as co-occurrence matrices, or spatial dependency
matrices (SDM), or gray level co-occurrence matrices (GLCM). A complete set of four (4)
matrices are calculated by evaluating the difference between adjacent pixels in the x, y,
diagonal x and diagonal y directions, as shown in Figure 3-4, and further illustrated with
a 4x4 image and corresponding co-occurence tables shown in Figure 3-5.

97

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

X Y Diagonal X Diagonal Y

> A

v

Figure 3-4. Four different vectors used for the Haralick texture features, where the difference
of each pixel in the image is plotted to reveal the texture of the image

4x4 image

olo|1]2
ol 0 1|1 00 900
ol2|2]2
zl2 | 3]s
(a) (d)
90
135° 45°
6|7 |8
51w f1 0° 136°
A3 |2
('b) (e) U]

Figure 3-5. (a) 4x4 pixel image, with gray values in the range 0-3. (b) Nearest neighbor
angles corresponding to SDM tables. (c)(d)(e)(f) With neighborhood counts for each angle

One benefit of the SDM as a texture metric is that it is easy to calculate in a single
pass over the image. The SDM is also fairly invariant to rotation, which is often a difficult
robustness attribute to attain. Within a segmented region or around an interest point,
the SDM plot can be a valuable texture metric all by itself, therefore useful for texture
analysis, feature description, noise detection, and pattern matching.

For example, if a camera has digital-circuit readout noise, it will show up in the
SDM for the x direction only if the lines are scanned out of the sensor one at a time in the
x direction, so using the SDM information will enable intelligent sensor processing to
remove the readout noise. However, it should be noted that SDM metrics are not always
useful alone, and should be qualified with additional feature information. The SDM is
primarily concerned with spatial relationships, with regard to spatial orientation and
frequency of occurrence. So, it is primarily a statistical measure.

The SDM is calculated in four orientations, as shown in Figure 3-4. Since the SDM
is only concerned with adjacent pairs of pixels, these four calculations cover all possible
spatial orientations. SDMs could be extended beyond 2x2 regions by using forming
kernels extending into 5x5, 7x7, 9x9, and other dimensions.

A spatial dependency matrix is basically a count of how many times a given pixel
value occurs next to another pixel value. Figure 3-5 illustrates the concept. For example,

98

CHAPTER 3 GLOBAL AND REGIONAL FEATURES

assume we have an 8-bit image (0. 255). If an SDM shows that pixel value x frequently
occurs adjacent to pixels within the range x+1 to x-1, then we would say that there is a
“smooth” texture at that intensity. However, if pixel value x frequently occurs adjacent to
pixels within the range x+70 to x-70, we would say that there is quite a bit of contrast at
that intensity, if not noise.

A critical point in using SDMs is to be sensitive to the varied results achieved when
sampling over small vs. large image areas. By sampling the SDM over a smaller area
(say 64x64 pixels), details will be revealed in the SDMs that would otherwise be obscured.
The larger the size of the sample image area, the more the SDM will be populated. And
the more samples taken, the more likely that detail will be obscured in the SDM image
plots. Actually, smaller areas (i.e., 64x64 pixels) are a good place to start when using
SDMs, since smaller areas are faster to compute and will reveal a lot about local texture.

The Haralick metrics are shown in Figure 3-6.

Angular Second Moment X, pli)

Contrast Y e p (i) - d=n
_ LE (i) plici) s,

Correlation —Yao

Where 4,4 .o,. and o,
are the means and std. deviations
of p, and p,, , the partial probability
density functions
Sum of Squares: Variance LE (i-u) pliJ)
Inverse Difference Moment LI — ! ;
" (i- gy
Sum Avvrage i (i)

p(i.J)

Where x and y are the coordinates (row and
column) of an enlry in the co-occurrence matrix,
and py,, (i) is the probability of co-occurrence
matrix coodinates summing to x+y

Sum Variance

Sum Entropy
Entropy

Difference Variance

Difference Entropy

Info. Measure of Comrelation 1

Info. Measure of Correlation 2

Max. Correlation coeff.

£ (i £)P, (i)

-Iip,., ()log{p.., ()} = £,

-LE p(i.i)log(p(i.i))

2 Ep,, (0)

-£4 ., [F}]ug:p, I.-}}
HX - XY

max | HX HY}

{l-uxp'_-z[ﬂxrz-ﬂxr}_}?

Where HXY=-%% p(i, j)log(p(i.j)), HX
HY are the entropies of p_ and p, , HXY =

~LE,p(i.i)log|p, (i) p, ()} HXY2 =

“LX,p, () p, ()log{p, (1) p, (1))

Square root of the second largest eigenvalue of Q

Where Q (i /)= X, pi)p, (k)

plik)p(ik)

Figure 3-6. Haralick texture metrics. (Image used by permission, © Intel Press, from Building
Intelligent Systems)

99

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

The statistical characteristics of the SDM have been extended by several researchers
to add more useful metrics [26], and SDMs have been applied to 3D volumetric data by a
number of researchers with good results [25].

Extended SDM Metrics

Extensions to the Haralick metrics have been developed by the author [26], primarily
motivated by a visual study of SDM plots as shown in Figure 3-7. Applications for

the extended SDM metrics include texture analysis, data visualization, and image
recognition. The visual plots of the SDMs alone are valuable indicators of pixel intensity
relationships, and are worth using along with histograms to get to know the data.

The extended SDM metrics include centroid, total coverage, low-frequency coverage,
total power, relative Power, locus length, locus mean density, bin mean density,
containment, linearity, and linearity strength. The extended SDM metrics capture
key information that is best observed by looking at the SDM plots. In many cases the
extended SDM metric are be computed four times, once for each SDM direction of 0, 45,
90, and 135 degrees, as shown in Figure 3-5.

The SDMs are interesting and useful all by themselves when viewed as an image. Many
of the texture metrics suggested are obvious after viewing and understanding the SDMs;
others are neither obvious nor apparently useful until developing a basic familiarity with
the visual interpretation of SDM image plots. Next, we survey the following:

e Example SDMs showing four directional SDM maps: A
complete set of SDMs would contain four different plots, one
for each orientation. Interpreting the SDM plots visually reveals
useful information. For example, an image with a smooth texture
will yield a narrow diagonal band of co-occurrence values; an
image with wide texture variation will yield a larger spread of
values; a noisy image will yield a co-occurrence matrix with
outlier values at the extrema. In some cases, noise may only be
distributed along one axis of the image—perhaps, across rows or
the x axis, which could indicated sensor readout noise as each
line is read out of the sensor, suggesting a row- or line-oriented
image preparation stage in the vision pipeline to compensate for
the camera.

o Extended SDM texture metrics: The addition of 12 other useful
statistical measures to those proposed by Haralick.

e Some code snippets: These illustrate the extended SDM
computations, full source code is shown in Appendix D.

In Figure 3-7, several of the extended SDM metrics can be easily seen, including
containment and locus mean density. Note that the right image does not have a lot of
outliner intensity points or noise (good containment); most of the energy is centered
along the diagonal (tight locus), showing a rather smooth set of image pixel transitions
and texture, while the left image shows a wider range of intensity values. For some
images, wider range may be noise spread across the spectrum (poor containment),
revealing a wider band of energy and contrast between adjacent pixels.

100

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

MatrixPlot [ImageCooccurrence [’

s{871 = MatrixPlot|IsageCooccurrence

,ﬂ]]

1 pd @ “ 1 b @ &

Figure 3-7. Pair ofimage co-occurrence matrix plots (x-axis plots) computed over 64 bins in
the bottom row corresponding to the images in the top row

Metric 1: Centroid

To compute the centroid, for each SDM bin p(i,j), the count of the bin is multiplied by the
bin coordinate for x,y and also the total bin count is summed. The centroid calculation

is weighted to compute the centroid based on the actual bin counts, rather than an
unweighted “binary” approach of determining the center of the binning region based on
only bin data presence. The result is the weighted center of mass over the SDM bins.

" om xsz(z,j)
centroidzzz y=ip(i, j)
i=0 j=0 ..

z=p(i,Jj)

centroidy =

centroid, =

N |8 N =

Metric 2: Total Coverage

This is a measure of the spread, or range of distribution, of the binning. A small coverage
percentage would be indicative of an image with few gray levels, which corresponds in
some cases to image smoothness. For example, a random image would have a very large
coverage number, since all or most of the SDM bins would be hit. The coverage feature

101

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

metrics (2,3,4), taken together with the linearity features suggested below (11,12), can
give an indication of image smoothness.

coverage, ZZ[llfo<p i J)]

i o\ Ootherwise
coverage,
coverage, =———<
(n*m)

Metric 3: Low-Frequency Coverage

For many images, any bins in the SDM with bin counts less than a threshold value, such
as 3, may be considered as noise. The low-frequency coverage metric, or noise metric,
provides an idea how much of the binning is in this range. This may be especially true
as the sample area of the image area increases. For whole images, a threshold of 3 has
proved to be useful for determining if a bin contains noise for a data range of 0-255,

and using the SDM over smaller local kernel regions may use all the values with no
thresholding needed.

n.m 1’
= if 0 i,j)<3
coverage. =3, > if 0 <p(i,j)< (elser

=0 j=0
coverage,

coverage, =
(n*m)

Metric 4: Corrected Coverage

Corrected coverage is the total coverage with noise removed.

coverage, =coverage, —coverage,

Metric 5: Total Power

The power metric provides a measure of the swing in value between adjacent pixels in an
image, and is computed in four directions. A smooth image will have a low power number
because the differences between pixels are smaller. Total power and relative power are
inter-related, and relative power is computed using the total populated bins (z) and total
difference power (t).

U z+=1,
ower, = l
P ‘ i:ozzf):fp] [t+:|i_j|]

power, =t

102

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

Metric 6: Relative Power

The relative power is calculated based on the scaled total power using nonempty SDM
bins ¢, while the total power uses all bins.

t
power, =—
z

Metric 7: Locus Mean Density

For many images, there is a “locus” area of high-intensity binning surrounding the bin
axis (locus axis is where adjacent pixels are of the same value x=y) corresponding to a
diagonal line drawn from the upper left corner of the SDM plot. The degree of clustering
around the locus area indicates the amount of smoothness in the image. Binning from a
noisy image will be scattered with little relation to the locus area, while a cleaner image
will show a pattern centered about the locus.

LA +=1,
locusC:ZZif0<|ij|<7[“]

0 j=0 d+=p(i,j)

d
locus; =—
z

The locus mean density is an average of the bin values within the locus area. The
locus is the area around the center diagonal line, within a band of 7 pixels on either side
of the identity line (x=y) that passes down the center of each SDM. However, the number
7 is not particularly special, but based upon experience, it just gives a good indication of
the desired feature over whole images. This feature is good for indicating smoothness.

Metric 8: Locus Length

The locus length measures the range of the locus concentration about the diagonal.
The algorithm for locus length is a simple count of bins populated in the locus area;
a threshold band of 7 pixels about the locus has been found useful.

y=length=0;
while (y < 256) {
X=count=0;
while (x < 256) {
n = |y-x|;
if (p[i,3] == 0) & (n < 7) count++;
X++;
}
if (!count) length++;
y++;

103

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

Metric 9: Bin Mean Density

This is simply the average bin count from nonempty bins.

density, =Zn:iifp(i,j)¢0 (v=p(i,j),z+=1)

=0 j=0

. v
density, =—
z

Metric 10: Containment

Containment is a measure of how well the binning in the SDM is contained within the
boundaries or edges of the SDM, and there are four edges or boundaries, for example
assuming a data range [0..255], there are containment boundaries along rows 0 and

255, and along columns 0 and 255. Typically, the bin count m is 256 bins, or possibly

less such as 64. To measure containment, basically the perimeters of the SDM bins are
checked to see if any binning has occurred, where the perimeter region bins of the SDM
represent extrema values next to some other value. The left image in Figure 3-7 has lower
containment than the right image, especially for the low values.

containment, =Y _if p(i,0)#0 (¢,+=1)
i=0

containment, = if p(i,m)#0 (c,+=1)
i=0

containment, = if p(0,i)#0 (c;+=1)
i=0

containment, = if p(m,i)#0 (c,+=1)
i=0

, (¢, +c,+¢,+c¢,)

containment, =1.0 - ——————=

4m
If extrema are hit frequently, this probably indicates some sort of overflow

condition such as numerical overflow, sensor saturation, or noise. The binning is treated

unweighted. A high containment number indicates that all the binning took place within

the boundaries of the SDM. A lower number indicates some bleeding. This feature

appears visually very well in the SDM plots.

Metric 11. Linearity

The linearity characteristic may only be visible in a single orientation of the SDM, or by
comparing SDMs. For example, the image in Figure 3-8 reveals some linearity variations
across the set of SDMs. This is consistent with the image sensor used (older tube camera).

104

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

li ly Zm:f (.) 1[Z+:1,]
inearity, =) if p(jm,j)> ..
= I+=p(256j,))

, . V4
lmearl lyﬂormalized =
m

linearity

strength — _

256256 pixeds; §-bit; BaK | 256x256 pixels: 5-bit. 64K

8 0 O JFK.png SOMQUadrant135_8UCL.png (150%)
256256 pixels; 5-bit; 64K

8 00 Histogram of JFK

EEE——
0 255
Count: 117992 Min: 10

Mean: 115.695 Max: 255

StdDev: 47.322 Mode: 125 (2140)

Figure 3-8. SDM:s from old tube camera showing linearity variations in the sensor, includes
full set of 0, 45, 90, and 135 degree SDM’s. (Public domain image from National Archives)

105

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

Metric 12: Linearity Strength

The algorithm for linearity strength is shown in Metric 11. If there is any linearity present
in a given angle of SDM, both linearity strength and linearity will be comparatively higher
at this angle than the other SDM angles (Table 3-1).

Table 3-1. Extended SDM Metrics from Figure 3-8

METRIC 0 Deg. 45 Deg. 90 Deg. 135Deg. Ave.
xcentroid 115 115 115 115 115
ycentroid 115 115 115 115 115
low_frequency_coverage 0.075 0.092 0.103 0.108 0.095
total_coverage 0.831 0.818 0.781 0.780 0.803
corrected_coverage 0.755 0.726 0.678 0.672 0.708
total_power 2.000 3.000 5.000 5.000 3.750
relative_power 17.000 19.000 23.000 23.000 20.500
locus_length 71 72 71 70 71
locus_mean_density 79 80 74 76 77
bin_mean_density 21 19 16 16 18
containment 0.961 0.932 0.926 0.912 0.933
linearity 0.867 0.848 0.848 0.848 0.853
linearity_strength 1.526 1.557 0.973 1.046 1.276

Laws Texture Metrics

The Laws metrics [52] provide a structural approach to texture analysis, using a set of
masking kernels to measure texture energy or variation within fixed sized local regions,
similar to the 2x2 region SDM approach but using larger pixel areas to achieve different
metrics.

The basic Laws algorithm involves classifying each pixel in the image into texture
based on local energy, using a few basic steps:

1. The mean average intensity from each kernel neighborhood
is subtracted from each pixel to compensate for illumination
variations.

2. The image is convolved at each pixel using a set of kernels,
each of which sums to zero, followed by summing the results
to obtain the absolute average value over each kernel window.

3. The difference between the convolved image and the original
image is measured, revealing the Laws energy metrics.

106

CHAPTER 3 GLOBAL AND REGIONAL FEATURES

Laws defines a set of nine separable kernels to produce a set of texture region
energy metrics, and some of the kernels work better than others in practice. The kernels
are composed via matrix multiplication from a set of four vector masks L5, E5, S5,

and R5, described below. The kernels were originally defined as 5x5 masks, but 3x3
approximations have been used also, as shown below.

5x5 form

L5
E5
S5
RS

Level Detector
Edge Detector
Spot Detector

Ripple Detector

3x3 approximations of 5x5 form
Level Detector
Edge Detector
Spot Detector

L3
E3
S3
R3

Ripple Detector

[1 4 6 4 1]
[-1 -2 0 2 1]
[-1 0 2 0 1]
[1 -4 6 -4 1]
[1 2 1]

[-1 0 1]

[-1 2 -1]

[*

NOTE: cannot be reproduced in 3x3 form]

To create 2D masks, vectors Ln, En, Sn, and Rn (as shown above) are convolved
together as separable pairs into kernels; a few examples are shown in Figure 3-9.

-1 -1 -2 -1

0] «[1, 2, 1] 0 0 ©]

1 1 2 1
E3L3 E383 L3S3

-1 0 1, i1 0 -1 -1 -2 -1

-2 0 2 ‘-2 0 2] [2 4 2

-1 01 "1 0 -1/ -1 -2 -1
E5SL5S E5S5 L5S5

(-1 -2 0 2 l.'l 1 2 0 -2 -1 i-1 -4 -6 -4 -1
-4 -8 0 8 4; 0O 0 0 0 O o 0 0 0 O
-6 -12 0 12 6 | -2 -4 0 4 2 | 2 8 12 8 2
-4 -8 0 8 4| 0 0 0 0 o 0o 0 0 0 O
V-1 -2 0 2 l..| 1 2 0 -2 -1 -1 -4 -6 -4 -1

Figure 3-9. L3E3 kernel composition example

analysis.[51][52]

Note that Laws texture metrics have been extended into 3D for volumetric texture

107

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

LBP Local Binary Patterns

In contrast to the various structural and statistical methods of texture analysis, the LBP
operator [18,58] computes the local texture around each region as an LBP binary code,
or micro-texture, allowing simple micro-texture comparisons to segment regions based
on like micro-texture. (See the very detailed discussion on LBP in Chapter 6 for details
and references to the literature, and especially Figure 6-6.) The LBP operator [173] is
quite versatile, easy to compute, consumes a low amount of memory, and can be used for
texture analysis, interest points, and feature description. As a result, the LBP operator is
discussed is several places in this book.

As shown in Figure 3-10, the uniform set of LBP operators, composed of a subset
of the possible LBPs that are by themselves rotation invariant, can be binned into a
histogram, and the corresponding bin values are run through an FFT as a 1D array to
create an FFT spectrum, which yields a robust metric with strong rotational invariance.

0.06 0.25

0.04

0.02

10 20 30 40 50

10 20 30 40 50 20 30

Figure 3-10. (Left) texture images. (Center) LBP histograms. (Right) FFT spectrum plots of
the histograms which reveal the rotational invariance property of the LBP histograms. Note
that while the histogram binning looks different for the rotated images, the FFT spectrums
look almost identical. (Image © Springer-Verlag London Limited from Computer Vision
Using Local Binary Patterns)

Dynamic Textures

Dynamic textures are a concept used to describe and track textured regions as they change
and morph dynamically from frame to frame [53,13,15,14] For example, dynamic textures
may be textures in motion, like sea waves, smoke, foliage blowing in the wind, fire, facial
expressions, gestures, and poses. The changes are typically tracked in spatio-temporal sets

108

CHAPTER 3 GLOBAL AND REGIONAL FEATURES

of image frames, where the consecutive frames are stacked into volumes for analysis as a
group. The three dimensions are the XY frame sizes, and the Z dimension is derived from
the stack of consecutive frames n-2, n-1, n.

A close cousin to dynamic texture research is the field of activity recognition
(discussed in Chapter 6), where features are parts of moving objects that compose an
activity—for example, features on arms and legs that are tracked frame to frame to
determine the type of motion or activity, such as walking or running. One similarity
between activity recognition and dynamic textures is that the features or textures change
from frame to frame over time, so for both activity recognition and dynamic texture
analysis, tracking features and textures often requires a spatio-temporal approach
involving a data structure with a history buffer of past and current frames, which provides
avolumetric representation to the data.

For example, VLBP and LBP-TOP (discussed in Chapter 6) provide methods for
dynamic texture analysis by using the LBP constructed to operate over three dimensions
in a volumetric structure, where the volume contains image frames n-2, n-1, and n
stacked into the volume.

Statistical Region Metrics

Describing texture in terms of statistical metrics of the pixels is a common and intuitive
method. Often a simple histogram of a region will be sufficient to describe the texture
well enough for many applications. There are also many variations of the histogram,
which lend themselves to a wide range of texture analysis. So this is a good point at which
to examine histogram methods. Since statistical mathematics is a vast field, we can only
introduce the topic here, dividing the discussion into image moment features and point
metric features.

Image Moment Features

Image moments [518,4] are scalar quantities, analogous to the familiar statistical measures
such as mean, variance, skew, and kurtosis. Moments are well suited to describe polygon
shape features and general feature metric information such as gradient distributions.
Image moments can be based on either scalar point values or basis functions such as
Fourier or Zernike methods discussed later in the section on basis space.

Moments can describe the projection of a function onto a basis space—for example,
the Fourier transform projects a function onto a basis of harmonic functions. Note that
there is a conceptual relationship between 1D and 2D moments in the context of shape
description. For example, the 1D mean corresponds to the 2D centroid, and the 1D
minimum and maximum correspond to the 2D major and minor axis. The 1D minimum
and maximum also correspond to the 2D bounding box around the 2D polygon shape
(also see Figure 6-29).

In this work, we classify image moments under the term polygon shape descriptors
in the taxonomy (see Chapter 5). Details on several image moments used for 2D shape
description will be covered in Chapter 6, under “Object Shape Metrics for Blobs and
Objects.”

109

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

Common properties of moments in the context of 1D distributions and 2D
images include:

e 0™ order moment is the mean or 2D centroid.

e Central moments describe variation around the mean or
2D centroid.

e 1storder central moments contain information about 2D area,
centroid, and size.

e 2" grder central moments are related to variance and measure
2D elliptical shape.

e 3" order central moments provide symmetry information about
the 2D shape, or skewness.

e 4%™order central moments measure 2D distribution as tall, short,
thin, short, or fat.

e Higher-level moments may be devised and composed of moment
ratios, such as co-variance.

Moments can be used to create feature descriptors that are invariant to several
robustness criteria, such as scale, rotation, and affine variations. The taxonomy of
robustness and invariance criteria is provided in Chapter 5. For 2D shape description,
in 1961 Hu developed a theoretical set of seven 2D planar moments for character
recognition work, derived using invariant algebra, that are invariant under scale,
translation, and rotation [7]. Several researchers have extended Hu’s work. An excellent
resource for this topic is Moments and Moment Invariants in Pattern Recognition, by Jan
Flusser et al.[518].

Point Metric Features

Point metrics can be used for the following: (1) feature description, (2) analysis

and visualization, (3) thresholding and segmentation, and (4) image processing

via programmable LUT functions (discussed in Chapter 2). Point metrics are often
overlooked. Using point metrics to understand the structure of the image data is one of the
first necessary steps toward devising the image pre-processing pipeline to prepare images
for feature analysis. Again, the place to start is by analysis of the histogram, as shown in
Figures 3-1 and 3-11. The basic point metrics can be determined visually, such as minima,
maxima, peaks, and valleys. False coloring of the histogram regions for data visualization is
simple using color lookup tables to color the histogram regions in the images.

110

CHAPTER 3 * GLOBAL AND REGIONAL FEATURES

Roads
250

o
g”z?

Figure 3-11. Two image histograms side by side, for analysis

Here is a summary of statistical point metrics:

Quantiles, median, rescale: By sorting the pixel values into an
ordered list, as during the histogram process, the various quartiles
can be found, including the median value. Also, the pixels can be
rescaled from the list and used for pixel remap functions

(as described in Chapter 2).

Mix, max, mode: The minimum and maximum values, together
with histogram analysis, can be used to guide image pre-processing
to devise a threshold method to remove outliers from the data. The
mode is the most common pixel value in the sorted list of pixels.

Mean, harmonic mean, and geometric mean: Various
formulations of the mean are useful to learn the predominant
illumination levels, dark or light, to guide image pre-processing to
enhance the image for further analysis.

Standard deviation, skewness, and kurtosis: These moments
can be visualized by looking at the SDM plots.

CHAPTER 3 * GLOBAL AND REGIONAL FEATURES

Correlation: Topic was covered earlier in this chapter under
cross-correlation and auto-correlation.

Variance, covariance: The variance metric provides information
on pixel distribution, and covariance can be used to compare
variance between two images. Variance can be visualized to a
degree in the SDM, also as shown in this chapter.

Ratios and multivariate metrics: Point metrics by themselves
may be useful, but multivariate combinations or ratios using
simple point metrics can be very useful as well. Depending on the
application, the ratios themselves form key attributes of feature
descriptors (as described in Chapter 6). For example, mean : min,
mean : max, median : mean, area : perimeter.

Global Histograms

Global histograms treat the entire image. In many cases, image matching via global
histograms is simple and effective, using a distance function such as SSD. As shown

in Figure 3-12, histograms reveal quantitative information on pixel intensity, but not
structural information. All the pixels in the region contribute to the histogram, with no
respect to the distance from any specific point or feature. As discussed in Chapter 2, the
histogram itself is the basis of histogram modification methods, allowing the shape of the
histogram to be stretched, compressed, or clipped as needed, and then used as an inverse

lookup table to rearrange the image pixel intensity levels.

Figure 3-12. 2D histogram shapes for different images

112

CHAPTER 3 GLOBAL AND REGIONAL FEATURES

Local Region Histograms

Histograms can also be computed over local regions of pixels, such as rectangles or
polygons, as well as over sets of feature attributes, such as gradient direction and
magnitude or other spectra. To create a polygon region histogram feature descriptor, first
aregion may be segmented using morphology to create a mask shape around a region of
interest, and then only the masked pixels are used for the histogram.

Local histograms of pixel intensity values can be used as attributes of a feature
descriptor, and also used as the basis for remapping pixel values from one histogram
shape to another, as discussed in Chapter 2, by reshaping the histogram and reprocessing
the image accordingly. Chapter 6 discusses a range of feature descriptors such as SIFT,
SURE, and LBP which make use of feature histograms to bin attributes such as gradient
magnitude and direction.

Scatter Diagrams, 3D Histograms

The scatter diagram can be used to visualize the relationship or similarity between

two image datasets for image analysis, pattern recognition, and feature description.
Pixel intensity from two images or image regions can be compared in the scatter plot to
visualize how well the values correspond. Scatter diagrams can be used for feature and
pattern matching under limited translation invariance, but they are less useful for affine,
scale, or rotation invariance. Figure 3-13 shows an example using a scatter diagram to
look for a pattern in an image, the target pattern is compared at different offsets, the
smaller the offset, the better the correspondence. In general, tighter sets of peak features
indicate a strong structural or pattern correspondence; more spreading of the data
indicates weaker correspondence. The farther away the pattern offset moves, the lower
the correspondence.

113

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

£

Figure 3-13. Scatter diagrams, rendered as 3D histograms, of an image and a target
pattern at various displacements. Top row: (left) image, (center) target pattern from image,
(right) SDM of pattern with itself. Center row: (left) target and image offset 1,1 (right)
target and image offset 8,8, Bottom row: (left) target and image offset 16,16, (right) target
and image offset 32,32

Note that by analyzing the peak features compared to the low-frequency features,
correspondence can be visualized. Figure 3-14 shows scatter diagrams from two separate
images. The lack of peaks along the axis and the presence of spreading in the data show
low structural or pattern correspondence.

114

CHAPTER 3 * GLOBAL AND REGIONAL FEATURES

Figure 3-14. Scatter diagram from two different images showing low correspondence
along diagonal

The scatter plot can be made, pixel by pixel, from two images, where pixel pairs form
the Cartesian coordinate for scatter plotting using the pixel intensity of image 1 is used as
the x coordinate, and the pixel intensities of image 2 as the y coordinate, then the count of
pixel pair correspondence is binned in the scatter plot. The bin count for each coordinate
can be false colored for visualization. Figure 3-15 provides some code for illustration
purposes.

115

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

rl.X = sarea.x;
rl.y = sarea.y;
rl.z = sarea.z;

rl.dx = dx;
ri.dy = 1;
rl.dz = 1;
r2.x = darea.x;
12.y = darea.y;
r2.z = darea.z;
r2.dx = dx;
r2.dy = 1;
r2.dz = 1;

/* INITIALIZE DATA */
for (x=0; x < 0x10000; mbin[x] = (int)0, x++);

gf = c->grain;
if (gf <=0) gf = 1;
if (gf > dx) gf = dx;

z=0;

while (z < dz) {
rl.y = sarea.y;
r2.y = darea.y;
y=0;
while (y < dy) {

pix_read(c->soid, &r1, data1);
pix_read(c->doid, &r2, data2);
for (x=0; x < dx; mbin[((data2[x] << 8)&oxffo0) + (datai[x] & oxff)]++, x += gf);

y += gf;
r1.y += gf;
r2.y += gf;
}
z += gf;
r1.z += gf;
12.z += gf;

}

Figure 3-15. Code to illustrate binning 8-bit data for a scatter diagram comparing two
images pixel by pixel and binning the results for plotting

For feature detection, as shown in Figure 3-12, the scatter plot may reveal enough
correspondence at coarse translation steps to reduce the need for image pyramids in
some feature detection and pattern matching applications. For example, the step size
of the pattern search and compare could be optimized by striding or skipping pixels,
searching the image at 8 or 16 pixel intervals, rather than at every pixel, reducing feature
detection time. In addition, the scatter plot data could first be thresholded to a binary
image, masked to show just the peak values, converted into a bit vector, and measured for
correspondence using HAMMING distance for increased performance.

116

CHAPTER 3 GLOBAL AND REGIONAL FEATURES

Multi-Resolution, Multi-Scale Histograms

Multi-resolution histograms [10] have been used for texture analysis [54], and also for
feature recognition [55]. The PHOG descriptor described in Chapter 6 makes use of multi-
scale histograms of feature spectra—in this case, gradient information. Note that the
multi-resolution histogram provides scale invariance for feature description. For texture
analysis [54], multi-resolution histograms are constructed using an image pyramid, and
then a histogram is created for each pyramid level and concatenated together [10], which
is referred to as a multi-resolution histogram. This histogram has the desirable properties
of algorithm simplicity, fast computation, low memory requirements, noise tolerance,
and high reliability across spatial and rotational variations. See Figure 3-16. A variation
on the pyramid is used in the method of Zhao and Pietikainen [15], employing a multi-
dimensional pyramid image set from a volume.

O O
]

' |

255
Count: 11770 Min: 0 Count: 15376 Min: 3 Count 17018 Min: 46
Mean: 189.904 Max: 255 Mean: 205.206 Max: 255 Mean: 210.395 Max: 255
SuiDev: 108.862 Mode: 255 (B469) StdDev: 59.977 Mode: 255 (3052) StdDev: 42.774 Mode: 255 (998)

Figure 3-16. Multi-resolution histogram image sequence. Note that the multiple
histograms are taken at various Gaussian blur levels in an attempt to create more invariant
feature descriptors

Steps involved in creating and using multi-resolution histograms are as follows:
1. Apply Gaussian filter to image.

Create an image pyramid.

Create histograms at each level.

Normalize the histograms using L1 norm.

LA

Create cumulative histograms.

117

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

6. Create difference histograms or DOG images (differences
between pyramid levels).

7. Renormalize histograms using the difference histograms.
8. Create a feature vector from the set of difference histograms.

9. Use L1 norm as distance function for comparisons between
histograms.

Radial Histograms

For some applications, computing the histogram using radial samples originating at the
shape centroid can be valuable [136][137]. To do this, a line is cast from the centroid to
the perimeter of the shape, and pixel values are recorded along each line and then binned
into histograms. See Figure 3-17.

Figure 3-17. Radial histogram illustrations [136][137]

Contour or Edge Histograms

The perimeter or shape of an object can be the basis of a shape histogram, which
includes the pixel values of each point on the perimeter of the object binned into the
histogram. Besides recording the actual pixel values along the perimeter, the chain code
histogram (CCH) that will be discussed in Chapter 6 shows the direction of the perimeter
at connected edge point coordinates. Taken together, the CCH and contour histograms
provide useful shape information.

Basis Space Metrics

Features can be described in a basis space, which involves transforming pixels into an
alternative basis and describing features in the chosen basis, such as the frequency
domain. What is a basis space and what is a transform? Consider the decimal system,
which is base 10, and the binary system which is base 2. We can change numbers
between the two number systems by using a transform. A Fourier transform uses sine

118

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

and cosine as basis functions in frequency space, so that the Fourier transform can

move pixels between the time-domain pixel space and the frequency space. Basis space
moments describe the projection of a function onto a basis space [518]—for example, the
Fourier transform projects a function onto a basis of harmonic functions.

Basis spaces and transforms are useful for a wide range of applications, including
image coding and reconstruction, image processing, feature description, and feature
matching. As shown in Figure 3-18, image representation and image coding are closely
related to feature description. Images can be described using coding methods or feature
descriptors, and images also can be reconstructed from the encodings or from the feature
descriptors. Many methods exist to reconstruct images from alternative basis space
encodings, ranging from lossless RLE methods to lossy JPEG methods; in Chapter 4,
we provide illustrations of images that have been reconstructed from only local feature
descriptors (see Figures 4-16 and 4-17).

Infinity

A Continuous
scene

Discreet
pixels

Basis
Features

Level Of Reconstruction Detail

Local
Feature
Descriptors

» Infinity
Basis Feature Set Size

Figure 3-18. An oversimplfiied spectrum of basis space options, showing feature set size
and complexity of description and reconstruction

As illustrated in Figure 3-18, a spectrum of basis spaces can be imagined,
ranging from a continuous real function or live scene with infinite complexity, to a
complete raster image, a JPEG compressed image, a frequency domain, or other basis
representations, down to local feature descriptor sets. Note that the more detail that is
provided and used from the basis space representation, the better the real scene can
be recognized or reconstructed. So the tradeoff is to find the best representation or
description, in the optimal basis space, to reach the invariance and accuracy goals using
the least amount of compute and memory.

119

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

Transforms and basis spaces are a vast field within mathematics and signal
processing, covered quite well in other works, so here we only introduce common
transforms useful for image coding and feature description. We describe their key
advantages and applications, and refer the reader to the literature as we go.

See Figure 3-19.

| Walsh-Hadamard

Slant

Haar

Karhunen-Louve,

1

Hough

Radon

Zernike

Fourier

FFT

DCT

Hartley

Wavelets

Gabor

Figure 3-19. Various basis transforms used in image processing and computer vision

120

CHAPTER 3 GLOBAL AND REGIONAL FEATURES

Since we are dealing with discrete pixels in computer vision, we are primarily
interested in discrete transforms, especially those which can be accelerated with
optimized software or fixed-function hardware. However, we also cover a few integral
transform methods that may be slower to compute and less used. Here’s an overview:

e Global or local feature description. It is possible to use
transforms and basis space representations of images as a global
feature descriptor, allowing scenes and larger objects to be
recognized and compared. The 2D FFT spectrum is only one
example, and it is simple to compare FFT spectrum features using
SAD or SSD distance measures.

¢ Image coding and compression. Many of the transforms have
proved valuable for image coding and image compression.
The basic method involves transforming the image, or block
regions of the image, into another basis space. For example,
transforming blocks of an image into the Fourier domain allows
the image regions to be represented as sine and cosine waves.
Then, based on the amount of energy in the region, a reduced
amount of frequency space components can be stored or coded
to represent the image. The energy is mostly contained in the
lower-frequency components, which can be observed in the
Fourier power spectrum such as shown in Figure 2-16; the high-
frequency components can be discarded and the significant
lower-frequency components can be encoded, thus some image
compression is achieved with a small loss of detail. Many novel
image coding methods exist, such as that using a basis of scaled
Laplacian features over an image pyramid.[318]

Fourier Description

The Fourier family of transforms was covered in detail in Chapter 2, in the context of
image pre-processing and filtering. However, the Fourier frequency components can
also be used for feature description. Using the forward Fourier transform, an image is
transformed into frequency components, which can be selectively used to describe the
transformed pixel region, commonly done for image coding and compression, and for
feature description.

The Fourier descriptor provides several invariance attributes, such as rotation and
scale. Any array of values can be fed to an FFT to generate a descriptor—for example, a
histogram. A common application is illustrated in Figure 3-20, describing the circularity
of a shape and finding the major and minor axis as the extrema frequency deviation from
the sine wave. A related application is finding the endpoints of a flat line segment on the
perimeter by fitting FFT magnitude’s of the harmonic series as polar coordinates against a
straight line in Cartesian space.

121

CHAPTER 3 GLOBAL AND REGIONAL FEATURES

Figure 3-20. Fourier descriptor of the odd shaped polygon surrounding the circle on the left

In Figure 3-20, a complex wave is plotted as a dark gray circle unrolled around a
sine wave function or a perfect circle. Note that the Fourier transform of the lengths of
each point around the complex function yields an approximation of a periodic wave,
and the Fourier descriptor of the shape of the complex wave is visible. Another example
illustrating Fourier descriptors is shown in Figure 6-29.

Walsh-Hadamard Transform

The Hadamard transform [4,9] uses a series of square waves with the value of +1 or -1,
which is ideal for digital signal processing. It is amenable to optimizations, since only
signed addition is needed to sum the basis vectors, making this transform much faster
than sinusoidal basis transforms. The basis vectors for the harmonic Hadamard series
and corresponding transform can be generated by sampling Walsh functions, which
make up an orthonormal basis set; thus, the combined method is commonly referred to
as the Walsh-Hadamaard transform; see Figure 3-21.

122

CHAPTER 3 GLOBAL AND REGIONAL FEATURES

LU L aftntanan

Figure 3-21. (Left) Walsh Haramaard basis set. (Center) HAAR basis set. (Right) Slant basis set

HAAR Transform

The HAAR transform [4,9] is similar to the Fourier transform, except that the basis
vectors are HAAR features resembling square waves, and similar to wavelets. HAAR
features, owing to their orthogonal rectangular shapes, are suitable for detecting vertical
and horizontal images features that have near- constant gray level. Any structural
discontinuities in the data, such as edges and local texture, cannot be resolved very well
by the HAAR features; see Figures 3-21 and 6-22.

Slant Transform

The Slant transform [284], as illustrated in Figure 3-21, was originally developed for
television signal encoding, and was later applied to general image coding [283,4]. The
Slant transform is analogous to the Fourier transform, except that the basis functions
are a series of slant, sawtooth, or triangle waves. The slant basis vector is suitable for
applications where image brightness changes linearly over the length of the function.
The slant transform is amenable to discrete optimizations in digital systems. Although
the primary applications have been image coding and image compression, the slant
transform is amenable to feature description. It is closely related to the Karhunen-Loeve
transform and the Slant-Hadamaard transform [512].

123

CHAPTER 3 GLOBAL AND REGIONAL FEATURES

Zernike Polynomials

Fritz Zernike, 1953 Nobel Prize winner, devised Zernike polynomials during his quest to
develop the phase contrast microscope, while studying the optical properties and spectra
of diffraction gratings. The Zernike polynomials [272-274] have been widely used for
optical analysis and modeling of the human visual system, and for assistance in medical
procedures such as laser surgery. They provide an accurate model of optical wave
aberrations expressed as a set of basis polynomials, illustrated in Figure 3-22.

Figure 3-22. The first 18 Zernike modes. Note various aberrations from a perfect filter;
top left image is the perfect filter. (Images © Dr. Thomas Salmon at Northeastern State
University and used by permission)

Zernike polynomials are analogous to steerable filters [388], which also contain
oriented basis sets of filter shapes used to identify oriented features and take moments to
create descriptors. The Zernike model uses radial coordinates and circular regions, rather
than rectangular patches as used in many other feature description methods.

Zernike methods are widely used in optometry to model human eye aberrations.
Zernike moments are also used for image watermarking[278] and image coding and
reconstruction [279,281]. The Zernike features provide scale and rotational invariance,
in part due to the radial coordinate symmetry and increasing level of detail possible
within the higher-order polynomials. Zernike moments are used in computer vision
applications by comparing the Zernike basis features against circular patches in target
images [276,277].

Fast methods to compute the Zernike polynomials and moments exist [275,280,282],
which exploit the symmetry of the basis functions around the x and y axes to reduce
computations, and also to exploit recursion.

Steerable Filters

Steerable filters are loosely considered as basis functions here, and can be used for both
filtering or feature description. Conceptually similar to Zernike polynomials, steerable
filters [388,400] are composed by synthesizing steered or oriented linearly combinations
of chosen basis functions, such as quadrature pairs of Gaussian filters and oriented
versions of each function, in a simple transform.

Many types of filter functions can be used as the basis for steerable filters [389,390].
The filter transform is created by combining together the basis functions in a filter bank,
as shown in Figure 3-23. Gain is selected for each function, and all filters in the bank are
summed, then adaptively applied to the image. Pyramid sets of basis functions can be

124

CHAPTER 3 GLOBAL AND REGIONAL FEATURES

created to operate over scale. Applications include convolving oriented steerable filters
with target image regions to determine filter response strength, orientation and phase.
Other applications include filtering images based on orientation of features, contour
detection, and feature description.

Bank Fact s

Filter
Summmg
Input l F|Itered
Image Image

Figure 3-23. (Left) Steerable filters basis set showing eight orientations of the first-order
Gaussian filter. (Right) How steerable filters can be combined for directional filtering. Filter
images generated using Image]J Fiji Steerable] plugin from Design of Steerable Filters for
Feature Detection Using Canny-Like Criteria, M. Jacob, M. Unser, PAMI 2004

Basis
Filter Gain

For feature description, there are several methods that could work—for example,
convolving each steerable basis function with an image patch. The highest one or two
filter responses or moments from all the steerable filters can then be chosen as the
set-ordinal feature descriptor, or all the filter responses can be used as a feature
descriptor. As an optimization, an interest point can first be determined in the patch, and
the orientation of the interest point can be used to select the one or two steerable filters
closest to the orientation of the interest point; then the closest steerable filers are used as
the basis to compute the descriptor.

Karhunen-Loeve Transform and Hotelling Transform

The Karhunen-Loeve transform (KLT)[4,9] was devised to describe a continuous
random process as a series expansion, as opposed to the Fourier method of describing
periodic signals. Hotelling later devised a discrete equivalent of the KLT using principal
components. “KLT” is the most common name referring to both methods.

The basis functions are dependent on the eigenvectors of the underlying image,
and computing eigenvectors is a compute-intensive process with no established fast
transform known. The KLT is not separable to optimize over image blocks, so the KLT
is typically used for PCA on small datasets such as feature vectors used in pattern
classification, clustering, and matching.

Wavelet Transform and Gabor Filters

Wavelets, as the name suggests, are short waves or wave-lets [334]. Think of a wavelet as
a short-duration pulse such as a seismic tremor, starting and ending at zero, rather than

a continuous or resonating wave. Wavelets are convolved with a given signal, such as an
image, to find similarity and statistical moments. Wavelets can therefore be implemented
like convolution kernels in the spatial domain. See Figure 3-24.

125

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

] “
| B
!
b

R A R & —ir— Y

Figure 3-24. Wavelet concepts using a “Mexican top hat” wavelet basis. (Top) A few scaled
Mexican top hats derived from the mother wavelet. (Bottom) A few translated wavelets

Wavelet analysis is a vast field [291,292] with many applications and useful resources
available, including libraries of wavelet families and analysis software packages [289].
Fast wavelet transforms (FWTs) exist in common signal and image processing libraries.
Several variants of the wavelet transform include:

e Discrete wavelet transform (DWT)

e Stationary wavelet transform (SWT)

e Continuous wavelet transform (CWT)

e Lifting wavelet transform (LWT)

e Stationary wavelet packet transform (SWPT)
¢ Discrete wavelet packet transform (DWPT)
e Fractional Fourier transform (FRFT)

e Fractional wavelet transform (FRWT)

Wavelets are designed to meet various goals, and are crafted for specific applications;
there is no single wavelet function or basis. For example, a set of wavelets can be designed
to represent the musical scale, where each note (such as middle C) is defined as having
a duration of an eighth note wavelet pulse, and then each wavelet in the set is convolved
across a signal to locate the corresponding notes in the musical scale.

When designing wavelets, the mother wavelet is the basis of the wavelet family,
and then daughter wavelets are derived using translation, scaling, or compression of the
mother wavelet. Ideally, a set of wavelets are overlapping and complementary so as to
decompose data with no gaps and be mathematically reversible.

Wavelets are used in transforms as a set of nonlinear basis functions, where each
basis function can be designed as needed to optimally match a desired feature in the
input function. So, unlike transforms which use a uniform set of basis functions—as the
Fourier transform uses sine and cosine functions—wavelets use a dynamic set of basis
functions that are complex and nonuniform in nature. See Figure 3-25.

126

CHAPTER 3 GLOBAL AND REGIONAL FEATURES

)@@ @@

Figure 3-25. Various 2D wavelet shapes: (left to right) Top hat, Shannon, Dabechies,
Smylet, Coiflett

Wavelets have been used as the basis for scale and rotation invariant feature
description [288], image segmentation [285,286], shape description [287], and obviously
image and signal filtering of all the expected varieties, denoising, image compression,
and image coding. A set of application-specific wavelets could be devised for feature
description.

Gabor Functions

Wavelets can be considered an extension of the earlier concept of Gabor functions
[333,293], which can be derived for imaging applications as a set of 2D oriented bandpass
filters. Gabor’s work was centered on the physical transmission of sound and problems
with Fourier methods involving time-varying signals like sirens that could not be perfectly
represented as periodic frequency information. Gabor proposed a more compact
representation than Fourier analysis could provide, using a concept called atoms that
recorded coefficients of the sound that could be transmitted more compactly.

Hough Transform and Radon Transform

The Hough transform [228-230] and the Radon transform [299] are related, and the
results are equivalent, in the opinion of many;[295][300] see Figure 3-26. The Radon
transform is an integral transform, while the Hough transform is a discrete method,
therefore much faster. The Hough method is widely used in image processing, and can be
accelerated using a GPU [298] with data parallel methods. The Radon algorithm is slightly
more accurate and perhaps more mathematically sound, and is often associated with
x-ray tomography applied to reconstruction from x-ray projections. We focus primarily on
the Hough transform, since it is widely available in image processing libraries.

127

CHAPTER 3 © GLOBAL AND REGIONAL FEATURES

> 8 L > O

Figure 3-26. Line detection: (Left) Original image. (Center) Radon Transform. (Right)
Hough Transform. The brightness of the transform images reveals the relative strength of the
accumulators, and the sinusoidal line intersections indicate the angular orientation of features

Key applications for the Hough and Radon transforms are shape detection and shape
description of lines, circles, and parametric curves. The main advantages include:

e Robust to noise and partial occlusion

e Fill gaps in apparent lines, edges, and curves

e Can be parameterized to handle various edge and curve shapes
The disadvantages include:

e Look for one type or parameterization of a feature at a time,
such as a line

e Co-linear segments are not distinguished and lumped together
e May incorrectly fill in gaps and link edges that are not connected

e Length and position of lines are not determined, but this can be
done in image space

The Hough transform is primarily a global or regional descriptor and operates
over larger areas. It was originally devised to detect lines, and has been subsequently
generalized to detect parametric shapes [301], such as curves and circles. However,
adding more parameterization to the feature requires more memory and compute.
Hough features can be used to mark region boundaries described by regular parametric
curves and lines. The Hough transform is attractive for some applications, since it can
tolerate gaps in the lines or curves and is not strongly affected by noise or some occlusion,
but morphology and edge detection via other methods is often sufficient, so the Hough
transform has limited applications.

The input to the Hough transform is a gradient magnitude image, which has been
thresholded, leaving the dominant gradient information. The gradient magnitude is
used to build a map revealing all the parameterized features in the image—for example,
lines at a given orientation or circles with a given diameter. For example, to detect
lines, we map each gradient point in the pixel space into the Hough parameter space,
parameterized as a single point (d,6) corresponding to all lines with orientation angle 8 at

128

CHAPTER 3 GLOBAL AND REGIONAL FEATURES

distance d from the origin. Curve and circle parameterization uses different variables [301].
The parameter space is quantized into cells or accumulator bins, and each accumulator
is updated by summing the number of gradient lines passing through the same Hough
points. The accumulator method is modified for detecting parametric curves and circles.
Thresholding the accumulator space and re-projecting only the highest accumulator
values as overlays back onto the image is useful to highlight features.

Summary

This chapter has provided a selected history of global and regional metrics, with the
treatment of local feature metrics deferred until Chapters 4 and 6. Some historical context
is provided on the development of structural and statistical texture metrics, as well as
basis spaces useful for feature description, and several common regional and global
metrics. A wide range of topics in texture analysis and statistical analysis have been
surveyed with applications to computer vision.

Since it is difficult to cleanly partition all the related topics in image processing and
computer vision, there is some overlap of topics in here and in Chapters 2, 4,5, and 6.

129

CHAPTER 4

Local Feature Design
Concepts, Classification,
and Learning

“Science, my boy, is made up of mistakes, but they are mistakes which it
is useful to make, because they lead little by little to the truth.”

— Jules Verne, Journey to The Center of The Earth

In this chapter we examine several concepts related to local feature descriptor design—
namely local patterns, shapes, spectra, distance functions, classification, matching,

and object recognition. The main focus is local feature metrics, as shown in Figure 4-1.
This discussion follows the general vision taxonomy that will be presented in Chapter 5,
and includes key fundamentals for understanding interest point detectors and feature
descriptors, as will be surveyed in Chapter 6, including selected concepts common to
both detector and descriptor methods. Note that the opportunity always exists to modify
as well as mix and match detectors and descriptors to achieve the best results.

Vision Pipeline Stages

| Sensor Processing

| Image Pre-Processing

| Local Feature Metrics

| Classification, Learning

|
|
| Global Metrics |
|
|
|

| Augment, Render, Control

Figure 4-1. Various stages in the vision pipeline; this chapter will focus on local feature
metrics and classification and learning

131

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Local Features

We focus on the design of local feature descriptors and how they are used in training,
classification, and machine learning. The discussion follows the feature taxonomy as is
presented in Chapter 5 and as is illustrated in Figure 5-1. The main elements are:
(1) shape (for example, rectangle or circle); (2) pattern (either dense sampling or sparse
sampling); and (3) spectra (binary values, scalars, sparse codes, or other values). A dense
patterned feature will use each pixel in the local region, such as each pixel in a rectangle,
while a sparse feature will use only selected pixels from the region.

In addition to the many approaches to shape and pattern, there are numerous
approaches taken for the spectra, ranging from gradient-based patch methods to sparse
local binary pattern methods. The main topics covered here include:

¢ Detectors, used to locate interesting features in the image.

e Descriptors, used to describe the regions surrounding interesting
features.

e Descriptor attributes, such as feature robustness and invariance.

¢ (Classification, used to create databases of features and optimal
feature matching.

¢ Recognition, used to match detected features in target images
against trained features.

¢ Feature learning, or machine learning methods.

Based on the concepts presented this chapter, the vision taxonomy offered in
Chapter 5 provides a way to summarize and analyze the feature descriptors and their
attributes, thereby enabling limited comparison between the different approaches.

Detectors, Interest Points, Keypoints, Anchor Points,
Landmarks

A detector finds interesting features in the image. The terminology in the literature for
discussing an “interesting feature” includes several interchangeable terms, such as
keypoint, landmark, interest point, or anchor point, all of which refer to features such

as corners, edges, or patterns that can be found repeatedly with high likelihood. In
Chapter 6, we will survey many detector methods, along with various design approaches.
In some cases, the keypoint detector is used to determine the orientation vector of

the surrounding feature descriptor—for example, by computing the overall gradient
orientation of the corner. The uncertain or low-quality keypoints are commonly filtered
out prior to feature description. Note that many keypoint methods operate on smaller
pixel regions, such as 3x3 for the LBP and 7x7 for FAST.

The keypoint location itself may not be enough for feature matching; however, some
methods discussed here rely on keypoints only, without a feature descriptor. Feature
description provides more information around each keypoint, and may be computed
over larger regions and multiple scales, such as SIFT and ORB.

132

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Descriptors, Feature Description, Feature Extraction

A feature descriptor can be computed at each key point to provide more information
about the pixel region surrounding the keypoint. However, in methods that compute
features across a fixed-size pixel grid such as the Viola Jones method [146], no interest
point is necessary, since the grid defines the descriptor region. Feature description
typically uses some combination of color or gray scale intensity channels, as well as local
information such as gradients and colors. Feature description takes place over a shape,
such as a square or circle. In some cases, pixel point-pair sample patterns are used to
compute or compare selected pixel values to yield a descriptor vector—for example, as
shown later, in Figure 4-8.

Typically, an interest point provides some amount of invariance and robustness—for
example, in scale and rotation. In many cases, the orientation of the descriptor is determined
from the interest point, and the descriptor provides other invariance attributes. Combining the
interest point with the descriptor provides a larger set of invariance attributes. And if several
descriptors are associated together from the same object, object recognition is possible.

For example, a descriptor may contain multivariate, multidimensional, and
multigeometric quantities calculated over several intensity channels, multiple geometric
scales, and multiple perspectives. A multivariate descriptor may contain RGBD data
(red, green, blue, and Z depth data); a multidimensional descriptor may contain feature
descriptions at various levels of zoom across an image pyramid; and a multigeometry
descriptor may contain a set of feature descriptions computed across affine transforms of
the local image patch or region.

There is no right or wrong method for designing features; many approaches
are taken. For example, a set of metrics including region shape, region texture, and
region color of an object may be helpful in an application to locate fruit, while another
application may not need color or shape and can rely instead on sets of interest points,
feature descriptors, and their spatial relationships. In fact, combining several weaker
descriptor methods into a multivariate descriptor is often the best approach.

Computing feature descriptors from an image is commonly referred to as
Seature extraction.

Sparse Local Pattern Methods

While some methods describe features densely within regular sampling grids across

an image, such as the PHOG [191] method discussed in Chapter 6, other methods such
as FREAK [130] use sparse local patterns to sample pixels anchored at interest points to
create the descriptor. Depending on the method, the shapes may be trained, learned, or
chosen by design, and many topologies of shapes and patterns are in current use.

To frame the discussion on sparse local pattern and descriptor methods, notice that
there is a contrast with global and regional descriptor methods, which typically do not
rely on sparse local patterns. Instead, global and regional methods typically use dense
sampling of larger shapes such as rectangles or other polygons. For example, polygon
shape descriptors, as will be discussed in Chapter 6, may delineate or segment the feature
region using dense methods such as mathematical morphology and region segmentation.
Global and regional descriptor metrics, such as texture metrics, histograms, or SDMs
discussed in Chapter 3, are typically computed across cohesive, dense regions rather than
sparse regions.

133

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Local Feature Attributes

This section discusses how features are chosen to provide the desired attributes of feature
goodness, such as invariance and robustness.

Choosing Feature Descriptors and Interest Points

Both the interest point detector and the feature description method must be chosen to
work well together, and to work well for the type of images being processed. Robustness
attributes such as contrast, scale, and rotation must be considered for both the detector
and the descriptor pair. As shown in Appendix A, each interest point detector is best
designed to find specific types of features, and therefore no single method is good for all
types of images.

For example, FAST and Harris methods typically find many small mono-scale interest
points, while other methods, such as that used in SIFT find fewer, larger and finely
tuned multi-scale interest points. Some tuning of the interest point detector parameters
is expected, so as to make them work at all, or else some pre-processing of the images
maybe needed to help the detector find the interest points in the first place. (Chapter 6
provides a survey of interest point methods and background mathematical concepts.)

Feature Descriptors and Feature Matching

Feature description is foundational to feature matching, leading to image understanding,
scene analysis, and object tracking. The central problems in feature matching include
how to determine if a feature is differentiated from other similar features, and if the
feature is part of a larger object.

The method of determining a feature match is critical, for many reasons; these
reasons include compute cost, memory size, repeatability, accuracy, and robustness.
While a perfect match is ideal, in practice a relative match is determined by a distance
function, where the incoming set of feature descriptors is compared with known feature
descriptors. But we'll discuss several distance functions later in this chapter.

Criteria for Goodness

Measuring the goodness of features can be done one attribute at a time. A general list of
goodness attributes for feature landmarks is provided later, in Table 4-2. Note that this list is
primarily about invariance and robustness: these are the key concepts, since performance
can be tuned using various optimization methods, as will be discussed in Chapter 8. Of
course, in a given application some attributes of goodness are more important than others;
this is discussed in Chapter 7, in connection with ground truth data.

How do we know a feature is good for an application? We may divide the discussion
between the interest point methods and the descriptor method, and the combined
robustness and invariance attributes provided by both (see Table 4-1). The interest point
at which the feature is anchored is critical, since if the anchor is not good and cannot be
easily and repeatedly found, the resulting descriptor is calculated at a suboptimal location.

134

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Table 4-1. Some Attributes for Good Feature Descriptors and Interest Points. (See also
Figure 5-2 for the general robustness criteria)

Good Feature Metric Attributes

Details

Scale invariance

Perspective invariance

Rotational invariance

Translation invariance

Reflection invariance

Affine invariance

Noise invariance

Illumination invariance

Compute efficiency

Distinctiveness

Compact to describe

Occlusion robustness

Focus or blur robustness

Clutter and outlier robustness

Should be able to find the feature at different scales

Should be able to find the feature from different
perspectives in the field of view

The feature should be recognized in various rotations
within the image plane

The feature should be recognized in various positions
in the FOV

The feature should be recognized as a mirror image
of itself

The feature should be recognized under affine
transforms

The feature should be detectable in the presence of
noise

The feature should be recognizable in various lighting
conditions including changes in brightness and
contrast

The feature descriptor should be efficient to compute
and match

The feature should be distinct and detectable, with a
low probability of mis-match, amenable to matching
from a database of features

The feature should not require large amounts of
memory to hold details

The feature or set of features can be described and
detected when parts of the feature or feature set are
occluded

The feature or set of features can be detected at
varying degrees of focus (i.e, image pyramids can
provide some of this capability)

The feature or set of features can be detected in the
presence of outlier features and clutter

135

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Note that in many cases, image pre-processing is key to creating a good feature
(Figure 4-1). If the image data has problems that can be corrected or improved, the
feature description should be done after the image pre-processing. Note that many
feature description methods rely on local image enhancements during descriptor
creation, such as Gaussian blur of regions around keypoints for noise removal, so image
pre-processing should complement the descriptor method. Each pre-processing method
has drawbacks and advantages; see Table 2-1 and Chapter 2 for information on image
pre-preprocessing.

Figure 4-2. (Left) SURF feature descriptors calculated over original image. (Right) Image
has been pre-processed using histogram equalization prior to feature extraction and
therefore a different but overlapping set of features is found

Repeatability, Easy vs. Hard to Find

Ideally the feature will be easy to find in an image, meaning that the feature description
contains sufficient information to be robust under various conditions (as shown in
Table 4-1), such as contrast and brightness variations, scale, and rotation. Repeatability
applies particularly to interest point detection, so the choice of interest point detector
method is critical. (Appendix A contains example images showing interesting
nonrepeatability anomalies for several common interest point detectors.)

Some descriptors, such as SIFT [161,178], are known to be robust under many
imaging conditions. This is not too surprising, since SIFT is designed to be discriminating
over multiple dimensions, such as scale and rotation, using carefully composed sets
of local region gradients with a weighting factor applied to increase the importance of
gradients closer to the center of the feature. But the robustness and repeatability come at
a compute cost. SIFT [161,178] is one of the most computationally expensive methods;
however, Chapter 6 surveys various SIFT optimizations and variations.

136

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Distinctive vs. Indistinctive
A descriptor is distinctive if:

e The feature can be differentiated from other, similar feature
regions of the image.

o Different feature vectors are unique in the feature set.

e The feature can be matched effectively using a suitable distance
function.

A feature is indistinct if similar features cannot be distinguished; this may be caused
by a lack of suitable image pre-processing, insufficient information in the descriptor,
or an unsuitable distance function chosen for the matching stage. Of course, adding
information into a simpler descriptor to make the descriptor a hybrid multivariate or
multi-scale descriptor may be all that is needed to improve distinctiveness. For example,
color information can be added to distinguish between skin tones.

Relative and Absolute Position

Positional information, such as coordinates, can be critical for feature goodness. For
example, to associate features together using constraints on the corner position of human
eyes, interest point coordinates are needed. These enable more accurate identification
and location of the eyes by using, as part of an intelligent matching process, the distance
and angles between the eye corner locations.

With the increasing use of depth sensors, simply providing the Z or depth location
of the feature in the descriptor itself may be enough to easily distinguish a feature from
the background. Position in the depth field is a powerful bit of information, and since
computer vision is often concerned with finding 3D information in a 2D image field,
the Z depth information can be an invaluable attribute for feature goodness.

Matching Cost and Correspondence

Feature matching is a measurement of the correspondence between two or more features
using a distance function (discussed next in this section). Note here that feature matching
has a cost in terms of memory and compute time. For example, if a feature descriptor is
composed of an array of 8-bit bytes, such as an 18x18 pixel correlation template, then
the feature matching cost is the compute time and memory required to compare two
18x18 (324) pixel regions against each other, where the matching method or distance
function used may be SAD, SSD, or similar difference metric. Another example involves
local binary descriptors such as the LBP (linear binary patterns), which are stored as bit
vectors, where the matching cost is the time to perform the Hamming distance function,
which operates by comparing two binary vectors via Boolean XOR followed by a bit count
to provide the match metric.

In general, distance functions are well-known mathematical functions that are
applied to computer vision; however, some are better suited than others in terms of
computability and application to a specific vision task. For example, SSD, SAD, cosine

137

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

distance, and Hamming distance metrics have been implemented in silicon as computer
machine language instructions in some architectures, owing to their wide applicability.
So choosing a distance function that is accelerated in silicon can be an advantage.

The feature database is another component of the matching cost, so the organization
of the database and feature search contribute to the cost. We briefly touch on this topic
later in this chapter.

Distance Functions

This section provides a general discussion of distance functions used for clustering,

classification, and feature matching. Note that distance functions can be taken over

several dimensions—for example, 2D image arrays for feature descriptor matching,

3D voxel volumes for point cloud matching, and multidimensional spaces for multivariate

descriptors. Since this is a brief overview, a deeper treatment is available by Pele[548].
Note that kernel machines [361,362], discussed later in this chapter, provide an automated

framework to classify a feature space and substitute chosen distance function kernels.

Early Work on Distance Functions

In 1968, Rosenfeld and Pfaltz[121] developed novel methods for determining the distance
between image features, which they referred to as “a given subset of the picture,” where
the feature shapes used in their work included diamonds, squares, and triangles. The
distance metrics they studied include some methods that are no longer in common use
today:

e Hexagonal distance from a single point (Cartesian array)
e Hexagonal distance from a single point (staggered array)
e Octagonal distance from a single point

e City block distance from blank areas

e Square distances from blank areas

e Hexagonal distance from blank areas

e Octagonal distance from blank areas

¢ Nearest integer to Euclidean distance from a single point

This early work by Rosenfeld and Pfaltz is fascinating, since the output device used
to render the images was ASCII characters printed on a CRT terminal or line printer, as
shown in Figure 4-3.

138

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

To 9. 75 30T 9. 7= 555555555555 555555555 5555555555, 7-0- 1. 3. 5. 7.9+ 1
1e9aTa5u3010PaTaSuussrvnrossnsnosnanssnasss ceaa8.7.9.1.3.5.7.9.1
109,725 3. 1.5. 7.5, 33333333 3333333333333333335. 5. 7. 9. 1. . 5. 1. 0.1
1090725.301092 705030 0usnsmsansssasassssasssadoSeledelades.Tu90l

e T s 3 L 9. T 5. LTI I T I T I T ITIT I T T O L. 3. 5. 7. 9. 1. 3. 5. 7. 9. 1
1a9e7e5430109e70543eleccncscnccrcccnscsaneladnbu7a90103.%5.7.9.1
L T 5 A L. 9 7.5, 3. 1. 999999 9999999999999: [+ 3.5 T29: 123, 5. 1a9.1
Le9aT+543010907e5230leFeunsnnnnrnnnnssseFeladnFuTadnlede’aTe9.1
LT 5 3 L 9 T S 3 L O TTT T T T I T 7 7. 9. 1. 3. 5. 7.9 1305 T.9.1
1e9e7a523.1.92725.30109eTevecscscncnaaTaPe1a3.5.7.9.1.3.5.7.9.1

LeFeTass 3.1.9-?.5-3.1 FaT. S.........S 7.9¢l¢3.5 Ta‘-l 3-5-?.9.1
7.5 3 1.9, 7.5 3. 1.9, 7. 5. 3333330, 5. 7. 9. I.3.5.7.

1e92T05434129:725:321.9:7-5:3002223:5:7=9:1.3.5.7+ 9 1.!.5 ?.9.!.
[.9.7.5. 3. 1.9. 7. 5. 3. L. 9. T AT L 3L 5. T 1. LS. 1.9 T3 5. T.9. 1
1.9.7.5.3.1 9 T.5. 3.1 FaT25.3.1 1. 3 5 7.9. l 3052T294143054T49.1

e Faladads

<5.3.T1. T.T 5. 3"-1 §.‘r."s.‘3333‘!’5}.’5’.‘1’3.1.5.5.7.'1.'1.1'3.r:ﬁ.S
©5:3.0.9.7.5,32009T e85 00cceene5aTe9.103.5.7495003s5.749.1
r.mmmm
.l.lo‘i T 5.3.1 9. T.............?.!.l 3.5.7.9. I.-!.S-'!.".L

1.927.5:3.149eTe500ucassncnsnnnnns -'--.-v--u-c, 7. 9-1-]-5-7:9.1
LJ9.7, .5' rr.ﬁ'snms'snﬁmmmm

“Square" distances (d,) [rom a single point.

Figure 4-3. An early Rosenfeld and Pfaltz rendering that illustrates a distance function
(square distance in this case) using a line printer as the output device. (Image © reprinted
from Rosenfeld and Pfaltz, Pattern Recognition (Oxford: Pergamon Press, 1968), 1:33-61.
Used with permission from Elsevier)

Euclidean or Cartesian Distance Metrics

The Euclidean distance metrics include basic Euclidean geometry identities in Cartesian
coordinate spaces; in general, these are simple and obvious to use.

Euclidean Distance

This is the simple distance between two points.

EuclideanDistance[{a,b} ,{x,y}] =y/(a —x)2 +(b-y)

139

CHAPTER 4 * LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Squared Euclidean Distance

This is faster to compute, and omits the square root.

SquaredEuclideanDistance [{a,b} ,{x,y}] =(a- x)2 +(b-y)

Cosine Distance or Similarity

This is angular distance, or the normalized dot product between two vectors to yield
similarity of vector angle; also useful for 3D surface normal and viewpoint matching.

A.B
lAI Bl

0s (0) =

ax+by

Ja® +b* x* +y?

CosmeDlsmnce[{a,b},{x,y}]— -

Ve

Sum of Absolute Differences (SAD) or L1 Norm

The difference between vector elements is summed and taken as the total distance
between the vectors. Note that SAD is equivalent to Manhattan distance.

nl n2

SAD(d1 rdz) ZZZ(dl[irﬂ _dz [1,]])

i=0 j=0

Sum of Squared Differences (SSD) or L2 Norm

The difference between vector elements is summed and squared and taken as the total
distance between the vectors; commonly used in video decoding for motion estimation.

nl n2

$SD(d,,d,) =Y 3 (d, i, - d, i, 1)’

i=0 j=0

140

CHAPTER 4 ' LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING
Correlation Distance
This is the correlation difference coefficient between two vectors, similar to cosine distance.

1-(u—Mean[u]).(v—Mean[v])
e — Mean[ul||lv — Mean[v]|

(u+%(7a7b)j[x+%(fx7y)j+(%(fu7b)+b)[%(fx7 N+ yj

Clu,v]=

2

[{a'b}’{x’y}] \/Abs|:a+;(—a—b)}2 +AbSE(—a—b)+b}2 \/Abs[x+%(—x—J’)T AbsB(—x—J’)ﬂ’}

Hellinger Distance

An effective alternative to Euclidean distance, yielding better performance and accuracy
for histogram-type distance metrics, as reported in the ROOTSIFT [178] optimization of
SIFT. Hellinger distance is defined for L1 normalized histogram vectors as:

H(xy) =25,

Grid Distance Metrics

These metrics calculate distance analogous to paths on grids. Therefore the distance is
measured as grid steps.

Manhattan Distance

Also known as city block difference or rectilinear distance, this measures distance via the
route along a grid; there may be more than one path along a grid with equal distance.

ManhattanDistance| {a,b},{x,y} | = Abs(a—x)+ Abs(b-y)

141

CHAPTER 4 * LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Chebyshev Distance

Also known as chessboard difference, this measures the greatest difference along a grid
between two vectors. Note in the illustration below that each side of the triangle would
have a Chebyshev distance, or length of 5, but in Euclidean space, one of the lines, the
hypotenuse, is longer than the others.

ChebyshevDistance[{u, b} ,{x,y}] = Max[Abs(a—x),Abs(b—y)]

Statistical Difference Metrics

These metrics are based on statistical features of the vectors, and therefore the distance
metrics need not map into a Euclidean space.

Earth Movers Distance (EMD) or Wasserstein Metric

Earth movers distance measures the cost to transform a multidimensional vector, such

as a histogram, into another vector. The analogy is an earth mover (bulldozer) moving
dirt between two groups of piles to make the piles of dirt in each group the same size. The
EMD assumes there is a ground distance between the features in the vector—for example,
the distance between bins in a histogram. The EMD is computed to be the minimal cost
for the transform, which integrates the distance moved d * the amount moved f, subject to
a few constraints [130].

COST(P,Q,F) ZZdyfy

=1 j=1

Once the cost is computed, the result is normalized.

EMD(P,Q) ZZdyf,,ZZf

=1 j=1 =l j=1

The EMD has a high compute cost and can be useful for image analysis, but EMD is
not an efficient metric for feature matching.

142

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Mahalanobis Distance

Also known as quadratic distance, this computes distance using mean and covariance; it
is scale invariant.

nl n2

ssD(d,,d,)= > Y f((x+iy+j)-glx+i-d,y,~d,)

i=—nl j=—n2

where X,=mean of feature vector 1, and X;= mean of feature vector 2.

Bray Curtis Distance

This is equivalent to a ratio of the sums of absolute differences and sums, such as a
ratio of norms of Manhattan distances. Bray Curtis dissimilarity is sometimes used for
clustering data.

_ Abs(a—x)+ Abs(b—y)+ Abs(c -z)
_Abs(a+x)+Abs(b+y)+Abs(c+z)

BrayCurtisDistance| {a,b,c},{x,y,z} |

Canberra Distance

This measures the distance between two vectors of equal length:

Abs(a—x) Abs(b-y)

CanberraDistancel {a b}, {x,v} |= Abs(a)+ Abs(x) Abs(b)+ Abs(y)

Binary or Boolean Distance Metrics

These metrics rely on set comparisons and Boolean algebra concepts, which makes this
family of metrics attractive for optimization on digital computers.

LO Norm

The L0 norm is a count of non-zero elements in a vector and is used in the Hamming
Distance metric and other binary or Boolean metrics.

[lx[lo=#(i] x; = 0)

143

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Hamming Distance

This measures the binary difference or agreement between vectors of equal length—for
example, string or binary vectors. Hamming distance for binary bit vectors can be
efficiently implemented in digital computers with either complete machine language
instructions or as as an XOR operation followed by a bit count operation. Hamming
distance is a favorite for matching local binary descriptors, such as LBP, FREAK, CENSUS,
BRISK, BRIEF, and ORB.

String distance: 5=0001100111 = compare “HelloThere” and
“HelpsThing”

Binary distance: 3 =10100010 = (01001110) XOR (11001100)
Bit count of (u XOR v)

Jaccard Similarity and Dissimilarity

The ratio of pairwise similarity of a binary set (0,1 or true, false) over the number of set
elements. Set 1 below contains two bits with the same pairwise value as Set 2, so the
similarity is 2/5 and the dissimilarity is 3/5. Jaccard similarity can be combined with
Hamming distance.

Set I: {1,0,1,1,0}
Set 2: {1,1,0,1,1}
Jaccard Similarity: 2/5=4

Jaccard Dissimilarity: 3/5=.6

Descriptor Representation

This section discusses how information is represented in the descriptors, including
coordinates spaces useful for feature description and matching, with some discussion of
multimodal data and feature pyramids.

Coordinate Spaces, Complex Spaces

There are many coordinate systems used in computer vision, so being able to transform
data between coordinate systems is valuable. Coordinate spaces are analogous to basis
spaces. Often, choosing the right coordinate system provides advantages for feature
representation, computation, or matching. Complex spaces may include multivariate
collections of scalar and vector variables, such as gradients, color, binary patterns, and
statistical moments of pixel regions. See Figure 4-4.

144

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

3
>

Y

-
<.

Figure 4-4. Coordinate spaces, Cartesian, polar, radial, and spherical

Cartesian Coordinates

Images are typically captured in the time domain in a Cartesian space, and for many
applications translating to other coordinate spaces is needed. The human visual system
views the world as a complex 3D spherical coordinate space, and humans can, through

a small miracle, map the 3D space into approximate or relative Cartesian coordinates.
Computer imaging systems capture data and convert it to Cartesian coordinates, but
depth perception and geometric accuracy are lost in the conversion. (Chapter 1 provided
a discussion of depth-sensing methods and 3D imaging systems, including geometric
considerations.)

Polar and Log Polar Coordinates

Many descriptors mentioned later in Chapter 6 use a circular descriptor region to match
the human visual system. Therefore, polar coordinates are logical candidates to bin the
feature vectors. For example, the GLOH [144] method uses polar coordinates for histogram
gradient binning, rather than Cartesian coordinates as used in the original SIFT [161]
method. GLOH can be used as a retrofit for SIFT and has proved to increase accuracy
[144]. Since the circular sampling patterns tend to provide better rotational invariance,
polar coordinates and circular sampling are a good match for descriptor design.

Radial Coordinates

The RIFF descriptor (described later in Chapter 6) uses a local radial coordinate

system to describe rotationally invariant gradient-based feature descriptors. The radial
coordinate system is based on a radial gradient transform (RGT) that normalizes vectors
for invariant binning.

As shown in Figures 4-4 and 6-27, the RGT creates a local coordinate system within a
patch region ¢, and establishes two orthogonal basis vectors (7,f) relative to any point p in
the patch, r for the radial vector, and ¢ for the tangential vector. The measured gradients
gat all points p are projected onto the radial coordinate system (1), so that the gradients
are represented in a locally invariant fashion relative to the interest point c at the center of
the patch. When the patch is rotated about c, the gradients rotate also, and the invariant
representation holds.

145

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Spherical Coordinates

Spherical coordinates, also referred to as 3D polar coordinates, can be applied to the field
of 3D imaging and depth sensing to increase the accuracy for description and analysis.
For example, depth cameras today typically only provide (x,y), and Z depth information
for each sample. However, this is woefully inadequate to describe the complex geometry
of space, including warping, radial distortion and nonlinear distance between samples.
Chapter 1 discussed the complexities of 3D space, depth measurements, and coordinate
systems.

Gauge Coordinates

The G-SURF methods [188] use a differential geometry concept [190] of a local region
Gauge coordinate system to compute the features. Gauge coordinates are local to the
image feature, and they carry advantages for geometrical accuracy. Gauge derivatives are
rotation and translation invariant.

Multivariate Spaces, Multimodal Data

Multivariate spaces combine several quantities, such as Tensor spaces which combine
scalar and vector values, and are commonly used in computer vision. While raw image
data may be scalar values only, many feature descriptors compute local gradients at
each pixel, so the combination of pixel scalar value and gradient vector forms a tensor or
multivariate space. For example, color spaces (see Chapter 2) may represent color as a set
of scalar and vector quantities, such as the hue, saturation, and value (HSV) color space
illustrated in Figure 2-9, where the vectors include HS with H hue as the vector angle
and S saturation as the vector magnitude.Vis another vector with two purposes, first as
the axis origin for the HS vector and second as the color intensity or gray scale vector V.
It is often useful to convert raw RGB data into such color spaces for ease of analysis—for
example, to be able to uniformly change the color intensity of all colors together so as to
affect brightness or contrast.

In general, by increasing the dimensions of the feature space, more discrimination
and robustness can be added. For example, the LBP pattern as described later in
Chapter 6 can be extended into multiple variables by adding features such as a rotational
invariant representation (RILBP); or by replicating the LBP across RGB color cannels as
demonstrated in the color LBP descriptor; or by extending the LBP pattern into spatio-
temporal 3-space, like the LBP-TOP to add geometric distortion invariance.

Multimodal sensor data is becoming widespread with the proliferation of mobile
devices that have built-in GPS, compass, temperature, altimeter, inertial and other
sensors. An example of a multimodal, multivariate descriptor is the SIFT-GAFD [245]
method, as illustrated in Figure 4-5, which adds accelerometer information in the
form of a gravity vector to the SIFT descriptor. The gravity vector is referred to as global
orientation, and the SIFT local pixel region gradient is referred to as the local orientation.

146

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Fixel —
gradient, & -
vectad/ 7

Gravity /
veetor /)

Figure 4-5. Multimodal descriptor using accelerometer data in the form of a gravity vector,
in a feature descriptor as used in the SIFT-GAFD method [245]. The gravity vector of global
orientation can be used for feature orientation with respect to the environment

Feature Pyramids

Many feature descriptors are computed in a mono-scale fashion using pixel values at a
given scale only, and then for feature detection and matching the feature is searched for
in a scale space image pyramid. However, by computing the descriptor at multiple scales
and storing multiple scaled descriptors together in a feature pyramid, the feature can be
detected on mono-scale images with scale variance without using a scale space pyramid.

For interest point and feature descriptor methods, scale invariance can be addressed
either by: (1) scaling the images prior to searching, as in the scale space pyramid methods
discussed later in this chapter; or (2) scaling and pyramiding multiple scales of the
feature in the descriptor. Shape-based methods are by nature more scale invariant than
interest point and feature descriptor methods, since shape-based methods depend on
larger polygon structures and shape metrics.

Descriptor Density

Depending on the image data, there will be a different number of good interest points
and features, since some images have more pronounced texture. And depending on the
detector method used, images with high texture structure, or wider pixel intensity range
differences, will likely generate more interest points than images with low contrast and
smooth texture.

A good rule of thumb is that between .1 and 1 percent of the pixels in an image can
yield raw, unfiltered interest points. The more sensitive detectors such as FAST and the
Harris detector family are at the upper end of this range (see Appendix A). Of course,
detector parameters are tuned to reduce unwanted detection for each application.

Interest Point and Descriptor Culling

In fact, even though the interest point looks good, the corresponding descriptor
computed at the interest point may not be worth using and will be discarded in some
cases. Both interest points and descriptors are culled. So tuning the detector and

147

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

descriptor together are critical trial-and-error processes. Using our base assumption of .
1 to 1 percent of the pixels yielding valid raw interest points, we can estimate the possible
detected interest points based on video resolution, as shown in Table 4-2.

Table 4-2. Possible Range of Detected Interest Points per Image

4380p NTSC 1080p HD 2160p 4kUHD 4320p 8kUHD
Resolution 640 x 480 1920 x 1080 3840 x 2160 7680 x 4320
Pixels 307200 2073600 8294400 33177600
Interest points 300 - 3k 2k - 21k 8k - 83k 33k - 331k

Depending on the approach, the detector may be run only at mono-scale or across a
set of scaled images in an image pyramid scale space. For scale space search methods, the
interest point detector is run at each pixel in each image in the pyramid. What methods can
be used to cull interest points to reduce the interest point density to a manageable number?

One method to select the best interest points is to use an adaptive detector tuning
method (as discussed in Chapter 6 under “Interest Point Tuning”). Other approaches
include only choosing interest points at a given threshold distance apart—for example,
an interest point that cannot be adjacent to another interest point within a five-pixel
window, with the best candidate point selected within the threshold.

Another method is to vary the search strategy as discussed in this chapter—for
example, search for features at a lower resolution of the image pyramid, identify the best
features, and record their positions, and perhaps search at higher levels of the pyramid
to confirm the feature location, then compute the descriptors. This last method has the
drawback of missing fine-grain features by default, since features may only be present at
full image resolution.

Yet another method is to look for interest points every other pixel or within grid-sized
regions. All of the above methods are used in practice, and other methods exist besides.

Dense vs. Sparse Feature Description

A dense descriptor makes use of all the pixels in the region or patch. By “dense” we mean
that the kernel sampling pattern includes all the pixels, since a sparse kernel may select
specific pixels to use or ignore. SIFT and SURF are classic examples of dense descriptors,
since all pixels in rectangular regions contribute to the descriptor computation.

Many feature description methods, especially local binary descriptor methods, are
making use of sparse patterns, where selected pixels are used from a region rather than
all the pixels. The FREAK descriptor demonstrates one of the most ingenious methods
of sparse sampling by modeling the human visual system, using a circular search region,
and leveraging the finer resolution sampling closer to the center of the region, as well as
tuning a hierarchy of local sampling patterns of increasing resolution for optimal results.
Not only can sparse features potentially use less memory and reduce computations,
but the sparse descriptor can be spread over a wider area to compensate for feature
anomalies that occur in smaller regions.

148

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Descriptor Shape Topologies

For this discussion, we view descriptor shape fopology with an eye toward surveying the
various shapes of the pixel regions used for descriptor computations. Part of the topology
is the shape or boundary, and part of the topology is the choice of dense vs. sparse
sampling patterns, discussed later in this chapter. Sampling and pattering methods
range from the simple rectangular regions up to the more complex sparse local binary
descriptor patterns. As will be discussed in Chapter 6, both 2D and 3D descriptors are
being designed to use a wide range of topologies. Let’s look at a few topological design
considerations, such as patch shape, sub-patches, strips, and deformable patches.

Which shape is better? The answer is subjective and we do not attempt to provide
absolute answers, just offer a survey.

Correlation Templates

An obvious shape is the simple rectangular regions commonly used by correlation
template matching methods. The descriptor is thus the mugshot, or actual image in the
template region. To select sub-spaces within the rectangle, a mask can be used—for
example, it could be a circular mask inside the bounding rectangle to mask off peripheral
pixels from consideration.

Patches and Shape

The literature commonly refers to the feature shape as a patch, and usually a
rectangular shape is assumed. Patch shapes are commonly rectangular owing to the
ease of coding 2D array memory access. Circular patches are widely used in the local
binary descriptor methods.

However, many descriptors also compute features over multiple patches or regions,
not just a single patch. Here are some common variations on patch topology.

Single Patches, Sub-Patches

Many descriptors limit the patch count to a single 2D patch. This is true of most common
descriptors that are surveyed in Chapter 6. However, some of the local binary descriptors
use a set of integral image sub-patches at specific points within the larger patch—for
example, BRIEF uses a 5x5 integral image sub-patch at each sample point in the local
binary pattern, within the larger 31x31 pixel patch region, so the value of each sub-patch
becomes the value used for the point-pair comparison. The goal is to filter the values at
each point to remove noise.

Deformable Patches

Rather than use a rigid shape, such as a fixed-size rectangle or a circle, feature descriptors
can be designed with deformation in mind, such as scale deformations [345,346], and
affine or homographic deformation [220], to enable more robust matching. Examples

149

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

include the DeepFlow [344,394] deep matching method, and RFM2.3, as will be discussed
in Chapter 6. Also, the D-NETS [135] method, using the fully connected or sparse
connected topology, can be considered to be deformable in terms of invariance of the
placement of the strip patterns; see Figure 4-7 and the discussion of D-nets in Chapter 6.
Many feature learning methods discussed later in this chapter also use deformed features
for training.

Fixed descriptor shapes, such as rigid rectangles and circles, can detect motion
under a rigid motion hypothesis, where the entire descriptor is expected to move with
some amount of variance, such as in scale or affine transformation. However, for activity
recognition and motion, a more deformable descriptor model is needed, and DeepFlow
[344,394] bridges the gap between descriptor matching methods and optical flow
matching methods, using deformable patches and deep matching along the lines of deep
learning networks.

Multi-Patch Sets

The SIFT descriptor uses multi-patch sets of three patches from adjacent DoG images taken
from the scale space pyramid structure, as shown in Figure 6-15. Several other methods, such
as the LBP-TOP and VLBP shown in Figure 6-12, use sets of patches spread across a volume
structure. LBP-TOP uses patches from adjacent planes, and the VLBP uses intersecting
patches in 3-space. Dynamic texture methods use sets of three adjacent patches from
spatio-temporal image frame sets, as frame n-2, frame n-1, and frame-0 (current frame).

TPLBP, FPLBP

The three-patch LBP TPLBP and four-patch LBP FPLBP [244] utilize novel multi-patch
sampling patterns to add sparse local structure into a composite LBP descriptor. As
shown in Figure 4-6, the three-patch LBP uses a radial set of LBP patterns composed
using alternating sets of three patches, and the four-patch LBP uses a more distributed
pairing of patches over a wider range.

150

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Figure 4-6. Novel multi-patch sets developed by Wolf et. al [244]. (Left) The TPLBP
compares the values from three-patch sets around the ring to compute the LBP code, eight
sets total, so there is one set for each LBP bit. (Right) The four-patch LBP uses four patches
to computed bits using two symmetrically distributed patches from each ring, to produce
each bit in the LBP code. The radius of each ring is a variable, the patch pairing is a variable,
and the number of patches per ring is a variable; here, there are eight patches per ring

Strip and Radial Fan Shapes

Radial fans or spokes originating at the feature interest point location or shape centroid
can be used as the descriptor sampling topology—for example, with Fourier shape
descriptors (as discussed in Chapter 6; see especially Figure 6-29).

D-NETS Strip Patterns

The D-NETS method developed by Hundelshausen and Sukthankar[135] uses a
connected graph-shaped descriptor pattern with variations in the sampling pattern
possible. The authors suggest that the method is effective using three different patterns,
as shown in Figure 4-7:

1. Fully connected graph at interest points
2. Sparse or iterative connected graph at interest points

3. Densely sampled graph over a chosen grid

151

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Figure 4-7. Reduced resolution examples of the D-NETS [135] sampling patterns. (Left)
Full dense connectivity at interest points. (Center) Sparse connectivity at interest points.
(Right) Dense connectivity over a regular sampling grid. The D-NETS authors note that a
dense sampling grid with 10 pixel spacing is preferred over sampling at interest points

The descriptor itself is composed of a set of d-tokens, which are strips of raw pixel
values rather than a value from a patch region: the strip is the region, and various
orientations of lines are the pattern. The sampling along the strip is between 80 and
20 percent of the strip length rather than the entire length, omitting the endpoints, which
is claimed to reduce the contribution of noisy interest points. The sampled points are
combined into a set s of uniform chunks of pixels and normalized and stored into a
discrete d-token descriptor.

Object Polygon Shapes

The object and polygon shape methods scan globally and regionally to find the shapes in
the entire image frame or region. The goal is to find an object or region that is cohesive.
A discussion of the fundamental methods for segmentation polygon shapes for feature
descriptors is provided here, including:

e Morphological object boundary methods
e Texture or regional structural methods

e Superpixel or pixel similarity methods

¢ Depth map segmentation

Chapter 6 provides details on a range of object shape factors and metrics used to
statistically describe the features of polygon shape. Note that this topic is often discussed
in the literature as “image moments”; a good source of information is Flusser et.al.[518].

Morphological Boundary Shapes

One method for defining polygon shapes is to use morphology. Morphological
segmentation is a common method for region delineation, either as a binary object or
as a gray scale object. Morphological shapes are sometimes referred to as blobs. In both
binary and gray scale cases, thresholding is often used as a first step toward defining the

152

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

object boundary, and morphological reshaping operations such as ERODE and DILATE
are used to grow, shrink, and clean up the shape boundary. Morphological segmentation
is threshold- and edge-feature driven. (Chapter 3 provided a discussion of the methods
used for morphology and thresholding.)

Texture Structure Shapes

Region texture is also used to segment polygon shapes. Texture segmentation is a
familiar image-processing method for image analysis and classification, and is an ideal
method for segmentation in a nonbinary fashion. Texture reveals structure that simple
thresholding ignores. As shown in Figure 6-6, the LBP operator can detect local texture,
and the texture can be used to segment regions such as sky, water, and land. Texture
segmentation is based on local image pixel relationships. (Several texture segmentation
methods were surveyed in Chapter 3.)

Super-Pixel Similarity Shapes

Segmenting a region using super-pixel methods is based on the idea of collapsing similar
pixels together—for example, collapsing pixels together with similar colors into a larger shape.
The goal is to segment the entire image region into super-pixels. Super-pixel methods are
based on similarity. (Several super-pixel processing methods were discussed in Chapter 3.)

Local Binary Descriptor Point-Pair Patterns

Local binary descriptor shapes and sampling patterns, such as those employed in
FREAK, BRISK, ORB, and BRIEEF, are good examples to study in order to understand the
various tradeoffs and design approaches. We will examine local binary shape and pattern
concepts here. (Chapter 6 provides a more detailed survey of each descriptor.)

Local binary descriptors use a point-pair sampling method, where pairs of pixels
are assigned to each other for a binary comparison. Note that a drawback of local binary
descriptors and point-pair comparisons is that small changes in the image pixel values in
the local region may manifest as binary artifacts. Seemingly insignificant changes in a set
of pixel values may cause problems during matching that are pronounced for: (1) noisy
images, and (2) images with constant gray level. However, each local binary descriptor
method attempts to mitigate the binary artifact problems. For example, BRISK (see
Figure 4-10 later) and ORB (see Figure 4-11 later) compute a filtered region surrounding
each interest point to reduce the noise component prior to the binary comparison.

Another method to mitigate the binary artifact problem of constant gray level is used
in a modification of the LBP method called the local trinary pattern operator, or LTP [522]
(see also reference[173], Section 2.9.3), which uses trinary values of {-1, 0,1} to describe
regions. A threshold band is established for the LTP to describe near-constant gray
values as 0, values above the threshold band as 1, and values below the threshold band
as -1. The LTP can be used to describe both smooth regions of constant gray level and
contrasted regions in the standard LBP. In addition, the compare threshold for point-pairs
can be tuned to compensate for noise, illumination, and contrast, as employed in nearly
all local binary descriptor methods.

153

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Figure 4-8 (left image) illustrates a hypothetical descriptor pattern to include
selected pixels as the black values, while the center left image shows a strip-oriented
shape and pattern where the descriptor calculates the descriptor over pixels along a set of
line segments with no particular symmetry like the DNETS [135] method.

=% 1.0 1
El 01 Uo‘:ﬁ\lo\ 0 -4 0
s 1.0 1

Figure 4-8. illustrating various descriptor patterns and shapes. (Left) Sparse.
(Center left) Nets or strips. (Center right) Kernels. (Right) Radial spokes

In Figure 4-8 also, the center right image illustrates a convolution kernel where
the filter shape and filter goal are specified, while the right image is a blob shape using
radial pixel sampling lines originating at the shape centroid and terminating on the blob
perimeter. Note that a 1D Fourier descriptor can be computed from an array containing
the length of each radial line segment from the centroid to the perimeter to describe
shape, or just an array of raw pixel values can be kept, or else D-nets can be computed.

A feature descriptor may be designed by using one or more shapes and patterns
together. For example, the hypothetical descriptor pattern in Figure 4-8 (left image) uses
one pattern for pixels close to the interest point, another pattern uses pixels farther away
from the center to capture circular pattern information, and another pattern covers a few
extrema points. An excellent example of tuned sampling patterns is the FREAK descriptor,
discussed next.

FREAK Retinal Patterns

The FREAK [130] descriptor shape, also discussed in some detail in Chapter 6, uses

local binary patterns based on the human retinal system, as shown in Figure 4-9, where
the density of the receptor cells in the human visual system is greater in the center and
decreases with distance from center. FREAK follows a similar pattern when building the
local binary descriptors, referred to as a coarse-to-fine descriptor pattern, with fine detail
in the center of the patch and coarse detail moving outward. The coarse-to-fine method
also allows for the descriptor to be matched in coarse-to-fine segments. The coarse

part is matched first, and if the match is good enough, the fine feature components are
matched as well.

154

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Peri
Para

Fovea

*Fovea has
highest
receplor
density

Figure 4-9. (Left) The human visual system concentration of receptors in the center Fovea
region with less receptor density moving outward to periphery vision regions of Para and
Peri. (Center) FREAK [130] local binary pattern sampling regions, six regions in each of six
overlapping distance rings from the center, size of ring denotes compare point averaging
area. (Right) Hypothetical example of a FREAK-style point-pair pattern

FREAK descriptors can be built with several patterns within this framework. For
FREAK, the actual pattern shape and point-pairing are designed during a training phase
where the best point-pair patterns are learned using a method similar to ORB [134] to find
point-pairs with high variance. The pattern is only constrained by the training data; only
45 point-pairs are used from the 32x31 image patch region.

As illustrated in Figure 4-9, the pairs of points at the end of each line segment are
compared, the set of compare values are composed into a binary descriptor vector using
16 bytes, and a cascade of four separate 16-byte coarse-to-fine patterns are included in
the descriptor set. Typically, the coarse pattern alone effectively rejects bad matches, and
the finer patterns are used to qualify only the closest matches.

Brisk Patterns

The BRISK descriptor [131] point-pair sampling shape is symmetric and circular,
composed of 60 total points arranged in four concentric rings, as shown in Figure 4-10.
Surrounding each of the 60 points is a sampling region shown in blue, the sampling
regions increase in size with distance from the center, and also proportional to the
distance between sample points. Within the sampling regions, Gaussian smoothing is
applied to the pixels and a local gradient is calculated over the smoothed region.

155

CHAPTER 4 * LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Figure 4-10. (Left) BRISK concentric sampling grid pattern. (Center) Short segment pairs.
(Right) Long distance pairs. Note that the size of the region (left image) for each selected
point increases in diamter with distance from the center, and the binary comparison is
computed from the center point of each Gaussian-sampled circular region, rather than
from each solitary center point. (Center and right images used by permission © Josh
Gleason[143])

Like other local binary descriptors, BRISK compares pairs of points to form the
descriptor. The point- pairs are specified in two groups: (1) long segments, which are used
together with the region gradients to determine angle and direction of the descriptor,
the angle is used to rotate the descriptor area, and then the pair-wise sampling pattern is
applied;(2) short segments, which can be pair-wise compared and composed into the
512-bit binary descriptor vector.

ORB and BRIEF Patterns

ORB [134] is based in part on the BRIEF descriptor [132,133], thus the name Oriented
Brief, since ORB adds orientation to the BRIEF method and provides other improvements
as well. For example, ORB also improves the interest point method by qualifying FAST
corners using Harris corner methods, and improves corner orientation using Rosin’s
method [61] in order to steer the BRIEF descriptor to improve rotational invariance
(BRIEF is known to be sensitive to rotation).

ORB also provides a very good point-pair training method, which is an improvement
over BRIEE In BRIEEF as shown in Figure 4-11, the sample points are specified in a
random distribution pattern based on a Gaussian distribution about the center point
within the 31x31 patch region; the chosen number of sample points is 256. Selected
sample point-pairs are compared to each other to form the binary descriptor vector. The
value of each point is calculated via an integral image method to smooth a 5x5 region into
the point value.

156

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

i

Figure 4-11. (Left) An ORB style pattern at greatly reduced point pair count resolution,
using < 32 points instead of the full 256 points. (Right) A BRIEF style pattern using
randimized point-pairs

To learn the descriptor point-pair sample and compare pattern, ORB uses a training
algorithm to find uncorrelated points in the training set with high variance, and selects
the best 256 points to define the pairwise sampling patterns used to create the binary
feature vector. So the shape and pattern are nonsymmetric, as shown in Figure 4-11,
similar to some DNETS patterns. The ORB point-pair patterns are dependent on the
training data.

Note in Figure 4-11 that a BRIEF style pattern (right image) uses random point-pairs.
Several methods for randomizing point-pairs are suggested by the developers [132].

The ORB pattern shown in Figure 4-11 is based on choosing point-pairs that have high
statistical variance within a bounding 31x31 image patch, where the smaller 5x5 gray
image patch regions are centered at the chosen interest points. Then each 5x5 region is
smoothed using an integral image method to yield a single value for the point.

Descriptor Discrimination

How discriminating is a descriptor? By discrimination we mean how well the descriptor
can uniquely describe and differentiate between other features. Depending on the
application, more or less discrimination is needed, thus it is possible to over-describe a
feature by providing more information and invariance than is useful, or to under-describe
the feature by limiting the robustness and invariance attributes. Feature descriptor
discrimination for a given set of robustness criteria may be important and interesting,
but discrimination is not always the right problem to solve in some cases.

The need for increased discrimination in the descriptor can be balanced in
favor of using a cascade of simple descriptors like correlation templates under the
following assumptions.

157

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

1. Assuming cheap massively parallel compute, deformable
descriptors such as Taylor and Rosin’s REM2.3 [220]
become a more attractive option, allowing simple weakly
discriminating correlation templates or pixel patches to be
used and deformed in real-time in silicon using the GPU
texture sampler for scale, affine and homographic transforms.
Matching and correspondence under various pose variations
and lighting variations can be easily achieved using parallel
GPU SIMT/SIMD compute and convolution kernels. So, the
GPU can effectively allow a simple correlation patch to be
warped and contrast enhanced to be used as a deformable
descriptor and compared against target features.

2. Assuming lots of fast and cheap memory, such as large
memory cache systems, many nondiscriminating descriptors
or training patterns can be stored in the database in the
memory cache. Various weighting schemes such as those
used in neural networks and convolutional networks can be
effectively employed to achieve desired correspondence and
quality. Also, other boosting schemes can be employed in the
classifier, such as the Adaboost method, to developed strong
classifiers from weakly discriminating data.

In summary, both highly discriminating feature descriptors and cascades of simple
weakly discriminating feature descriptors may be the right choice for a given application,
depending on the target system.

Spectra Discrimination

One dimension of feature discrimination is the chosen descriptor spectra or values
used to represent the feature. We refer to spectra simply as values within a spectrum
or over a continuum. A feature descriptor that only uses a single spectra, such as a
histogram of intensity values, will have discrimination to intensity distributions, with
no discrimination for other attributes such as shape or affine transforms. For example, a
feature descriptor may increase the level of discrimination by combining a multivariate
set of spectra such as RGB color, depth, and local area gradients of color intensity.

It is well known [248] that the human visual system discriminates and responds
to gradient information in a scale and rotationally invariant manner across the retina,
as demonstrated in SIFT and many other feature description methods. Thus the use of
gradients is a common and preferred spectra for computer vision.

Spectra may be taken over a range of variables, where simple scalar ranges of values
are only one type of spectra:

1. Gray scale intensity
Color channel intensity

Basis function domains (frequency domain, HAAR, etc.)

>« n

2D or 3D gradients

158

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

3D surface normals

Shape factors and morphological measures
Texture metrics

Area integrals

Statistical moments of regions

S © ® N o 9

1 Hamming codes from local binary patterns

Each of the above spectra types, along with many others that could be enumerated,
can be included in a multivariate feature descriptor to increase discrimination. Of
course, discrimination requirements for a chosen application will guide the design of the
descriptor. For example, an application that identifies fruit will be more effective using
color channel spectra for fruit color, shape factors to identify fruit shapes, and texture
metrics for skin texture.

One way to answer the question of discrimination is to look at the information
contained in the descriptor. Does the descriptor contain multivariate collections of
spectra, and how many invariance attributes are covered, such as orientation or scale?

Region, Shapes, and Pattern Discrimination

Shape and pattern of the feature descriptor are important dimensions affecting
discrimination. Each feature shape has advantages and disadvantages depending on the
application. Surprisingly, even a single pixel can be used as a feature descriptor shape
(see Figure 1-7). Let’s look at other dimensions of discrimination.

Shapes and patterns may be classified as follows:

1. Asingle pixel (discussion of single pixel description methods
to follow)

A line of pixels
A rectangular region of pixels

A polygon shape or region of pixels

o~ N

A pattern or set of unconnected pixels, such as foveal patterns

The shape of the descriptor determines attributes of discrimination. For example,

a rectangular descriptor will be limited in the rotational invariance attribute compared to
a circular shaped descriptor. Also, a smaller shape for the descriptor limits the range to a
smaller area, and also limits scale invariance. A larger size descriptor area carries more
pixels which can increase discrimination.

Descriptor shape, pixel sampling pattern, sampling region size, and pixel metrics
have been surveyed by several other researchers [128-130]. In this section, we dig deeper
and wider into specific methods used for feature descriptor tuning, paying special
attention to local binary feature descriptors, which hold promise for low power and high
performance.

159

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Geometric Discrimination Factors

The shape largely determines the amount of rotational invariance possible. For example,
arectangular shape typically begins to fall off in rotational discrimination at around

15 degrees, while a circular pattern typically performs much better under rotational
variations. Note that any poorly discriminating shape or pattern descriptor can be
enhanced and made more discriminating by incorporating more than one shape or
pattern into the descriptor vector.

A shape and pattern such as a HAAR wavelet, as used in the Viola Jones method,
integrates all pixels in a rectangular region, yielding the composite value of all the
pixels in the region. Thus there is no local fine-detail pattern information contained
in the descriptor, leading to very limited local area discrimination and poor rotational
invariance or discrimination.

Another example of poor rotational discrimination is the rectangular correlation
template method, which compares two rectangular regions pixel by pixel. However,
several effective descriptor methods use a rectangular-shaped region.

In general, rectangles are a limitation to rotational invariance. However, SURF uses
a method of determining the dominant orientation of the rectangular HAAR wavelet
features within a circular neighborhood to achieve better rotational invariance. And
SIFT uses a method to improve rotational invariance and accuracy by applying a circular
weighting function to the rectangular regions during the binning stage.

It should also be noted that descriptors with low discrimination are being used very
effectively in targeted applications, such as correlation methods for motion estimation in
video encoding. In this case, the rectangle shape is a great match to the encoding problem
and lends itself to highly optimized fixed function hardware implementations, since frame-
to-frame motion can be captured very well in rectangular regions, and there is typically little
rotation or scale change from frame to frame for at 30 Hz frame rates, just translation.

With this discussion in mind, descriptor discrimination should be fitted appropriately
to the application, since adding discrimination comes at a cost of compute and memory.

Feature Visualization to Evaluate Discrimination

Another way to understand discrimination is to use the feature descriptor itself to
reconstruct images from the descriptor information alone, where we may consider the
collection of descriptors to be a compressed or encoded version of the actual image. Image
compression, encoding, and feature description are related; see Figure 3-18. Next, we
examine a few examples of image reconstruction from the descriptor information alone.

Discrimination via Image Reconstruction from HOG

Figure 4-12 visualizes a reconstruction using the HOG descriptor [106]. The level of detail
is coarse and follows line and edge structure that matches the intended use of HOG. One
key aspect of the discrimination provided by HOG is that no image smoothing is used on
the image prior to calculating the descriptor. The HOG research shows that smoothing
the image results in a loss of discrimination. Dalal and Triggs[106] highlight their
deliberate intention to avoid image smoothing to preserve image detail.

160

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Figure 4-12. Discrimination via a visualization of the HOG description. (Image (c)
Carl Vodrick, used by permission.) See also “HOGgles: Visualizing Object Detection
Features, Carl Vondrick, Aditya Khosla, Tomasz Malisiewicz, Antonio Torralba,
Massachusetts Institute of Technology, Oral presentation at ICCV 2013”

However, some researchers argue that noise causes problems when calculating
values such as local area gradients and edges, and further recommend that noise be
eliminated from the image by smoothing prior to descriptor calculations; this is the
conventional wisdom in many circles. Note that there are many methods to filter noise
without resorting to extreme Gaussian-style smoothing, convolution blur, and integral
images, which distort the image field.

Some of the better noise-filtering methods include speckle removal filters, rank
filtering, bilateral filters, and many other methods that were discussed in Chapter 2. If the
input image is left as is, or at least the best noise filtering methods are used, the feature
descriptor will likely retain more discrimination power for fine-grained features.

Discrimination via Image Reconstruction from Local
Binary Patterns

As shown in Figure 4-13, d’Angelo and Alahi[127] provide visualizations of images
reconstructed from the FREAK and BRIEF local binary descriptors. The reconstruction

is rendered entirely from the descriptor information alone, across the entire image.
BRIEF uses a more random pattern to compare points across a region, while FREAK uses
a trained and more foveal and symmetrical pattern with increased detail closer to the
center of the region. And d’Angelo and Alahi[127] note that the reconstruction results are
similar to Laplacian filtered versions of the original image, which helps us understand
that the discrimination of these features appears to be structurally related to detailed
edge and gradient information.

161

CHAPTER 4 * LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Figure 4-13. Images reconstructed using local binary descriptors using 512 point-pairs.
(Top row) BRIEE (Middle row) Randomized FREAK (more similar to BRIEF). (Bottom row)
Binary FREAK using the foveal pattern Images (c) Alexandre Alahi, used by permission

The d’Angelo and Alahi reconstruction method [127] creates an image from a set of
overlapping descriptor patches calculated across the original image. To reconstruct the
image, the descriptors are first reconstructed using a novel method to render patches,
and then the patches are merged by averaging the overlapping regions to form an image,
where the patch merge size may vary as desired. For example, note that Figure 4-13 uses
32x32 patches for the Barbara images in the left column, and a 64x64 patch size for the
cameraman in the center column. Also note that Barbara is not reconstructed with the
same discrimination as the cameraman, whose image contains finer details.

Discrimination via Image Reconstruction from SIFT Features

Another method of approximate image reconstruction [105] proves the discrimination
capabilities of SIFT descriptors; see Figure 4-14. The reconstruction method for this
research starts by taking an unknown image containing a scene such as a famous
building, finding the set of Hessian-affine region detectors in the image, extracting
associated SIFT feature descriptors, and then saving a set of elliptical image patch regions
around the SIFT descriptors.

162

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Figure 4-14. Image reconstruction of common scenes using combined SIFT descriptors
taken from several views of the same object, images (c) Herve Jegou, used by permission

Next, an image database containing similar and, it is hoped, matching images of the
same scene are searched to find the closest matching SIFT descriptors at Hessian-affine
interest points. Then a set of elliptical patch regions around each SIFT descriptor is taken.
The elliptical patches found in the database are warped into a synthesized image based
on a priori interest region geometric parameters of the scenes.

The patches are stitched together via stacking and blending overlapping patches and
also via smooth interpolation. Any remaining holes are filled by smooth interpolation.
One remarkable result of this method is the demonstration that an image can be
reconstructed from a set of patches from different images at different orientations,
since the feature descriptors are similar; and in this case, the discrimination of the SIFT
descriptor is demonstrated well.

Accuracy, Trackability

Accuracy can be measured in terms of specific feature attributes or robustness criteria;
see Tables 4-1 and 7-4. A given descriptor may outperform another descriptor in one area
and in not another. In the research literature, the accuracy and performance of each new
feature descriptor is usually benchmarked against the standby methods SIFT and SURE
The feature descriptor accuracy is measured using commonly accepted ground truth
datasets designed to measure robustness and invariance attributes. (See Appendix B for
a survey of standard ground truth datasets, and Chapter 7 for a discussion about ground
truth dataset design.)

A few useful accuracy studies are highlighted here, illustrating some of the ways
descriptor and interest point accuracy can be measured. For instance, one of the most
comprehensive surveys of earlier feature detector and descriptor accuracy and invariance
is provided by Mikolajczyk and Schmid[144], covering a range of descriptors including
GLOH, SIFT, PCA-SIFT, Shape Context, spin images, Hessian Laplacian GLOH, cross
correlation, gradient moments, complex filters, differential invariants, and steerable filters.

In Gauglitz et al.[145], there are invariance metrics for zoom, pan, rotation,
perspective distortion, motion blur, static lighting, and dynamic lighting for several
feature metrics, including Harris, Shi-Tomasi, DoG, Fast Hessian, FAST, and CenSurE,
which are discussed in Chapter 6. There are also metrics for a few classifiers, including

163

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

randomized trees and FERNS, which are discussed later in this chapter. Figure 4-15
provides some visual comparisons of feature detector and interest point accuracy from
Gauglitz [145].

——0O—— Harris
Shi-Tom
—4—— DoG
—— FHess
—O—— FAST
—#—— CenSurE

8 8 8
—
7 A il 7
I T
BN h‘w._ﬂ_ B 6
e
5 uﬂikm -y 5 5
C—t
4 =B n— B 4 4
A =g
3 3 3
2 2 2
1 1 1
0 0
0 3 6 9 12 15 18 0 10203040 5060 70 80 90 0 10 20 30 40 50 60 70 80
diff. in camera yaw [degrees] camera rotation [degrees] rotation [degrees]
(e) “panning” (f) “rotation™ 2) “perspective distortion™
9 9 1
8 § 9
7t g8
w 7
> 6 = ‘E
£ = g6
R 2 % 5
g 4 g £
g, e z4
. g 3
2 g 2
o
A e
0 - - . 0
1234567889 | n mn v 0 20 40 &0 80 100
speed light condition frame no.
(h) “motion blur” (i) “static lighting” (j) “dynamic lighting”

Figure 4-15. Accuracy of feature descriptors over various invariance criteria. (From
Gauglitz et al.[145], images © Springer Science +Business Media, LLC, used by permission)

Turning to the more recent local binary descriptors, Alahi et. al. [130] provide a set of
comparisons where FREAK is shown to be superior in accuracy to BRISK, SURFE, and SIFT
on a particular dataset and set of criteria developed by Mikolajczyk and Schmid [144] for
feature accuracy over attributes such as viewpoint, blur, JPEG compression, brightness,
rotation, and scale. In Rublee et. al. [120], ORB is shown to have better rotational
invariance than SIFT, SURE and BRIEE In summary, local binary descriptors are proving
to be attractive in terms of robustness, accuracy, and compute efficiency.

164

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Accuracy Optimizations, Sub-Region Overlap,
Gaussian Weighting, and Pooling

Various methods are employed to optimize feature descriptor accuracy, and a few
methods are discussed here. For example, descriptors often use overlapping sampling
pattern sub-regions, as shown in the FREAK descriptor pattern in Figure 4-9. By
overlapping sampling regions and treating boundaries carefully, accuracy seems to be
better in most all cases [161,178]. Overlapping regions makes sense intuitively, since
each point in a region is related to surrounding points. The value of pattern sub-region
overlapping in feature description seems obvious for local binary pattern type descriptors
and spectra descriptor variants such as SURF and others [181,144]. When the sampling
regions used in the descriptor do not overlap, recognition rates are not as accurate [130].

Gaussian weighting is another effective method for increasing accuracy to reduce
noise and uncertainty in measurements. For example, the SIFT [161,178] descriptor
applies a Gaussian-based weighting factor to each local area gradient in the descriptor
region to favor gradients nearer the center and reduce the weighting of gradients farther
away. In addition, the SIFT weighting is applied in a circularly symmetric pattern, which
adds some rotational invariance; see Figure 6-17.

Note that Gaussian weighting is different from Gaussian filtering; a Gaussian filter
both reduces noise and eliminates critical fine details in the image, but such filtering has
been found to be counterproductive in the HOG method [106]. A Gaussian weighting
factor, such as used by SIFT on the gradient bins, can simply be used to qualify data rather
than change the data. In general, a weighting factor can be used to scale the results and
fine-tune the detector or descriptor. The sub-region overlap in the sampling pattern and
Gaussian weighting schemes are complementary.

Accuracy can be improved by relying on groups of nearby features together rather
than just a single feature. For example, in convolutional networks, several nearby
features may be pooled for a joint decision to increase accuracy via chosen robustness or
invariance criteria [347]. The pooling concept may also be referred to as neighborhood
consensus or semi-local constraints in the literature, and it can involve joint constraints,
such as the angle and distance among a combined set of local features [348-350].

Sub-Pixel Accuracy

Some descriptor and recognition methods can provide sub-pixel accuracy in matching
the feature location [147-151]. Common methods to compute sub-pixel accuracy include
cross-correlation, sum-absolute difference, Gaussian fitting, Fourier methods, and

rigid body transforms and ICP. In general, sub-pixel accuracy is not a common feature

in popular, commercial applications and is needed only in high-end applications like
industrial inspection, aerospace, and military systems.

For example, SIFT provides sub-pixel accuracy for the location of keypoints. Digital
correlation methods and template matching are well known and used in industrial
applications for object tracking, and can be extended to compute correlations over a
range of one-pixel offset areas to yield a set of correlations that can be fit into a curve and
interpolated to find the highest match to yield sub-pixel accuracy.

165

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Sub-pixel accuracy is typically limited to translation. Rotation and scale are much
more difficult to quantify in terms of sub-pixel accuracy. Typical sub-pixel accuracy
results for translation only achieve better than % pixel resolution, but resolution accuracy
can be finer grained, and in some methods translation accuracy is claimed to be as high
as 1/20™ of a pixel using FFT registration methods [151].

Also, stereo disparity methods benefit from improved sub-pixel accuracy, especially
at long ranges, since the granularity of Z distance measurements increases exponentially
with distance. Thus the calculated depth field contains coarser information as the depth
field increases, and the computed depth field is actually nonlinear in Z. Therefore, sub-
pixel accuracy in stereo and multi-view stereo disparity calculations is quite desirable and
necessary for best accuracy.

Search Strategies and Optimizations

As shown in Figure 5-1, a feature may be sparse, covering a local area, or it may cover a
regional or global area. The search strategy used to isolate each of these feature types is
different. For a global feature, there is no search strategy: the entire frame is used as the
feature. For a regional descriptor, a region needs to be chosen or segmented (discussed

in Chapter 2). For sparse local features, the search strategy becomes important. Search
strategies for sparse local regions fall into a few major categories, as follows (also included
in the taxonomy in Chapter 5).

Dense Search

In a dense search, each pixel in the image is checked. For example, an interest point is
calculated at each pixel, the interest points are then qualified and sorted into a candidate
list, and a feature descriptor is calculated for each candidate. Dense search is used by
local binary descriptors and common descriptors such as SIFT.

In stereo matching and depth sensing, each pixel is searched in a dense manner
for calculating disparity and closest points. For example, stereo algorithms use a
dense search for correspondence to compute disparity, line by line and pixel by pixel;
monocular depth-sensing methods such as PTAM [327] use a dense search for interest
points, followed by a sparse search for known features at predicted locations.

Dense methods may also be applied across an image pyramid, where the lower
resolution pyramids are usually searched first and finer-grain pyramids are searched
later. Dense methods in general are preferred for accuracy and robustness when feature
locations are not known and cannot be predicted.

Grid Search

In grid search methods, the image is divided into a regular grid or tiles, and features are
located based on the tiles. A novel grid search method is provided in the OpenCV library,
using a grid search adapter (discussed in Chapter 6 and Appendix A). This allows for
repeated trial searches within a grid region for the best features, and has the capability
of adjusting detector parameters before each trial run. One possible disadvantage of a

166

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

grid search from the perspective of accuracy is that features do not line up into grids, so
features can be missed or truncated along the grid boundary, decreasing accuracy and
robustness overall.

Grid search can be used in many ways. For example, a regular grid is used as anchor
points with the grid topology of D-NETS, as illustrated in Figure 4-7. Or, a grid is used to
form image tile patches and a descriptor is computed for each tile, such as in the HOG
method, as shown in Figure 4-12. Also the Viola Jones method [146] computes HAAR
features on a grid.

Multi-Scale Pyramid Search

The idea behind the multi-scale image pyramid search is either to accelerate searching by
starting at a lower resolution or to truly provide multi-scale images to allow for features to
be found at appropriate scale. Methods to reduce image scale include pixel decimation,
bilinear interpolation, and other multi-sampling methods. Scale space is a popular
method for creating image pyramids, and many variations are discussed in the next
section; see Figure 4-16.

Figure 4-16. A five-octave scale pyramid. The image is from Albrecht Durer’s Apocalypse
woodcuts, 1498. Note that many methods use non-octave pyramid scales [120]

However, the number of detected features falls off rapidly as the pyramid levels
increase, especially for scale space pyramids, which have been Gaussian filtered, since
Gaussian filters reduce image texture detail. Also, fewer pixels are present to begin with
at higher pyramid levels, so a pyramid scale interval smaller than octaves is sometimes
used. See reference[160] for a good discussion of image pyramids.

167

CHAPTER 4 * LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Scale Space and Image Pyramids

Often, instead of using simple pixel decimation and pixel interpolation to reduce image
scale, a scale space [524,523] pyramid representation, originally proposed by Lindberg[547],
is built up using Gaussian filtering methods to decrease the scaling artifacts and preserve
blob-like features. Scale space is a more formal method of defining a multi-scale set of
images, typically using a Gaussian kernel g() convolved with the image f{x,y), as follows:

e—(xzéfy2)2t

1
y yit)=—
g(x Y) 2mt
L(,5t)=8(:t)* f (),
or by an equivalent method:
6L=1V2L,
2

t

withtheinitial state L(x,y;0) = f(x,y),

A good example of Gaussian filter design for scale space is described in the SURF
method [160]. Gaussian filters implemented as kernels with increasing size are applied
to the original image at octave-spaced subsampling intervals to create the scale space
images—for example, starting with a 9x9 Gaussian filter and increasing to 15x15, 21x21,
27x27, 33x33, and 39x39; see Figure 4-17.

: 'l-i:"‘gl,

Figure 4-17. Scale space Gaussian images at scales of 0, 2, 4, 16, 32, 64. Image is from
Albrecht Durer’s Apocalypse woodcuts, 1498

168

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

One drawback of scale space is the loss of localization and lack of accuracy in higher
levels of the image pyramid. In fact, some features are simply missing from higher levels
of the image pyramid, owing to a lack of resolution and to the Gaussian filtering. The best
example of effective scale space feature matching may be SIFT, which provides for the
1% pyramid image in the scale to be double the original resolution to mitigate scale space
problems, and also provides a good multi-scale descriptor framework. See also Figure 4-18.

Scale

Figure 4-18. Scale and space

Image pyramids are analogous to texture mip-maps used in computer graphics.
Variations on the image pyramid are common. Octave and non-octave pyramid spacings
are used, with variations on the filtering method also. For example, the SIFT method
[161,178] uses a five-level octave scale n/2 image pyramid with Gaussians filtered images
in a scale space. Then, the Difference of Gaussians (DoG) method is used to capture
the interest point extrema maxima and minima in the adjacent images in the pyramid.
SIFT uses a double-scale first pyramid level with linear interpolated pixels at 2x original
magnification to help preserve fine details. This technique increases the number of stable
keypoints by about four times, which is quite significant. In the ORB [120] method, a
non-octave scale space is built around a scale over a five-level pyramid, which has closer
resolution gradations between pyramid levels than an octave scale of two times.

Feature Pyramids

An alternative to scale space pyramids and pyramid searching is to use feature-space
pyramiding, and build a set of multi-scale feature descriptors stored together in the
database. In this approach, the descriptor itself contains the pyramid, and no scale

space or image pyramid is needed. Instead, feature searching occurs directly from the
mono-scale target image to the multi-scale features. The RFM method [220] discussed in
Chapter 6 goes even further and includes multi-perspective transformed versions of each
patch for each descriptor. In Table 4-3, note that the multi-scale features can be used to
match directly on the target images, while the mono-scale features are better to use on an
image pyramid.

169

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Table 4-3. Some Tradeoffs in Using a Mono-Scale Feature and a Multi-Scale Feature

Feature Feature Feature Description Image Pyramid Mono-Scale Images
Scale Size Compute Time Used for Matching Used for Matching
Mono-scale Smaller Faster to compute Yes No
feature memory

footprint
Multi-scale Larger Slower to compute No Yes
feature memory

footprint

Figure 3-16 shows the related concept of a multi-resolution histogram [152], created
from image regions from a scale space pyramid and with the histograms concatenated
in the descriptor that is used to determine texture metrics for feature matching. So in the
multi-scale histogram method, no pyramid image set is required at run time; rather, the
pyramid search uses histogram features from the descriptor itself to find correspondence
with the mono-scale target image.

A wide range of scalar and other metrics can be composed into a multi-scale feature
pyramid, such as image intensity patches, color channel intensity patches, gradient
magnitude, and gradient orientations. Histograms of textural features have been found
useful as affine-invariant metrics as a part of a wider feature descriptor [152].

Sparse Predictive Search and Tracking

In a sparse predictive search pipeline, specific features at known locations, found

in previous frames, are searched for in the next frame at the expected positions. For
example, in the PTAM [327] algorithm for monocular depth sensing, a sparse 3D point
cloud and camera pose are created from sequential video frames from a single camera by
locating a set of interest points and feature descriptors. For each new frame, a prediction
is made of the coordinates where the same interest points and feature detectors might be
in the new image, using the prior camera pose matrix. Then, for the new frame, a search
or tracking loop is started to locate a small number of the predicted interest points using
a pyramid coarse to fine search strategy. The predicted interest points and features are
searched for within a range around where each is predicted to be, and the camera pose
matrix is updated based on the new coordinates where the features are found. Then, a
larger number of points are predicted using the updated camera pose and a search and
tracking loop is entered over a finer scale pyramid image in the set. This process iterates
to find points and refine the pose matrix.

Tracking Region-Limited Search

One example of a region-limited search is a video conferencing system that tracks
the location of the speaker using stereo microphones to calculate the coarse location
via triangulation. Once the coarse speaker position is known, the camera is moved

170

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

to view the speaker, and only the face region is of interest for further fine positional
location adjustments, auto-zoom, auto-focus, and auto-contrast enhancements. In this
application, the entire image does not need to be searched or processed for face features.
Instead, the center of the FOV is the region where the search is limited to locate the face.
For example, if the image is taken from an HD camera with 1920x1080 resolution, only a
limited region in the center of the image, perhaps 512x512 pixels, needs to be processed
to locate the face features.

Segmentation Limited Search

A segmented region can define the search area, such as a region with specific texture,
or pixels of a specific color intensity. In a morphological vision pipeline, regions may

be segmented in a variety of ways, such as thresholding and binary erosion + dilation
to create binary shapes. Then the binary shapes can be used as masks to segment the
corresponding gray scale image regions under the masks for feature searching. Image
segmentation methods were covered in Chapter 2.

Depth or Z Limited Search

With the advent of low-cost commercial depth sensors appearing on mobile consumer
devices, the Z dimension is available for limiting search ranges. See Figure 4-19. For
example, by segmenting out the background of an image using depth, the foreground
features are more easily segmented and identified, and search can be limited by depth
segments. Considering how much time is spent in computer vision to extract 3D image
information from 2D images, we can expect depth cameras to be used in novel ways to
simplify computer vision algorithms.

Figure 4-19. Segmentation of image regions based on a depth map. Depth image from
Middlebury Data set: (Source: D. Scharstein and C. Pal “Learning conditional random
fields for stereo” CVPR Conference, 2007. Courtesy of authors)

171

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Computer Vision, Models, Organization

This section contains a high- level overview of selected examples to illustrate how feature
metrics are used within computer vision systems. Here, we explore how features are
selected, learned, associated together to describe real objects, classified for efficient
searching and matching, and used in computer vision pipelines. This section introduces
machine learning, but only at a high level using selected examples. A good reference
on machine learning is found in [546] by Prince. A good reference for computer vision
models, organization, applications, and algorithms is found in Szelinski [324].

Several terms are chosen and defined in this section for the discussion of computer
vision models, namely feature space, object models, and constraints. The main topics for
this section include:

e Feature spaces and selection of optimal features

e Objectrecognition via object models containing features and
constraints

e (lassification and clustering methods to optimize pattern
matching

e Training and learning

Note Many of the methods discussed in computer vision research journals and courses are
borrowed from other tangent fields and applied, for example, machine learning and statistical
analysis. In some cases computer vision is driving the research in such tangent fields. Since
these fields are well established and considered beyond the scope of this work, we provide only
a brief topical introduction here, with references for completeness [546,324].

Feature Space

The collection and organization of all features, attributes, and other information
necessary to describe objects may be called the feature space. Features are typically
organized and classified into a feature space during a training or learning phase using
ground truth data as a training set. The selected features are organized and structured in
a database or a set of data structures, such as trees and lists, to allow for rapid search and
feature matching at run time.

The feature space may contain one or more types of descriptors using spectra such as
histograms, binary pattern vectors, as multivariate composite descriptors. In addition, the
feature space contains constraints used to associate sets of features together to identify
objects and classes of objects. A feature space is unique to any given application, and
is built according to the types of features used and the requirements of the application;
there is no standard method.

172

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

The feature space may contain several parameters for describing objects; for example:

e Several types of feature descriptors, such as SIFT and simple
color histograms.

e Cartesian coordinates for each descriptor relative to training
images.

e Orientations of each descriptor.
e Name of training image associated with each descriptor.

e Multimodal information, such as GPS, temperatures, elevation,
acceleration.

e Feature sets or lists of associated descriptors.

e Constraints between the descriptors in a set, such as the relative
distance from each other, relative distance thresholds, angular
relationships between descriptors, or relative to a reference point.

¢ Object models to collect and associate parameters for each
object.

e (Classes or associations of objects of the same type, such as
automobiles.

e Labels for objects or constraints.

Object Models

An object model describes real objects or classes of objects using parameters from the
feature space. For example, an object may contain all parameters required to describe
a specific automobile, such as feature descriptor sets, labels, and constraints. A class of
objects may associate and label all objects of the same class, such as an automobile of
any type. There is no standard or canonical object model to follow, so in this section we
describe the overall attributes of computer vision objects and how to model them.
Object models may be composed of sets of individual features; constraints on the
related features, such as position or orientation of features within an object model;
and perhaps other multimodal information for the objects or descriptors, such as GPS
information or time stamps, as shown in Figure 4-20. The object model can be created
using a combination of supervised and unsupervised learning methods [403]; we survey
several methods later in this chapter.

173

Feature Space

Labeled Object Model

CHAPTER 4 * LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Constraint
(Relative Distance,
Orientation, Thresholds)

Feature Descriptor
(Angular Orientation,
Position Coordinates)

Feature Descriptor
(Angular Orientation,
Position Coordinates)

Multimodal Data
(GPS, Temperature, Time)

Labeled Object Model

Constraint
(Relative Distance,
Orientation, Thresholds)

Feature Descriptor
(Angular Orientation,
Position Coordinates)

Feature Descriptor
(Angular Orientation,
Position Coordinates)

Labeled Object Model

Constraint
(Relative Distance,
Orientation, Thresholds)

Feature Descriptor
(Angular Orientation,
Position Coordinates)

Feature Descriptor
(Angular Orientation,
Position Coordinates)

Feature Descriptor
(Angular Orientation,
Position Coordinates)

Multimodal Data
(Accelerometer, Elevation)

Figure 4-20. Simplified hypothetical feature space showing organization and association
of features, constraints, and objects

One early attempt to formulate object models is known as parts-based models,
suggested in 1973 by Fischler and Elschlager[530]. These describe and recognize larger
objects by first recognizing their parts—for example, a face being composed of parts
such as eyes, nose, and mouth. There are several variations on parts-based models; see
references[531-533], for example. Machine learning methods are also used to create the
object models [546], and are discussed later in this section.

A simple object model may be composed of only image histograms of whole
images, the name or label of each associated image, and possibly a few classification
parameters such as the subject matter of the image, GPS location, and date. To identify
unknown target images, a histogram of the target image is taken and compared against
image histograms from the database. Correspondence is measured using a suitable
distance metric such as SAD. In this simple example, brute-force searching or a hash
table index may be used to check each histogram in the database against target image
histograms, and perhaps other parameters from the object model may be matched
along with the histograms, such as the GPS coordinates. No complex machine learning
classification, clustering, data reductions, or organization of the database need be done,
since the search method is brute-force. However, finding correspondence will become
progressively slower as more images are added to the database. And the histogram all by
itself is not very discriminative and offers little invariance.

174

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Constraints

Key to object recognition, constraints are used to associate and qualify features and
related attributes as objects. Features alone are probably insufficient to recognize an
object without additional qualification, including neighborhood consensus or semi-local
constraints involving joint constraints, such as the angle and distance among a combined
set of local features [348-350]. Constraints associate object model elements together to
describe and recognize a larger object [365,366,379], such as by minimum feature count
thresholds required to ensure that a proper subset of object features are found together,
or by using multimodal data constraints such as GPS position, or by voting.

Since there are many approaches for creating constraints, we can only illustrate
the concept. For example, Lowe[161] shows recognition examples illustrating how SIFT
features can be used to recognize objects containing many tens of distinct features, in
some cases using as few as two or three good features. This allows for perspective and
occlusion invariance if some of the features describing the object cannot be found, taking
into consideration feature orientation and scale as constraints. Another example is wide
baseline stereo matching, which requires position and distance constraints on feature
pairs in L/R image assuming that the scale and orientation of L/R feature pairs is about
equal; in this case, translation would be constrained to be within a range based on depth.

Selection of Detectors and Features

Feature detectors are selected based on a combination of variables, such as the feature
detector design method and the types of invariance and performance desired. Several
approaches or design methods are discussed next.

Manually Designed Feature Detectors

Some feature detectors, such as polygon shape descriptors and sparse local features
like SURF, are manually designed and chosen using the intuition, experience, and test
results of the practitioner to address the desired invariance attributes for an application.
This involves selecting the right spectra to describe the features, determining the shape
and pattern of the feature, and choosing the types of regions to search. However, some
detectors are statistically and empirically designed, which we cover next.

Statistically Designed Feature Detectors

Statistical methods are used to design and create feature detectors. For example, the
binary sampling patterns used in methods such as ORB and FREAK are created from

the training dataset based on the statistical characteristics of the possible interest

point comparison pairs. Typically, ORB ranks each detected interest point feature pair
combination to find terms that are uncorrelated with high variance. This is a statistical
sorting or training process to design the feature patterns and tune them for a specific
ground truth dataset. See Figure 4-11 for more details on ORB, and see the discussions of
FREAK and ORB earlier in this chapter as well.

175

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

SIFT also uses statistical methods to determine, from a training set, the best interest
points, dominant orientation of each interest point, and scale of each interest point.

Learned Features

Many systems learn a unique codebook of features, using sparse coding methods to
identify a unique set of basis features during a training phase against selected ground
truth data. The learned basis features are specific to the application domain or training
data, and the chosen detectors and descriptors may simply be pixel regions used as
correlation templates. However, any descriptor may be used, such as SIFT. Neural
network and convolutional network approaches are popularly used for feature learning,
as well as sparse coding methods, which are discussed later in this chapter.

Overview of Training

A machine vision system is trained to recognize desired features, objects, and activities.
However, training can be quite complex and is covered very well in the field of machine
learning and statistical analysis (which we do not cover in any detail). Training may be
supervised and assisted by an expert, or unsupervised as in the deep learning methods
discussed later in this section. Here, we provide an overview of common steps and
provide references for more detail. One of the simplest examples of training would be
to take image histograms associated with each type of image—for example, a set of
histograms that describe a face, animal, or automobile taken from different images.

Training involves collecting a training set of images appropriate for the application
domain, and then determining which detectors and descriptors can be tuned to yield the best
results. In some cases, the feature descriptor itself may be trainable and designed to match the
training data, such as the local binary pattern descriptors ORB, BRIEE and FREAK, which can
use variable pixel sampling patterns optimized and learned from the training data.

In feature learning systems, the entire feature set is learned from the training
set. Feature learning methods employ a range of descriptor methods such as simple
correlation temples containing pixel regions, or SIFT descriptors. The learned feature
set is reduced by keeping only the features that are significantly different from features
already in the set. Feature learning methods are covered later in this chapter.

To form larger objects during training, sets of features are associated together using
constraints, such as geometric relationships like angles or distances between features,
or the count of features of a given value within a specific region. Objects are determined
during training, which involves running detectors and descriptors against chosen ground
truth data to find the features, and then determining the constraints to represent objects
as a composite set of features. Activities can be recognized by tracking features and their
positions within adjacent frames, so activity can be considered a type of meta-object and
stored in a database as well.

In any case, the features obtained through the training phase are classified into a
searchable feature space using a wide range of statistical and machine learning methods.
Training, classification, and learning are discussed at a high level later in this chapter.

176

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Classification of Features and Objects

Classification is another term for recognition, and it includes feature space organization
and training. A classifier is a term describing a method or system for learning structure
from data and recognizing objects. Several approaches are taken for automatically
building classifiers, including support vector machines (SVMs), kernel machines, and
neural networks.

In general, the size of the training set or ground truth dataset is key to classifier
accuracy [336-338]. During system training, first a training set with ground truth data is
used to build up the classifier. The machine learning community provides a wealth of
guidance on training, so we defer to established sources. Key journals to dig deeper into
machine learning and testing against ground truth data include NIPS and IEEE PAMI,
the latter which goes back to 1979. Machine learning and statistical methods are used
to guide the selection, classification, and organization of features during training. If no
classification of the feature space is made, the feature match process follows a slow
brute-force linear search of new features against known features.

Key classification problems discussed in this section include:

e Group Distance and Clustering of similar features using a range
of nearest-neighbor methods to assist in organization, fitting,
error minimization, searching and matching, and enabling
similarity constraints such as geometric proximity, angular
relationships, and multimodal cues.

e Dimensionality Reductions to avoid over-fitting, cleaning the
data to remove outliers and spurious data, and reducing the size
of the database.

¢ Boosting and Weighting to increase the accuracy of feature
matching.

e Constraints describing relationships between descriptors
composing an object, such as pose estimators and threshold
accept/reject filters.

e Structuring the Database for rapid matching vs. brute-force
methods.

Group Distance: Clustering, Training, and Statistical Learning

We refer to group distance and clustering in this discussion, sometimes interchangeably,

as methods to describe similarities and differences between groups of data atoms,

such as feature descriptors. Applications of group distance and clustering include error

minimization, regression, outlier removal, classification, training, and feature matching.
According to Estivill-Castro[351], clustering is impossible to define in a mathematical

sense, since there are so many diverse methods and approaches to describe a cluster.

See Table 4-3 for a summary of related methods. However, we will discuss clustering

here in the context of computer vision to address data organization, pattern matching,

and describing object model constraints (while attempting to not ruffle the feathers of

mathematical purists who use different terminology).

177

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

To identify similar features in a group, a wide range of clustering algorithms or group
distance algorithms are used [353], which may also be referred to as error minimization
and regression methods in some literature. Features are clustered together for computer
vision to help solve fundamental problems, including object modeling, finding similar
patterns during matching, organizing and classifying similar data, and dimensionality
reductions.

One way to describe a cluster is by similarity—for example, describing a cluster
of related features under some distance metric or regression method. In this sense,
clustering overlaps with distance functions: Euclidean distance for position, cosine
distance for orientation, and Hamming distance for binary feature vector comparisons
are examples. However, distance functions between two points are differentiated in this
discussion from group distance functions, clusters, and group distributions.

Efficiently organizing similar data in feature space for searching and classification is
a form of clustering. It can be based on similarity or distance measures of feature vectors
or on object constraint similarity, and it is required to speed up feature searching and
matching. However, commercial databases “and brute-force search” may be used as-is
for feature descriptors, with no attempt made to optimize. Custom data structures can be
built for optimizations via trees, pyramids, lists, and hash tables. (We refer the reader to
standard references in computer science covering data organization and searching; see
the classic texts The Art of Computer Programming by Donald Knuth or Data structure
and Algorithms by Aho, Ullman, and Hopcroft.)

Another aspect of clustering is the feature space dimension and topology. Since
some feature spaces are multivariate and multidimensional, containing scalars and
tensors, any strict definition of clustering, error minimization, regression, or distance is
difficult; it really depends on the space in which similarity is to be measured.

Group Distance: Clustering Methods Survey, KNN, RANSAC,
K-Means, GMM, SVM, Others

A spectrum of alternatives may be chosen for clustering and learning similarities between
groups of data atoms, starting at the low end with basic C library searching and sorting
functions, and reaching the high end with statistical and machine learning methods such
as kernel machines and support vector machines (SVMs) to build complete classifiers.
Kernel machines allow various similarity functions to be substituted into a common
framework to enable simplified comparison of similarity methods and classification.

Table 4-4 is a summary of selected clustering methods, with a few key references for
the interested reader.

178

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Table 4-4. Clustering, Classification, and Machine Learning Methods

Group Distance Criteria Methods & References

Description

Distance K-Nearest Neighbor
[364]
Consensus Models RANSAC [380]

PROSAC [363]

Levenberg-Marquardt

[401]
Centroid Models

Delauney
Triangulation

Hierarchical K-Means,
Nister trees [387]

Connectivity of Clusters Hierarchical Clustering

(355]
Density Models DBSCAN [395][352]
OPTICS [396]
Distribution Models Gaussian Mixture
Models [356]
Neural Methods Neural Networks [360]
Bayesian Naive Bayesian [383]

Randomize Trees [384]

FERNS [307]

K-Means [354],

Voroni Tesselation,

Uses a chosen distance function,
cluster based on simple distance to k
-nearest neighbors in the training set.

Use random sample consensus to
estimate model parameters from
contaminated data sets.

Use a centroid of distribution as the
base of the cluster, which can be
very slow for large datsasets; can
be formulated in a hierarchical tree
structure using vocabulary words
(Nister method) for much better
performance.

Builds connectivity between other
clusters.

Locate distributions with maxima
and minima density compared to
surrounding data.

Iterative methods of finding
maximum likelihood of model
parameters.

Neural methods defy a single
definition, but typically use one or
more inputs; adaptive weight factors
for each input that can be learned
and trained, a neural function to

act on the inputs and weights, a

bias factor for the neural function;
produce one or more outputs.

Learning model recording
probabilistic relationships between
variables.

(continued)

179

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Table 4-4. (continued)

Group Distance Criteria

Methods & References

Description

Probabilistic, Semantic

Kernel Methods, Kernel
Machines

Support Vector
Machines

[232]

Latent Semantic
Analysis (pLSA) Latent
Dirichlet Allocation
(LDA)

Hidden Markov
Models,

HMM [385][386]

Kernel Machines [361]*
Various Kernels [362]
PCA [357][358]

*SVM is a well-known
instance of a kernel
machine.

SVM [377,359]

Learning model based on
probabilistic relationships between
variables.

Reduce a distribution to a set of
uncorrelated, ranked principal
components in a Euclidean space for
ease of matching and clustering.

An SVM may produce structured or
multivariate output to classify input.

'http://www.kernel-machines.org/

Classification Frameworks, REIN, MOPED

Training and classification fall into the following general categories:

e Supervised. A human will assist during the training process to
make sure the results are correct.

e Unsupervised. The classifier can be trained automatically from
feature data and parameters [403].

Putting all the pieces together, we see that training the classifiers may be manual or
automated, simple or complex, depending on the complexity of the objects and the range

of feature metrics used.

An SVM or kernel machine may be the ideal solution, or the problem may be
simpler. For example, a machine vision system to identify fruit may contain a classifier
for each type of fruit, with features including simple color histograms, shape factors
such as area and perimeter and Fourier descriptors, and surface texture metrics, with
constraints to associate and quantify all the features for each type of fruit. The training
process would involve imaging several pieces of fruit of each type; developing canonical
descriptors for color, shape, and surface texture; and devising a top-level classifier
perhaps discriminating first on color, next surface texture, and finally shape. A simpler
fruit classifier may contain just a set of image histograms of accurate color measurements
for each fruit object, and may work well enough if each piece of fruit is imaged with a
high-precision color camera against a black conveyor belt background in a factory.

180

http://www.kernel-machines.org/

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

While most published research is based on a wide range of nonstandard
classification methods designed for specific applications or to demonstrate research
results, some work is being done toward more standardized classification frameworks.

One noteworthy example of a potentially standard classifier framework developed
for robot navigation and object recognition is the REIN method [397], which allows the
mixing and matching of detectors, descriptors, and classifiers for determining constraints.
REIN provides a plug-in architecture and interfaces to allow for any algorithms, such as
OpenCV detectors and descriptors, to be combined in parallel or serial pipelines. Two
classification methods are available in REIN as plug-in modules for concurrent use:
Binarized Gradient Grid Pyramids are introduced as a new method [397], and View Point
Feature Histograms [398] are also used.

The REIN pipeline provides interfaces for (1) attention operators to identify interesting
3D points and reduce the search space; (2) detectors for creating feature descriptors; and
(3) pose estimators to determine geometric constraints for applications like robot motion
such as grasping. REIN is available for research as open source; see reference[397].

Another research project, MOPED [399], provides a regular architecture for robotic
navigation, including object and pose recognition. MOPED includes optimizations to
use all available CPU and GPU compute resources in parallel. Moped provides optimized
versions of SIFT and SURF for GPGPU, and makes heavy use of SSE instructions for pose
estimation.

Kernel Machines

In machine learning, a kernel machine [362] is a framework allowing a set of methods
for statistically clustering, ranking, correlating, and classifying patterns or features to be
automated. One common example of a kernel machine is the support vector machine
(SVM) [341].

The framework for a kernel machine maps descriptor data into a feature space,
where each coordinate in the feature space corresponds to a descriptor. Within the feature
space, feature matching and feature space reductions can be efficiently carried out using
kernel functions. Various kernel functions are used within the kernel machine framework,
including RBF kernels, Fisher kernels, various polynomial kernels, and graph kernels.

Once the feature descriptors are transformed into the feature space, comparisons,
reductions, and clustering may be employed. The key advantage of a kernel machine is
that the kernel methods are interchangeable, allowing for many different kernels to be
evaluated against the same feature data. There is an active kernel machine community
(see kernel-machines.org).

Boosting, Weighting

Boosting [381] is a machine learning concept that allows a set of classifiers to be used
together, organized into combinatorial networks, pipelines, or cascades, and with learned
weights applied to each classifier. This results in a higher, synergistic prediction and
recognition capability using the combined weighted classifiers. Boosting is analogous

to the weighting factors used for neural network inputs; however, boosting methods go
further to combine networks of classifiers to create a single, strong classifier.

181

kernel-machines.org

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

We will illustrate boosting from the Viola Jones method [146,186] also discussed in
Chapter 6, which uses the ADA-BOOST training method to create a cascaded pattern
matching and classification network by generating strong classifiers from many weak
learners. This is done through dynamic weighting factors determined in a training phase,
and the method of using weighting factors is called boosting.

The idea of boosting is to first start out by equally weighting the detected features—
in this case, HAAR wavelets—and then matching the detected features against the set
of expected features; for example, those features detected for a specific face. Each set of
weighted features is a classifier. Classifiers that fail to match correctly are called weak
learners. For each weak learner during the training phase, new weighting factors are
applied to each feature to make the classifier match correctly. Finally, all weak learners
are combined linearly into a cascaded classifier, which is like a pipeline or funnel of weak
classifiers designed to reject bad features early in the pipeline.

The training can take many hours, days or weeks and requires some supervision.
While ADA-BOOST solved binary classification problems, the method can be extended
into multiclass classification [382].

Selected Examples of Classification

We call out a few noteworthy and popular classification approaches here, which are also
listed in Table 4-5.

Table 4-5. Comparison of Various Interest Point, Descriptor, and Classifier Concepts

Technique FERNS [SIFT |FREAK |Convolutional Network | Polygon Shape Factors
Sparse Keypoints X X X X

Feature Descriptor X X X X
Multi-Scale X X X

Representation

Coarse to Fine X

Descriptor

Deep Learning X

Network

Sparse Codebook X

Note: The FERNS method does not rely on a local feature descriptor, and instead relies on a
classifier using constraints between interest points.

Randomized trees is a method using hierarchical patch classifiers [384] based on
Bayesian probability methods, taking a set of simple patch features deformed by random
homography parameters. Ozuysal et al.[307] further develop the randomized tree method
with optimizations using non-hierarchical organization in the form of FERNS, using
binary probability tests for patch classifier membership. Matches are evaluated using a
naive Bayesian approach.

182

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

FERNS training [307] involves combining training data from multiple viewpoints
of each patch to add scale and perspective invariance, using trees with 11 levels and
11 versions of each patch, warped using randomized affine deformation parameters;
some Gaussian noise and smoothing are also applied to the deformed patches. Keypoints
are then located in each deformed patch, and the keypoints found in the most deformed
patches are selected for the training set. The FERNS keypoints use maxima of Laplacian
filters at three scales and retain only the strongest 400 keypoints. The Laplacian keypoints
do not include orientation or fine-scale estimation. FERNS does not use descriptors, just
the strongest Laplacian keypoints computed over the 11 deformed images in each set.

While K-means [354] methods can be very slow, an optimization using hierarchical
Nister Trees [387] is a highly scalable alternative for indexing massive numbers of
quantized or clustered local descriptors in a hierarchical vocabulary tree. The method is
reported to be very discriminative and has been tested on large datasets.

Binary Histogram Intersection Minimization (BHIM) [322] uses pairs of multi-
scale local binary patterns (MSLBP) [322] to form pairwise-coupled classifiers based on
strong divergence between pairs of MSLBP features. Histogram intersection on pairs of
MSLBP features use a distance function such as SAD to find the largest divergence of
histogram distance. The BHIM classifier is then composed of a list of “pairs” of MSLBP
histograms with large divergence, and MSLBPs are matched into the classifier. BHIM uses
features created across multiple scales of training data. It is reported by the authors to
be at least as accurate as ADA-BOOST, and the MSLBP features are reported to be more
discriminant than LBPs.

Alahi et al.[391] develop a method for classification and matching using a cascaded
set of coarse to fine grids of region descriptors called object descriptors (ODs). The
target application is tracking objects across a set of cameras, such as traffic cameras in a
metropolitan area. Each OD is a collection of multi-scale descriptors computed in equal-size
regions over multi-scale grids; the grids range over six scales with a 25 percent scaling
factor difference. Any existing descriptor method can be used in the OD method, such as
SIFT, SURE, or correlation templates. The authors [391] claim improved performance by
cascading descriptors in an OD compared with using existing descriptors.

Feature Learning, Sparse Coding, Convolutional
Networks

Feature learning methods create a set of basis features (we use the term basis features
loosely here) derived from the ground truth data during a training phase. The basis
features are collected into a set. There are several related approaches taken to create the
set, discussed in this section.

Terminology: Codebooks, Visual Vocabulary, Bag of Words,
Bag of Features

Several related approaches and terminologies are used in the feature learning literature,
including variations such as sparse coding, codebooks, bag of words, and visual
vocabularies. However, for the novice, there is some conceptual overlap in the various

183

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

approaches and the terminology is subtle, describing minor variations in methods used
to learn the features and build the classification networks; see references[114-119]. The
sparse codes are analogous to basis features. Many researchers in the areas of activity
recognition [69,75] are using sparse codebooks and extending the field of research.

We describe some of the terminology and concepts, including:

e Dictionaries, codebooks, visual vocabularies, bags of words, bags
of features, and feature alphabet, containing sets of features.

e Sparse codes, sparse coding, and minimal sets of features or
codes.

e Multi-layered sparse coding and deep belief networks, containing
multi-layered classification networks for hierarchical matching;
these are composed of small, medium, and large scale features—
perhaps ten or more layers of scale.

e Single-layer sparse coding, with no hierarchy of features, which
may be built on top of a multi-scale descriptor such as SIFT.

e Unsupervised feature learning, including various methods of
learning the best features for a given application from the ground
truth dataset; feature learning has received much attention
recently in the Neural Information Processing Systems (NIPS)
community, especially as applied to convolutional networks.

Sparse Coding

Some early work in the area of sparse coding for natural images can be found in the

work of Olshausen and Field [126], which forms the conceptual basis. To create a sparse
codebook, first an image feature domain is chosen, such as face recognition or automobile
recognition. Then a set of basis items (patches, vectors, or functions) are selected and
putinto a codebook based on a chosen uniqueness function. The sparse coding goal is

to contain the smallest set of unique basis items required to achieve the accuracy and
performance goals for the system.

When adding a new feature to the codebook during the training stage, candidate
features are compared against the features already in the codebook to determine feature
uniqueness, using a suitable distance function and empirical threshold. If the feature
is sufficiently unique, as measured by the distance function and a threshold, the new
feature is added to the codebook.

In work by Bo, Ren, and Fox[124], the training phase involves using objects such as a
cup, which is positioned on a small rotating table. Multiple images are taken of the object
from a number of viewpoints and distances to achieve perspective invariance, which
then yields a set of patches taken from a variety of poses, from which the unique sparse
codewords are created and added to the codebook. See also references[124,237,225,226].
Related work includes a histogram of sparse codes descriptor or HSC [125], as described
in Chapter 7, used to retrofit a HOG descriptor.

184

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Visual Vocabularies

Visual vocabularies are analogous to word vocabularies and they share common research
[231]. In the area of document analysis, content is analyzed and described based on

the histogram of unique word counts in the document. Of course, the histogram can be
trimmed and remapped to reduce the quantization and binning. Visual vocabularies
follow the same method as word vocabulary methods, representing images globally by
the frequency of visual words, as illustrated in Figure 4-21, where visual word methods
use feature descriptors of many types.

A
II-I-I..

ST EL1]

Figure 4-21. Hypothetical, simplified illustration representing a set of visual words,
and a histogram showing frequency of use of each visual word in a given image

To build the visual vocabularies, unique features descriptors are extracted and
collected from ground truth images. To be included in the vocabulary, the new feature
must have significant statistical differences from the existing features in the vocabulary,
so features are added to the vocabulary only if they exceed a difference threshold function.

To quantize the visual vocabulary features for determining their uniqueness,
clustering and classification methods are performed on the feature set, and candidate
features are selected that are unique so as to reduce the feature space and assist in
matching speed. Various statistical methods may be employed to reduce the feature
space, such as K-means, KNN, SVM, Bayes, and others.

To collect the visual features, practitioners are using all possible methods of feature
description and image search, including sampling the image at regular grids and at
interest points, as well as scale space searches. The features used in the vocabularies
range from simple rectangular pixel regions, to SIFT features, and everything in between.
Applications for the visual vocabularies range from analyzing spatio-temporal images for
activity recognition [232,235] to image classification [233,234,118,116,235].

185

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Learned Detectors via Convolutional Filter Masks

As illustrated in Figure 4-22, Richardson and Olson[122] developed a method of learning
optimal convolutional filters as an interest point detector with applications to stereo
visual odometry. This method uses combinations of DCT and HAAR basis features
composed together, using random weights to form a set of candidate 8x8 pixel basis
functions, each of which is tested against a target feature set resembling 2D barcodes
known as AprilTags [527]. Each 8x8 pixel candidate is measure against the AprilTags to
find the best convolution masks for each tag to form the basis set. Of course, other target
features such as corners could be used for ground truth data instead of AprilTags.

Conference
thce room Cublcte Lnbby
u
T r I I n
x
z | | =) - 1
!;’ el 1l
— " -
§ IJ! i " .
2 : "
- r B .] .
$5 L =
28 n 1 R
b B : -

Figure 4-22. (Left) The optimal learned convolution filters for an image of an Office,

a conference room, cubicle, and lobby; gray scale values represent filter coefficient
magnitudes. (Right) Comparable corner detectors in the top row, difference of Gaussian
in the bottom left, and a custom filter which is preferred by the author. (Images © Andrew
Richardson and Edwin Olson, used by permission)

Using the learned convolution masks, the steps in feature detection are as follows:
(1) convolve each masks at chosen pixels to get a response; (2) compare convolution
response against a threshold; (3) suppress non-extrema response values using a 3x3 spatial
filter window. The authors report good accuracy and high performance on the order of
a FAST detector, but with the benefit of higher performance for the combined detection
and non-maximal suppression stage as feature counts increase.

Convolutional Neural Networks, Neural Networks

Convolutional neural networks, pioneered by Lecun [339] and others, are one method
of implementing machine learning algorithms based on neural network theory [360].
Convolutional networks are showing great success in academia and industry [340] for
image classification and feature matching.

Convolutional neural networks are one method of modeling a neural network.
The main compute elements in the convolutional network are many optimized
convolutions in parallel, as well as fast local memory between the compute units. The
run-time classification performance can be quite fast, especially for hardware-optimized
implementations [528].

186

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

As shown in Figure 4-23 at a high level, one method of modeling each neuron and
a network of neurons includes a set of inputs, a set of weighting factors applied to each
input, a combinatorial function, and an output. Many neural models exist that map
into convolutional networks, we refer the reader to the experts, see Lecun [339]. Neural
networks have been devised using several models, but this topic is outside the scope of
this work [360]; see the NIPS community research for more.

Input Hidden Hidden Qutput
Layer Layer1 Layer2 Layer

1) 7 @

=i Q\} S) S (2 /10

AN
Syt

/4 /4
¢ o @
Bias Inputs

Figure 4-23. (Left) Neurons from a human brain. (Right) One of many possible models
of an artificial neural network [360]. Note that each neuron may have several inputs,
several outputs, a bias factor, and input/output weight factors (not shown). Human
neuron Image on left @ Gerry Shaw, used by permission

Neural networks are multi-level, containing several layers and interconnections.
As shown in the hypothetical neural network in Figure 4-23, a bias input is provided
to each neural function as a weighting factor. Some neural network configurations use
individual weights applied to each individual input, so the weighting factors act as
convolution kernel coefficients. In terms of convolutional networks, the neural network
paradigm can be mapped into localized patches of raw pixels as feature inputs at the
lowest level. For example, the patch size may be 1 pixel or a 5x5 patch of pixels, each input
having a convolutional weighting factor.

Learned weighting factors [85,339] are determined in the networks to use as
convolution kernel values applied to each pixel in the patch. The output of a layer is
referred to as a feature map. The weighting factors are learned in the network, and may
be back-propagated to tune the system during training.

A standard introduction to convolutional networks is provided by Lecun [339)].
During the learning process, a key goal is to preserve only the unique features and reduce
the feature space; for this reason, sparse coding is used. Learned features are composed
into a multi-layer structure of scaled high-level, mid-level, and low-level features in a
deep learning approach [339,340] containing 10 or more scale layers. Networks and pixel
input areas may overlap into adjacent convolutional kernels.

187

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Deep Learning, Pooling, Trainable Feature Hierarchies

Local feature descriptors are often concerned with matching at a specific scale or perhaps
even a few scales. However, trainable feature hierarchy methods [402,339] are being
developed that classify features using a hierarchy, or deep set, of features containing
low-level features at fine scales, intermediate, or medium scale features, and high-

level features at coarse scales—perhaps eight or more layers in the feature detection
hierarchy—producing deeper representations, which is the goal of deep learning AI
methods [525].

A deep learning approach may include several layers of neural networks, including
hidden layers. To reduce the feature space at each level of the hierarchy, feature learning
is used at each level to pool [404] similar local features, preserving only the unique
features. Various methods of feature pre-processing are used for pooling, such as feature
whitening [405], to normalize features to be similar under contrast or variance. The
low-level features may include local region pixel details, and the high-level features may
be similar to regional shape metrics. Such trainable feature classification networks are
discussed in the literature under many names, such as deep belief networks [526] and
feature learning.

Many researchers are building deep belief networks relying on rectangular pixel
patches for the feature, and are using convolution or correlation for the feature matching
method. Convolutional networks using deep learning are deployed in many successful
commercial applications, such as speech recognition, or face, person, and gender
recognition. They have also been used to win several competitions [340]. Convolutional
networks using deep learning are reported to increase in accuracy as the resolution
of features decreases toward a finer scale, which increases the depth of the network.
Training is reported to take several days [340], using a bank of dedicated GPUs.

One interesting example is the work of Bo, Ren and Fox [242], where a hierarchical
matching pursuit HMP method (deep method) is employed to learn features in an
unsupervised framework and add to a sparse codebook with two levels. RGB-D data
channels are used to compute the descriptors, including separate descriptors for gray
scale or intensity, RBG color, Z or depth from a depth camera, and the 3D surface
normal from the depth data. A few different descriptor sizes are used, including
16x16 patches sampled with 4-pixel overlap for higher-level matching, and a set of
nonoverlapping 5x5 patches for lower levels. The features are pooled as a part of the
feature learning process.

Summary

In this chapter, we surveyed background concepts and ideas used to create local feature
descriptors and interest point detectors. The key concepts and ideas were also developed
into the vision taxonomy suggested in Chapter 5. Distance functions were covered

here, as well as useful coordinate systems. We examined the shape and pattern of local
descriptors, with an emphasis on local binary descriptors such as ORB, FREAK, and
BRISK to illustrate the concepts.

188

CHAPTER 4 © LOCAL FEATURE DESIGN CONCEPTS, CLASSIFICATION, AND LEARNING

Feature descriptor discrimination was illustrated using image reconstructions from
feature descriptor data alone. Search strategies were discussed, such as scale space
pyramids and multi-level search, as well as other methods such as grid limited search.
Computer vision system models were covered, including concepts such as feature
space, object models, feature constraints, statistically designed features, and feature
learning. Classification and training were illustrated using several methods, including
kernel machines, convolutional networks, and deep learning. Several references to the
literature were provided for the interested reader to dig deeper. Practical observations
and considerations for designing vision systems were also provided.

In summary, this chapter provided useful background concepts to keep in mind
when reading the local feature descriptor survey in Chapter 6, since the concepts
discussed here were taken mainly from the current local descriptor methods in use;
however, some additional observations and directions for future research were suggested
in this chapter as well.

189

CHAPTER 5

Taxonomy of Feature
Description Attributes

“for the Entwives desired order, and plenty, and peace (by which they
meant that things should remain where they had set them).”

—J. R. R. Tolkien, Lord of the Rings

This chapter develops a general Vision Metrics Taxonomy for feature description, so as
to collect summary descriptor attributes for high-level analysis. The taxonomy includes
a set of general robustness criteria for feature description and ground truth datasets. The
material presented and discussed in this book follows and reflects this taxonomy. By
developing a standard vocabulary in the taxonomy, terms and techniques are intended
to be consistently communicated and better understood. The taxonomy is used in the
survey of feature descriptor methods in Chapter 6 to record ‘what’ practitioners are doing.

As shown in Figure 5-1, the Vision Metrics Taxonomy is based on feature descriptor
dimensions using three axes—shape and pattern, spectra, and density—intended to
create a simple framework for analysis and discussion. A few new terms and concepts
have been introduced where there had been no standard, such as for the the term
feature descriptor families. These have been broken down into categories of local binary
descriptors, spectra descriptors, basis space descriptors, and polygon shape descriptors;
these descriptor families are also discussed in detail in Chapter 4. Additionally, the
taxonomy borrows some useful terminology from the literature when it exists there,
including several terms for the robustness and invariance attributes.

191

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

Shape & pattern

pattern - + -

polygon | 3=

Ei
o v
L]

block

sparse regional global

» Density
intensity scalar
color scalar
gradient scalar
multivariate space

basis or set

Spectra

Figure 5-1. Taxonomy for feature descriptor dimensions, including (1) feature density
as global, regional, and sparse local; (2) shape and pattern of pixels used to compute the
descriptor, which includes rectangles, circles, and sparse sampling patterns; (3) spectra,
which includes the spectrum of information contained in the feature itself

Why create a taxonomy that is guaranteed to be fuzzy, includes several variables,
and will not perfectly express the attributes of any feature descriptor? The intent is to
provide a framework to describe various design approaches used for feature description.
However, the taxonomy is not intended to be used for comparing descriptors in terms of
their goodness, performance, or accuracy.

The three axes of the Vision Metrics Taxonomy are:

1. Shape and pattern: How the pixels are taken from the target
image.

2. Density: The extent of the image required for the descriptor,
differentiating among local, regional, and global descriptors.

3. Spectra: The scalar and vector quantities used for the
metrics, and a summary breakdown of the algorithms and
computations.

Feature Descriptor Families

Feature descriptors and metrics have developed along several lines of thinking into
separate families. In many cases, the research communities for the various families are
working on different problems, and there is little cross-pollination or mutual interest.

192

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

For example, cell biology and medical applications are typically interested in polygon shape
descriptors, also referred to in the literature as image moments. Those involved with trendy
augmented reality applications for mobile phones, as discussed in the computer vision
literature, may be more interested in local binary descriptors. In some cases, there are
common concepts shared by feature detectors and feature descriptors, as will be discussed
in detail in Chapter 6; these include the use of gradients and local binary patterns.

Based on the taxonomy shown in Figure 5-1, we divide features into the following
families:

e Local Binary Descriptors. These sample point-pairs in a local
region and create a binary coded bit vector, 1 bit per compare,
amenable to Hamming distance feature matching. Examples
include LBP, FREAK, ORB, BRISK, Census.

¢ Spectra Descriptors. These use a wide range of spectra values,
such as gradients and region averages. There is no practical limit
to the spectra that could be used with these features. One of
the most common spectra used in detectors is the local region
gradient, such as in SIFT. Gradients are also used in several
interest point and edge detectors, such as Harris, Sobel.

e Basis Space Descriptors. These methods encode the feature
vector into a set of basis functions, such as the familiar Fourier
series of sine and cosine magnitude and phase. In addition,
existing and novel basis features are being devised in the form of
sparse codebooks and visual vocabularies (we use the term basis
space loosely).

¢ Polygon Shape Descriptors. These take the shape of objects
as measured by statistical metrics, such as area, perimeter,
and centroid. Typically, the shapes are extracted using a
morphological vision pipeline and regional algorithms, which can
be more complex than localized algorithms for feature detectors
and feature descriptors (as will be discussed in Chapter 8). Image
moments [518] is a term often used in the literature to describe
shape features.

Prior Work on Computer Vision Taxonomies

Several research papers compare and contrast various aspects of sparse local features,
and the field is rich with examples of comparisons of keypoint detectors [306,93] and
feature descriptors [145,107]. New feature descriptor methods and improvements are
usually compared to existing methods, utilizing several robustness and invariance
criteria. However, there is a lack of formal taxonomy work to highlight the subtle details
affecting design and comparison. For a good survey covering state-of-the-art computer
vision methods, see Szelinski [324].

193

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

It should be noted that computer vision is a huge field. Several thousand research
papers are published every year, and several thousand equally interesting research papers
are rejected by conference publishers. Here are a few noteworthy works that survey and
organize the field of feature metrics and computer vision.

e Affine Covariant Interest Point Detectors. A good taxonomy is
provided by Mikolajczyk et al. [153] for affine covariant interest
point detectors. Also, Lindberg [150] has studied the area of scale
independent interest point methods extensively. We seek a much
richer taxonomy, however, to cover design principles for feature
descriptors, and we have developed our taxonomy around families
of descriptor methods with common design characteristics.

¢ Annotated Computer Vision Bibliography. From USC and
maintained by Keith Price, this resource provides a detailed
breakdown of computer vision into several branches, as well as links
to some key research in the field and computer vision resources.!

e CVonline: The Evolving, Distributed, Non-Proprietary,
On-Line Compendium of Computer Vision. This provides a
comprehensive and detailed list of topics in computer vision.
The website is maintained by Robert Fisher, and indexes the key
Wikipedia articles. This may be one of the best online resources
currently available.?

e Local Invariant Feature Detectors: A Survey. Prepared by Tinne
Tuytelaars and Krystian Mikolajczyk [107], this reference provides
a good overview of several feature description methods, as well as a
discussion of literature on local features, performance and accuracy
evaluations of several methods, types of methods (corner detectors,
blob detectors, feature detectors), and implementation details.

Robustness and Accuracy

A key goal for computer vision is robustness, or the ability of a feature to be recognized
under various conditions. Robustness can be broken down into several attributes. For
example, detecting a feature should be robust over various criteria that are critical to a
given application, such as scale, rotation, or illumination. We might also use the terms
invariant or invariance to describe robustness. The end goal is accurate localization,
correspondence, and robustness under invariance criteria.

However, some robustness attributes are dependent on the feature descriptor
combined with other variables. For example, many local feature descriptor methods
compute position and orientation based on a chosen interest point method, so the
descriptor accuracy is interrelated with the interest point method. The distance function
and classification method are interrelated as well, to determine final accuracy.

'http://iris.usc.edu/Vision-Notes/bibliography/contents.html.
2http://homepages.inf.ed.ac.uk/rbf/CVonline/CVentry.htm.

194

http://iris.usc.edu/Vision-Notes/bibliography/contents.html
http://homepages.inf.ed.ac.uk/rbf/CVonline/CVentry.htm

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

Note Since it is not possible to define robustness or accuracy of a feature descriptor
in isolation from the interest point method, the classifier, and the distance function, the
opportunity exists to mix and match well-known detectors and descriptors, combined with
various classifiers, to yield the desired robustness and accuracy.

Robustness and accuracy are a combination of the following factors:

1. Interest point accuracy, since many descriptors depend on
the keypoint location and orientation.

2. Descriptor accuracy, as each descriptor method varies, and
can be tuned.

3. Classifier and distance function accuracy, as a poor
classifier and matching stage can lead to the wrong results.

Part of the challenge for an application, thus, is to define the robustness criteria, attribute
by attribute, and then to define the limits and bounds of invariance sought. For example,
scale invariance from 1x to 100x magnification may not be needed and hardly possible, but
scale invariance from 1x to 4x may be all that is needed and much simpler to reach.

Several attributes of robustness are developed here into a robustness taxonomy.

To determine actual robustness, ground truth data is needed as a basis to check the
algorithms and measure results. Chapter 7 provides a background in ground truth data
selection and design.

General Robustness Taxonomy

Robustness criteria can be expressed in terms of attributes and measured as invariance or
robustness to those attributes. (See Chapter 7, Table 7-1, for more information on each of

the robustness criteria attributes, with considerations for creating ground truth datasets.)

Robustness criteria and attributes are grouped under the following group headings:

e Illumination

e Color

e Incompleteness

e Resolution and distance

e Geometric distortion

e Discrimination and uniqueness

Each robustness criterions group contains several finer-grain attributes, as illustrated
in Figure 5-2.

195

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

* Uneven illumination Color Space Clutter Location accuracy or * Scale * Quality
« Brightness Accuracy Occlusion position « Rotattion
o Contrast * Color Channels Outliers, proximity Shape & thickness Geometric warp
« Vignette « Color Bit Depth * Noise. distortion « Reflection
* Motion blur © Focal plane or depth * Radial distortion

« Jitter, Judder . ;z‘:‘:lgﬁg:‘“ « Polar distortion

Figure 5-2. General robustness criteria and their attributes

Let’s take a look at these robustness attributes, along with some practical
considerations for design and implementation of feature descriptors and the
corresponding ground truth data to address the attributes.

Illumination

Light is the source of all imaging, and it should be the no.1 priority area for analysis
and consideration when setting requirements for a given application. Illumination has
several facets and is considered separately from color and color spaces. In some cases,
the illumination can be corrected by changing the light source, or by adding or relocating
light sources. In other cases, image pre-processing is needed to correct the illumination
to prepare the image for further analysis and feature extraction.

Attention to illumination cannot be stressed enough; for example, see Figure 4-3
showing the effects of pre-processing to change the illumination in terms of increasing
the contrast for feature extraction. Key illumination attributes are:

e Uneven illumination: image contains dark and bright regions,
sometimes obscuring a feature that is dependent on a certain
range of pixel intensities.

e Brightness: there’s too much or too little total light, affecting
feature detection and matching.

e Contrast: intensity bands are too narrow, too wide, or contained
in several bands.

e Vignette: light is distributed unevenly, such as dark around
the edges.

Color Criteria

When color is used, accuracy of color is critical. Color management and color spaces are
discussed in Chapter 2, but some major considerations are:

e Color space accuracy: which color space should be used—
RGB, YIQ, HSV, or a perceptually accurate color sapce such as
CIECAMO2 Jch or Jab? Each color space has accuracy and utility
considerations, such as the ease of transforming colors to and
from color spaces.

196

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

¢ Color channels: since cameras typically provide RGB data,
extracting the gray scale intensity from the RGB data is often
important. There are many methods for converting RGB color to
gray scale intensity, and many color spaces to choose from.

e Color bit depth: color information, when used, must be accurate
enough for the application. For example, 8-bit color may be
suitable for most applications, unless color discrimination is
necessary, so higher precision color using 10,12,14, or 16 bits per
channel may be needed.

Also, depending on the camera sensor used, there will be signal characteristics,
such as color sensitivity and dynamic range, which differ for each color channel. For
demanding color-critical applications, the camera sensor should be well understood
and have a known method of calibration. Individual colors may need to be compensated
during image pro-processing. (See Chapter 1 for a discussion of camera sensors.)

Incompleteness

Features are not always presented in the image from frame to frame the way they are
expected, or in the way they were learned. The features may appear to be incomplete.
Key attributes of incompleteness include:

e Clutter: the feature is obscured by surrounding image features,
and the feature aliases and blends into the surrounding pixels.

e Occlusion: the feature is partially hidden; in many cases the
application will encounter occluded features or sets of features.

e Outliers, proximity: sometimes only features in certain regions
are used, and outlying features must be detected and ignored.

¢ Noise: can come from rain, bad image sensors, and many
other sources. A constant problem, noise can be compensated
for, if it is understood, using a wide range of filter methods during
pre-processing.

e Motion blur: if it is measured and understood, motion blur can

be compensated for using filtering during pre-processing.

e Jitter, judder: a motion artifact, jitter or judder can be corrected,
but not always; this can be a difficult robustness criteria to meet.

Resolution and Accuracy

Robustness regarding resolution, scale, and distance is often a challenge for computer
vision. This is especially true when using feature metrics that rely on discrete pixel sizes
over which the pixel area varies with distance. For example, feature metrics that rely

on pixel neighborhood structure alone do not scale well or easily, such as correlation
templates and most local region kernel methods. Other descriptors, such as those based

197

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

on shape factors, may provide robustness that pixel region structures cannot achieve.
Depending on the application, more than one descriptor method may be required to
handle resolution and scale.

To meet the challenge of resolution and distance robustness, various methods are
employed in practice, such as scale-space image pyramid collections and feature-space
pyramids, which contain multi-scale representations of the feature. Key criteria for
resolution and distance robustness include:

¢ Location accuracy or position: how close does the metric need
to provide coordinate location under scale, rotation, noise and
other criteria? Is pixel acuracy or sub-pixel accuracy needed?
Regional accuracy methods of feature description cannot
determine positional accuracy as well; for example, methods that
use HAAR-like features and integral images can suffer the most,
since in computing the HAAR rectangle, all pixels in the rectangle
are summed together, throwing away discrimination of individual
pixel locations. Pixel-accurate feature accuracy can also be
challenging, since as features move and rotate they distort, and
the pixel sampling artifacts create uncertainty.

e Shape and thickness distortion: distance, resolution, and
rotation combine to distort the pixel sample shapes, so a feature
may appear to be thicker than it really is or thinner. Distortion is a
type of sampling artifact.

e Focal plane or depth: depending on distance, the pixel area
covered by each pixel changes size. In this case, depth sensors can
provide some help when used along with RGB or other sensors.

e Pixel depth resolution: for example, processing color chanels
to preserve the bit accuracy using float or unsigned short int as a
minimum can be required.

Geometric Distortion

Perhaps the most common distortion of image features is geometric, since geometric
distortions take many forms as the camera moves and as objects move. Geometric
attributes for robustness include the following:

e Scale: distance from viewpoint, a commonly addressed
robustness criteria.

¢ Rotation: important in many applications, such as industrial
inspection.

e Geometric warp: key area of research in the fields of activity
recognition and dynamic texture analysis, as discussed in
Chapters 4 and 6.

¢ Reflection: flipping the image by 180 degrees.

198

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

¢ Radial distortion: a key problem in depth sensing and also for
2D camera geometry in general, since depth fields are not
uniform or simple; see Chapter 1.

e Polar distortion: a key problem in depth sensing geometry;
see Chapter 1.

Efficiency Variables, Costs and Benefits

We consider efficiency to be related to compute, memory, and total invariance attributes
provided. How efficient is a feature descriptor or feature metric? How much compute

is needed to create the metric? How much memory is needed to store the metric? How
accurate is the metric? How much robustness and invariance are provided vs. the cost of
compute and memory? To answer the above questions is very difficult and depends on
how the entire vision pipeline is implemented for an application, as well as the compute
resources available. The Vision Metrics Taxonomy provides information to pursue such
questions, but as always pursuing the wrong questions may lead to the wrong answers.

Discrimination and Uniqueness

The selection of optimal, discriminating features is achieved using a variety of methods.

For example, local feature detector methods filter out only the most discriminating

or unique candidates based on criteria such as corner strength; then descriptors

are computed at the selected interest points as patches or other shapes; and finally

the resulting descriptor is either accepted or rejected based on uniqueness criteria.

Uniqueness is also the key criterion for creating sparse codebooks discussed in Chapter 4.
Discrimination can be measured by the ability to recreate an image from only the

descriptor information, as discussed in Chapter 4. A descriptor with too little information

to adequately recreate an image may be considered weak or non discriminating.

General Vision Metrics Taxonomy

To understand feature metrics, we develop a Vision Metrics Taxonomy composed of
summary criteria. Each criterion is selected with a practical, engineering perspective in
mind to provide information for evaluation and implementation in specific terms, such as
algorithm, spectra, memory size, and other attributes. The basic categories of the Vision
Metrics Taxonomy are shown in Table 5-1, and also summarized here as a list, and each
list item is discussed in separate sections in this chapter:

e Feature Descriptor Family
e Spectra Dimension

e Spectra Value

e Interest Point

e Storage Format

e Data Types

199

CHAPTER 5

TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

e Descriptor Memory

e Feature Shape

. Feature Pattern

e Feature Density

o Feature Search Method

e Pattern Pair Sampling

e Pattern Region Size

. Distance Function

e Run-Time Compute

Table 5-1. Vision Metrics Taxonomy

Vision Metric Taxonomy

Feature Descriptor Family

Interest Point

Pattern Pair Sampling

Local Binary Descriptor

Point, edge, or corner

Center - boundary pair

Spectra Descriptor

Contour based, perimeter

Random pair points

Basis Space Descriptor

Other

Foveal centered trained pairs

Polygon Shape Descriptor No interest point Trained pairs

Spectra Dimensions Storage Format Symmetric pairs

Single variate Spectra vector Pattern Region Size
Multivariate Bit vector Bounding box (x size, y size)
Spectra Value Multivariate collection Distance function
Orientation Vector Data Types Euclidean distance

Sensor, accelerometer data Float Squared Euclidean distance
Multigeometry Integer Cosine similarity
Multi-scale Fixed point Correlation distance
Fourier magnitude Descriptor Memory Manhattan distance

Fourier phase Fixed length or variable length Chessboard or Chebychev distance
Other basis function Byte count range Earth movers distance
Morphological shape metrics Feature Shape SAD L1 Norm

Learned binary descriptors Rectangle block patch SSD L2 Norm

Dictionary, codebook, vocabulary | Symmetric polygon region Mahalanobis distance
Region histogram 2D Irregular segmented region Bray Curtis difference

3D histogram Volumetric region Canberra distance

Log polar bins Deformable L0 Norm

Cartesian bins Feature Search Method Hamming distance

Region sum Coarse to fine image pyramid Jaccard similarity

Region average Scale space pyramid Run-Time Comp

Region statistical Pyramid scale Compute complexity % of SIFT
Binary pattern Dense sliding window Feature Density

DoG (1-bit) Dense grid block search Global

DoG (multi-bit) Window search Regional

Bit vector of values Grid block search Sparse

Gradient magnitude Sparse at interest points Feature Pattern

Gradient direction Sparse at predicted points Rectangular kernel

3D surface normals

Sparse in segmented regions

Binary compare pattern

Line segment metric

Depth segmented regions (Z)

DNET line sample strip set

Gray scale info

Super-pixel search

Radial line sampling pattern

Color space info

Sub-pixel search

Perimeter or contour edge

Double-scale 1% pyramid level

Sample weighting pattern

200

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

Many of the background concepts used in the taxonomy are discussed in Chapter 4,
where attributes about the internal structure and goals of common features are analyzed.
In addition, this taxonomy is illustrated in the Feature Metric Evaluation (FME)
information tables later in this chapter. A small subset of the taxonomy is used in the
Chapter 6 survey of feature descriptors to record summary information. The taxonomy
in Table 5-1 is a guideline for collecting and summarizing information. No judgment on
goodness or performance is recorded or implied.

Feature Descriptor Family

As described at the beginning of this chapter, feature descriptors are classified in this
taxonomy as follows:

e Local Binary Descriptors
e Spectra Descriptors
e Basis Space Descriptors

e Polygon Shape Descriptors

Spectra Dimensions

The spectra or values recorded in the feature descriptor vary, and may include one or
more types of information or spectra. We divide the categories as follows:

e Single variate: stores a single value such as an integral image or
region average, or just a simple set of pixel gradients.

e Multivariate: multiple spectra are stored; for example, a
combination of spectra such as color information, gradient
magnitude and direction, and other values.

Spectra Type

The spectral type of feature descriptor is a major axis in this taxonomy, as shown in
Figure 5-1. Here are common spectra, which have been discussed in Chapter 3 and will
be discussed in Chapter 6 as well.

e Gradient magnitude: a measure of local region texture or
difference, used by a wide range of patch-based feature descriptor
methods. It is well known [248] that the human visual system
responds to gradient information in a scale and rotationally
invariant manner across the retina, as demonstrated in SIFT and
many other feature description methods, thus the use of gradients
is a preferred method for computer vision.

201

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

202

Gradient direction: some descriptor methods compute a
gradient direction and others do not. A simple region gradient
direction method is used by several feature descriptors and
edge detection methods, including Sobel and SIFT, to provide
rotational invariance.

Orientation vector: some descriptors are oriented and others
are not. Orientation can be computed by methods other than a
simple gradient—for example, SURF uses a method of sampling
many gradient directions to compute the dominant gradient
orientation of the entire patch region as the orientation vector. In
the RIFF method, a radial relative orientation is computed.

In the SIFT method, any orientations detected within 80 percent
of the dominant orientation will result in an additional interest
point being generated, so the same descriptor may allow multiple
interest points differing only in orientation.

Sensor data: data such as accelerometer or GPS information is
added to the descriptor. In the GAFD method, a gravity vector
computed from an accelerometer is used for orientation.

Multigeometry: multiple geometric transforms of the descriptor
data that are stored together in the descriptor, such as several
different perspective transforms of the same data as used in the
RFM2.3 descriptor; the latter contains the same patch computed
over various geometric transforms to increase the scale, rotation,
and geometric robustness.

Multiscale: instead of relying on a scale-space pyramid, the
descriptor stores a copy of several scaled representations. The
multi-resolution histogram method described in Chapter 4 is one
such method of approximating feature description over a range
of scales, where scale is approximated using a range of Gaussian
blur functions, and their resulting histograms are stored as the
multi-scale descriptor.

Fourier magnitude: both the sine and cosine basis functions from
the Fourier series can be used in the descriptor—for example, in the
polygon shape family of descriptors as illustrated in Figure 6-29.
The magnitude of the sine or cosine alone is a revealing shape
factor, without the phase, as illustrated in Figure 6-6, which shows
the histogram of LBPs run through a Fourier series to produce

the power spectrum. This illustrates how the LBP histogram
power spectrum provides rotational invariance. Other methods
related to Fourier series may use alternative arrangements of

the computation, such as the discrete cosine transform (DCT),
which uses only the cosine component and is amenable to integer
computations and hardware acceleration as commonly done for
media applications.

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

Fourier phase: phase information has been shown to be valuable
for creating a blur-invariant feature descriptor, as demonstrated
in the LPQ method discussed in Chapter 6.

Other basis functions: can be used for feature description.
Wavelets are commonly used in place of Fourier methods owing
to greater control over the function window and tuning of the
basis functions derived from the mother wavelet into the family
of related wavelets. See Chapter 2 for a discussion of wavelets
compared to other basis functions.

Morphological shape metrics: predominantly used in the
polygon shape descriptor family, composed of shape factors,

and referred to as image moments in some literature. They are
computed over the gross features of a polygon image region such
as area, perimeter, centroid, and many others. The vision pipeline
and image pre-processing used for polygon shape description
may include morphological and texture operators, rather than
local interest point and descriptor computations.

Learned binary descriptors: created by running ground truth
data through a training step, such as developed in ORB and
FREAK, to create a set of statistically optimized binary sampling
point-pair patterns.

Dictionary, codebook, vocabulary from feature learning
methods: build up a visual vocabulary, dictionary, or sparse
codebook as a sparse set of unique features using a wide range of
descriptor methods, such as simple images correlation patches

or SIFT descriptors. When combined as a sparse set, these are
representative of the features found in a set of ground truth data
for an application domain, such as automobile recognition or face
recognition.

Region histogram 2D: used for several types of information, such
as binning gradient direction, as in CARD, RFM2.3, and SURF;

or for binning linear binary patterns, such as the LBP. The SIFT
method of histogramming gradient information uses a fairly

large histogram bin region, which provides for some translation
invariance, similar to the human visual system treatment of the
3D position of gradients across the retina [248].

3D histogram: used in methods such as used in SIFT, which
represents gradient magnitude and orientation together as a 3D
histogram.

Cartesian bins: a common method of binning local region
information into the descriptor simply based on the Cartesian
position of pixels in a patch—for example, histogramming the
pixel intensity magnitude of each point in the region.

203

CHAPTER 5

204

TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

Log polar bins: instead of binning local region feature
information in Cartesian rectangular arrangements, some
descriptors such as GLOH use a log polar coordinate system to
prepare values for histogram binning, with the goal of adding
better rotational invariance to the descriptor.

Region sum: such as an integral image, a method used to quickly
sum the local region pixel values, or HAAR feature. The region
sum is stored into the feature representing the total value of all the
pixels in the region. Note that region summation may be good for
coarse-feature description of an area, but the summation process
eliminates fine local texture detail.

Region average: average value of the pixels in a region area,

also referred to as a box filter, which may be computed from a
convolution operation, scaled integral image, or by simply adding
up the pixel values in the array.

Region statistical: such as region moments, like standard
deviation, variance, or max or min values.

Binary pattern: such as a vector of binary values, or bits—for
example, stored as a result of local pixel pair compare
computations of local neighborhood pixel values as used in the
local binary descriptor family, such as LBP, Census, and ORB.

DoG (1-bit quantized): as used in the FREAK descriptor, a set
of DoG or bandpass filter features of different sizes, taken over
alocal binary region in a retinal sampling pattern similar to the
human visual system, compared in pairs, and quantized to a
single bit in a histogram vector.

DoG (multi-bit): a type of bandpass filter that is implemented
using many variations, where a Gaussian blur filter is applied to the
image, then the image is subtracted from (a) a shifted copy of itself,
(b) a copy of itself at another Gaussian blur level, or (3) a copy of
itself at another image scale as in the SIFT descriptor method.

Bit vector of values: a bit string containing a sequence of values
quantized to a single bit, such as a threshold.

3D surface normals: the analog to 2D gradients except in 3D,
used in the HON4D method [198] to describe the surface of a 3D
object location in the feature descriptor.

Line segment metric: as in the CCH method, used to describe
the line segments composing an object perimeter. Or, as used

as a shape factor for objects where the length of a set of radial
line segments originating at the centroid and extending to the
perimeter are recorded in the descriptor, which can be fed into a
Fourier transform to yield a power spectrum signature, as shown
in Figure 6-29.

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

Color space info: some descriptors do not take advantage of
color information, which in many cases can provide added
discrimination and accuracy. Both the use of simple RGB
channels, such as in the RGB-D methods [75,118], or using color
space conversions into more accurate spaces are invaluable. For
example, face recognition has problems distinguishing faces from
different cultures, and since the skin tone varies across regions,
the color value can be measured and added to the descriptor.
However, several descriptors make use of color information,
such as S-LBP, which operates in a colorimetric, accurate color
space such as CIE-Lab, or the F-LBP, which computes a Fourier
spectrum of color distance from the center pixel to adjacent
pixels, as well as color variants of SIFT and many others.

Gray scale info: the gray scale or color intensity value is

the default spectra in almost all descriptors. However, the
method used to create the gray scale from color, and the
image pre-processing used to prepare intensity for analysis
and measurement, are critical for the vision pipeline and were
discussed in Chapter 2.

Interest Point

The use of interest points is optional with feature description. Some methods do not
use interest points, and sample the image on a fixed grid rather than at every pixel,
such as the Viola Jones method using HAAR-like features. It is also possible to simply
create a feature descriptor for every pixel rather than just at interest points, but since the
performance impact is considerable, interest points are typically used to find the best
location for a feature first.

Several methods for finding interest points are surveyed and discussed in Chapter 6.
Categories of interest points for the taxonomy include:

Point, edge, or corner: these methods typically start with
locating the local region maxima and minima; methods used
include gradients, local curvature, Harris methods, blob
detectors, and edge detectors.

Contour based, perimeter: some methods do not start feature
description at maxima and minima, and instead look for structure
in the image, such as a contour or perimeter, and this is true
mainly for the morphological shape based methods.

Other: there are other possibilities for determining interest point
location, such as prediction of likely interest point or feature
positions, or using grid or tile regions.

No interest point: some methods do not use any interest
points at all.

205

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

Storage Formats

Storage formats are a practical matter for memory efficiency and engineering real systems
and designing data structures. Knowing the storage format can guide efforts during
engineering and optimization toward various programming constructs, instruction sets,
and memory architecture.

For example, both CPU and GPGPU graphics processors often provide dedicated
silicon to support various storage format organizations, such as scatter and gather
operations, and sparse and dense data structure support. Understanding the GPGPU
capabilities can provide guidelines for designing the storage format, as discussed in
Chapter 8. Storage format summary:

e Spectravector: may be a set of histograms, a set of color values, a
set of basis vectors.

e Bitvector: local binary patterns use bit vector data types, some
programming languages include bit vector constructs, and some
instruction sets include bit vector handling instructions.

e Multivariate collection: a set of values such as statistical
moments or shape factors.

Data Types

The data types used for feature description are critical for accuracy, memory use, and
compute. However, it is worth noting that data types can be changed as a tradeoff for
accuracy in some cases. For example, converting floating point to fixed point or integer
computations may be more memory efficient, as well as power efficient, since a floating
point silicon ALU complex occupies almost four times more die space, thus consuming
more power than an integer ALU. The data type summary includes:

¢ Float: many applications require floating point for accuracy. For
example, a Fourier transform of images requires at least 64 bits
double precision (larger images require more precision); other
applications like target tracking may require 32-bit floating point
for precision trajectory computations.

¢ Integer: pixel values are commonly represented with 8 bit values,
with 16 bits per pixel common as image sensors provide better
data. At least 32-bit integers are needed for many data structures
and numerical results, such as integral images.

¢ Fixed point: this is an alternative representation to floating point,
which saves data space and can be implemented more efficiently
in silicon. Most modern GPUs support several fixed-point
formats, and some CPUs as well. Fixed-point formats include
8-,16-, and 24-bit representations. Accuracy may be close enough
using fixed point, depending on the application. In addition to
fixed-point data types, GPUs and some processors also provide
various normalized data types (see manufacturer information).

206

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

Descriptor Memory

The total descriptor memory size is part of the efficiency of the descriptor, and compute
performance is another component. A descriptor with a large memory footprint, few
invariance attributes and heavy compute is inefficient. We are interested in memory size
as a practical matter. Key memory-related attributes include:

e Fixed length or variable length: some descriptors allows for
alternative representations.

e Byte count: the length of all data in the descriptor.

Feature Shapes

A range of shapes are used for the pixel sampling pattern; shapes are surveyed in Chapter
4 including the following methods:

e Rectangle block patch: simple x, y, dx, dy range.

e Symmetric polygon region: may be an octagon, as in the
CenSurE method, or a circular region, like FREAK or DAISY.

e Irregular segmented region: such as computed using
morphological methods following segmented regions or
thresholded perimeter.

¢ Volumetric region: some features make use of stacks of images
resembling a volume structure. As shown in Figure 6-12, the VLBP
or Volume LBP and the LBP-TOP make use of volumetric data
structures. The dynamic texture methods and activity recognition
methods often use sets of three adjacent patches from the current
frame plus 2 past frames, organized in a spatio-temporal image
frame history, similar to a volume.

¢ Deformable: most features use a rigid shape, such as a fixed-size
rectangle or a circle; however, some descriptors are designed with
deformation in mind, such as scale deformations [345,346], and
affine or homographic deformation [220], to enable more robust
matching.

Feature Pattern

Feature pattern is a major axis in this taxonomy, as shown in Figure 5-3, since it affects
memory architecture and compute efficiency.

207

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

0 1 0 I
all® ,
1 4 A /7
H_EEN
o 1 o ?'

Figure 5-3. Feature shapes. (Left to right) Rectangular patch, symmetric polygon region,
irregular segmented region, and volumetric region

Feature shape and pattern are related. Shape refers to the boundary, and pattern
refers to the sampling method. Patterns include:

e Rectangular kernel: some methods use a kernel to define which
elements in the region are included in the sample; see Figure 5-3
(left image) showing a kernel that does not use the corner pixels
in the region; see also Figure 4-10.

¢ Binary compare pattern: such as FREAK, ORB, and BRISK,
where specific pixels in a region are paired to form a complex
sampling pattern.

e DNET line sample strip set: where points along a line segment
are sampled densely; see Figure 4-8.

¢ Radial line sampling pattern: where points on radial line
segments originating at a center point are sampled densely; for
example, used to compute Fourier descriptors for polygon region
shape; see Figure 6-29.

e Perimeter or contour edge: where points around the edge of a
shape or region are sampled densely.

e Sample weighting pattern: as shown in Figure 6-17, SIFT uses a
circular weighting pattern in the histogram bins to decrease the
contribution of points farther away from the center of the patch.
The D-NETS method uses binary weighting of samples along the
line strips, favoring points away from the endpoints and ignoring
points close to the end points. Weighting patterns can provide
invariance to noise and occlusion.

See Chapter 4 for more illustrations in the section on patches and shapes.

Feature Density

As shown in Figure 5-1, feature density is a major axis in this taxonomy. The amount of
the image used for the descriptor is referred to in this taxonomy as feature density. For
example, some descriptors are intended to use smaller regions of local pixels, anchored at

208

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

interest points, and to ignore the larger image. Other methods use larger regions. Density
categories include:

Global: covers the entire image, each pixel in the image.

Regional: covers fairly large regions of the image, typically on a
grid, or around a segmented structure or region, not anchored at
interest points.

Sparse: may be taken at interest points, or in small regions at
selected points such as random points in the BRIEF descriptor,
trained points such as FREAK and ORB, or a sparse sampling grid
as in the RFM2.3 descriptor.

Feature Search Methods

The method used for searching for features in the image is a significant for feature
descriptor design. The search method determines a lot about the design of the descriptor,
and the compute time required in the vision pipeline. We list several search variations
here, and more detailed descriptions and illustrations are provided in Chapter 4. Note
that a feature descriptor can make use of multiple search criteria. Feature search related
information is summarized as follows:

Coarse-to-fine image pyramid: or multi-scale search, using a
pyramid of coarser resolution copies of the original.

Scale space pyramid: the scale space pyramid is a variation of
the regular coarse-to-fine image pyramid, where a Gaussian blur
function is computed over each pyramid scale image [547] to
create a more uniform search space; see Figure 4-17.

Pyramid scale factor: captures pyramid scale intervals, such as
octaves or other scales—for example, ORB uses a ~1.41x scale.

Dense sliding window: where the search is made over each pixel
in the image, often within a sliding rectangular region centered at
each pixel.

Grid block search: where the image is divided into a fixed grid
or tiles, so the search can be faster but does not discriminate as
well as dense methods. For example, see Figure 6-17 describing
the PHOG method, which computes descriptors at different grid
resolutions across the entire image.

Window search: limited dense search to particular regions,
such as in stereo matching between two L/R frames where the
correspondence search range is limited to expected locations.

Sparse at interest points: where a corner detector or other
detector is used to determine where valid features may be found.

209

CHAPTER 5

TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

Sparse at predicted points: such as in tracking and mapping
algorithms like PTAM, where the location of interest points is
predicted based on motion or trajectory, and then a feature
search begins at the predicted points.

Sparse in segmented regions: for example, when morphological
shape segmentation methods or thresholding segmentation
methods define a region, and a second pass is made through the
region looking for features.

Depth segmented regions (Z): when depth camera information
is used to threshold the image into foreground and background,
and only the foreground regions are searched for features.

Super-pixel search: similar to the image pyramid method, but a
multi-scale representation of the image is created by combining
pixel values together using super-pixel integration methods, as
discussed in Chapter 2.

Sub-pixel search: where sub-pixel accuracy is needed—for
example, with region correlation, so several searches are made
around a single pixel, with sub-pixel offsets computed for each
compare, and in some cases geometric transforms of the pattern
are made prior to feature matching.

Double-scale first pyramid level: In the SIFT scale-space
pyramid method, the lowest level of the pyramid is computed
from a doubled 2x linear interpolated version of the full-scale
image, which has the effect of preserving high-frequency
information in the lowest level of the image pyramid, and
increasing the number of stable keypoints by about four times,
which is quite significant. Otherwise, computing the Gaussian
blur across the original image would have the effect of throwing
away most of the high-frequency details.

Pattern Pair Sampling

For local binary patterns, pattern pair sampling design is one of the key areas of
innovation. Pairs of points are compared using a function such as (center pixel < kernel
pixel) using a compare region threshold, and then the result of the comparison forms the
binary descriptor vector. Note that many local binary descriptor method were discussed
and illustrated in Chapter 4, to illustrate variations in point-pair sampling configuration
and compare functions. The vision taxonomy for point-pair sampling includes:

210

Center - boundary pair: such as in the LBP family and Census
transform.

Random pair points: such as in BRIEF, and semi-random in ORB.

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

¢ Foveal centered trained pairs: such as in FREAK and Daisy.

¢ Trained pairs: many methods train the point-pairs using ground
truth data to meet objective criteria, such as FREAK and ORB.

e Symmetric pairs: such as BRISK, which provides short and long
line segments spaced symmetrically for point-pair comparisons.

Pattern Region Size

The size of the local pattern region is a critical performance factor, even though memory
access is likely from fast-register files and cache. For example, if we are performing a
convolution of a 3x3 pattern region, there are nine multiplies per kernel, and possibly
one summary multiply to scale the results, for a total of 10 multiplies per pixel. For each
multiply we have two memory reads, one for the pixel and one for the kernel value;
and we have ten memory writes, one for each multiply. A 640x480 image has 307200
pixels, and assuming 8 bits per pixel gray scale only, per frame we end up with 3,072,000
multiplies, 60,720,000 memory reads, and 307200 writes for the result. Larger kernel sizes
and larger image sizes of course add more compute.

There are many ways to optimize the performance, which we will cover in Chapter 8
on vision pipeline engineering. For this attribute, we are interested in the following:

¢ Boundingbox (x size, y size): for example, the bounding box around
arectangular region, circular region, or polygon shape region.

Distance Function

Computing the pattern matching or correspondence is one of the key performance criteria
for a good descriptor. Feature matching is a tradeoff between accuracy and performance,
with the key variables being the numeric type and size of the feature descriptor vectors,
the distance function, and the number of patterns and search optimizations in the feature
database. Choosing a feature descriptor amenable to fast matching is a good goal.

In general, the fastest distance functions are the binary family and Hamming
distance, which is used in the local binary descriptor family. Distance functions are
enumerated here; see Chapter 4 for details.

Euclidean or Cartesian Distance Family
e Euclidean distance
e Squared Euclidean distance
e Cosine similarity
e SADL1 Norm
e SSDL2Norm

211

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

e Correlation distance

e Hellinger distance

Grid Distance Family

e Manhattan distance

e Chessboard or Chebychev distance

Statistical Distance Family
e Earth movers distance
e Mahalanobis distance
e Bray Curtis difference

e Canberra distance

Binary or Boolean Distance Family
e LONorm
e Hamming distance

e Jaccard similarity

Feature Metric Evaluation

This section addresses the question of how to summarize feature descriptor information
at a high level from the Vision Metrics Taxonomy into a practical Feature Metric
Evaluation Framework (FME) from an engineering and design perspective.

Note The FME is intended as a template to capture high-level information for basic
analysis.

212

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

Efficiency Variables, Costs and Benefits

Efficiency can be measured for a feature descriptor in simple terms, such as the benefit
of the compute cost and memory used vs. what is provided in the way of accuracy,
discrimination, robustness, and invariance. How much value does the method provide
for the time, space, and power cost? Efficiency metrics include:

e Costs: compute, memory, time, power

¢ Benefits: accuracy, robustness, and invariance attributes
provided

¢ Efficiency: benefits vs. costs

The effectiveness of the data contained in the descriptor varies—for example, a large
memory footprint to contain a descriptor with little invariance is not efficient, and a high
compute cost for small amounts of invariance and accuracy also reveals low efficiency.
We could say that an efficient feature representation contains the least number of bytes
and lowest compute cost providing the greatest amount of discrimination, robustness,
and accuracy. Local binary descriptors have demonstrated the best efficiency for many
robustness attributes.

Image Reconstruction Efficiency Metric

For a visual comparison of feature descriptor efficiency, we can also reconstruct an image
from the feature descriptors, and then visually and statistically analyze the quality of
the reconstruction vs. the compute and memory cost. Detailed feature descriptors can
provide good visualization and reconstruction of the original image from the descriptor
data only. For example, Figure 4-15 shows how the HOG descriptor captures oriented
gradients using 32780 bytes per 64x128 region, Figure 4-16 shows image reconstruction
illustrating how BRIEF and FREAK capture edge information similar to Laplacian or
other edge filters using 64 bytes per descriptor, and Figure 4-17 shows SIFT image
reconstruction using 128 bytes per descriptor.

Although we do not include image reconstruction efficiency in the FME, this topic
was covered in Chapter 4, under the discussion of discrimination.

Example Feature Metric Evaluations

Here area few examples showing how the Vision Metrics Taxonomy and the FME can be
used to collect summary descriptor information.

SIFT Example

We use SIFT as an example baseline, since SIFT is widely recognized and carefully
designed.

213

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

VISION METRIC TAXONOMY FME

Name:

Feature Family:
Spectra dimensions:
Spectra:

Storage format:

Data type:
Descriptor Memory:
Feature shape:
Search method:

Feature density:
Feature pattern:
Pattern pair sampling:
Pattern region size:
Distance function:

SIFT

Spectra

Multivariate

Gradient magnitude and direction,
DoG Scale Space Maxima
Orientation and position, gradient
orientation histograms

Float, integer

128 bytes for descriptor histogram
Rectangular region

Dense sliding window in 2D & 3D
3x3x3 image pyramid

Local

Rectangular and pyramid-cubic
16x16

Euclidean distance

GENERAL ROBUSTNESS ATTRIBUTES

Total:

LBP Example

The LBP is a very simple feature detector with many variations, used for texture analysis
and feature description. We use the most basic form of 3x3 LBP here as an example.

5 (scale, illumination, rotation, affine
transforms, noise)

VISION METRIC TAXONOMY FME

Name:

Feature Family:
Spectra dimensions:
Spectra:

Storage format:
Data type:
Descriptor Memory:
Feature shape:
Search method:
Feature density:
Feature pattern:

Pattern pair sampling:

Pattern region size:
Distance function:

214

LBP

Local Binary

Single-variate

Pixel pair compares with center pixel
Binary Bit Vector

Integer

1 byte

Square centered at center pixel
Dense sliding window

Local

Rectangular kernel

Center - boundary pairs

3x3 or more

Hamming distance

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

GENERAL ROBUSTNESS ATTRIBUTES

Total: 3 (brightness, contrast, rotation using

RILBP)

Shape Factors Example

This example uses binary thresholded polygon regions. For this hypothetical example, the
pre-processing steps begin with adaptive binary thresholding and morphological shape
definition operations, and the measurement steps begin with pixel neighborhood based
perimeter following to defined the perimeter edge, followed by centroid computation
from perimeter points, followed by determination of 36 radial line segments originating
at the centroid reaching to the perimeter. Then each line segment is analyzed to find the
shape factors including major/minor axis the Fourier descriptor. The measurements
assume a single binary object is being measured, and real-world images may contain at
many objects.

We also assume the memory footprint as follows: angular samples taken around
360 degrees, starting at centroid, at 10 degree increments for 36 angular samples, 36 floats
for FFT spectrum magnitude, 36 integers for line segment length array, 4 integers for
major/minor axis orientation and length, 4 integers for bounding box (x, y, dx, dy),
1 integer for perimeter length, 2 integers for centroid coordinates, TOTAL 36*4 + 36*2 +
4*2 + 4*2 + 1*2 * 2*2 = 238, assuming 2 byte short integers and 4-byte floats are used.

VISION METRIC TAXONOMY FME

Name: Shape Factors
Feature Family: Polygon Shape
Spectra dimensions: Multivariate

Spectra:

Perimeter following, area, perimeter,
centroid, other image moments

Storage format: complex data structure

Data type: Float, integer

Descriptor Memory: Variable, several hundred bytes
possible

Feature shape: Polygon shapes, rectangular
bounding box region

Search method: Dense, recursive

Feature density: Regional

Feature pattern: Perimeter contour or edge

Pattern pair sampling: -

Pattern region size:
Distance function:

Entire image
Multiple methods, multiple
comparisons

215

CHAPTER 5 © TAXONOMY OF FEATURE DESCRIPTION ATTRIBUTES

GENERAL ROBUSTNESS ATTRIBUTES

Total: 8 or more (scale, rotation, occlusion,
shape, affine, reflection, noise,
illumination)

Summary

In this chapter, a taxonomy is proposed as shown in Figure 5-1 to describe feature
description dimensions as shape, pattern, and spectra. This taxonomy is used to divide
the families of feature description methods into polygon shape descriptors, local binary
descriptors, and basis space descriptors. The taxonomy is used throughout the book. Also,
a general vision metrics taxonomy is proposed for the purpose of summarizing high-level
feature descriptor design attributes, such as type of spectra, descriptor pixel region size,
distance function, and search method. In addition, a general robustness taxonomy is
developed to quantify feature descriptor goodness, one attribute at a time, based on
invariance and robustness criteria attributes, including illumination, scale, rotation, and
perspective. Since feature descriptor methods are designed to address only some of the
invariance and robustness attributes, each attribute should be considered separately
when evaluating a feature descriptor for a given application. In addition, the robustness
attributes can be applied to the design of ground truth datasets, as discussed in Chapter 7.
Finally, the vision metrics taxonomy and the robustness taxonomy are combined to
form a feature metric evaluation (FME) table to record feature descriptor attributes in
summary form. A simple subset of the FME is used to review the attributes of several
feature descriptor methods surveyed in Chapter 6.

216

CHAPTER 6

Interest Point Detector and
Feature Descriptor Survey -

“Who makes all these?”

—TJack Sparrow, Pirates of the Caribbean

Many algorithms for computer vision rely on locating interest points, or keypoints in

each image, and calculating a feature description from the pixel region surrounding

the interest point. This is in contrast to methods such as correlation, where a larger
rectangular pattern is stepped over the image at pixel intervals and the correlation is
measured at each location. The interest point is the anchor point, and often provides

the scale, rotational, and illumination invariance attributes for the descriptor; the
descriptor adds more detail and more invariance attributes. Groups of interest points and
descriptors together describe the actual objects.

However, there are many methods and variations in feature description. Some
methods use features that are not anchored at interest points, such as polygon shape
descriptors, computed over larger segmented polygon-shaped structures or regions in an
image. Other methods use interest points only, without using feature descriptors at all.
And some methods use feature descriptors only, computed across a regular grid on the
image, with no interest points at all.

Terminology varies across the literature. In some discussions, interest points may be
referred to as keypoints. The algorithms used to find the interest points maybe referred to
as detectors, and the algorithms used to describe the features may be called descriptors.
We use the terminology interchangeably in this work. Keypoints may be considered a set
composed of (1) interest points, (2) corners, (3) edges or contours, and (4) larger features
or regions such as blobs; see Figure 6-1. This chapter surveys the various methods for
designing local interest point detectors and feature descriptors.

I N YLDIL

Figure 6-1. Types of keypoints, including corners and interest points. (Left to right) Step,
roof, corner, line or edge, ridge or contour, maxima region

217

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Interest Point Tuning

What is a good keypoint for a given application? Which ones are most useful? Which
ones should be ignored? Tuning the detectors is not simple. Each detector has different
parameters to tune for best results on a given image, and each image presents different
challenges regarding lighting, contrast, and image pre-processing. Additionally, each
detector is designed to be useful for a different class of interest points, and must be tuned
accordingly fo filter the results down to a useful set of good candidates for a specific feature
descriptor. Each feature detector will work best with certain descriptors, see appendix A.
So, the keypoints are further filtered to be useful for the chosen feature descriptor.
In some cases, a keypoint is not suitable for producing a useful feature descriptor, even
if the keypoint has a high score and high response. If the feature descriptor computed
at the keypoint produces a descriptor score that is too weak, for example, the keypoint
and corresponding descriptor should both be rejected. OpenCV provides several novel
methods for working with detectors, enabling the user to try different detectors and
descriptors in a common framework, and automatically adjust the parameters for tuning
and culling as follows:

¢ DynamicAdaptedFeatureDetector. This class will tune
supported detectors using an adjusterAdapter() to only keep a
limited number of features, and iterate the detector parameters
several times and redetect features in an attempt to find the best
parameters, keeping only the requested number of best features.
Several OpenCV detectors have an adjusterAdapter() provided,
some do not; the API allows for adjusters to be created.

e AdjusterAdapter. This class implements the criteria for culling
and keeping interest points. Criteria may include KNN nearest
neighbor matching, detector response or strength, radius distance
to nearest other detected points, number of keypoints within a
local region, and other measures that can be included for culling
keypoints for which a good descriptor cannot be computed.

e PyramidAdaptedFeatureDetector. This class can be used to
adapt detectors that do not use a scale-space pyramid, and the
adapter will create a Gaussian pyramid and detect features over
the pyramid.

e GridAdaptedFeatureDetector. This class divides an image into
grids and adapts the detector to find the best features within each
grid cell.

Interest Point Concepts

An interest point may be composed of various types of corner, edge, and maxima shapes,
as shown in Figure 6-1. In general, a good interest point must be easy to find and ideally
fast to compute; it is hoped that the interest point is at a good location to compute a
feature descriptor. The interest point is thus the qualifier or keypoint around which a
feature may be described.

218

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

There are various concepts behind the interest point methods currently in use, as
this is an active area of research. One of the best analyses of interest point detectors is
found in Mikolajczyk et al.[153], with a comparison framework and taxonomy for affine
covariant interest point detectors, where covariant refers to the elliptical shape of the
interest region, which is an affine deformable representation. Scale invariant detectors
are represented well in a circular region. Maxima region and blob detectors can take
irregular shapes. See the response of several detectors against synthetic interest point and
corner alphabets in Appendix A.

Commonly, detectors use maxima and minima points, such as gradient peaks and
corners; however, edges, ridges, and contours are also used as keypoints, as shown in
Figure 6-2. There is no superior method for interest point detection for all applications.

A simple taxonomy provided by Tuytelaars and Van Gool [529] lists edge-based region
methods (EBR), maxima or intensity-based region methods (IBR), and segmentation
methods to find shape-based regions (SBR) that may be blobs or features with high entropy.

Figure 6-2. Candidate edge interest point filters. (Left to right) Laplacian, derivative filter,
and gradient filter

Corners are often preferred over edges or isolated maxima points, since the corner
is a structure and can be used to compute an angular orientation for the feature. Interest
points are computed over color components as well as gray scale luminance. Many of the
interest point methods will first apply some sort of Gaussian filter across the image and
then perform a gradient operator. The idea of using the Gaussian filter first is to reduce
noise in the image, which is otherwise amplified by gradient operators.

Each detector locates features with different degrees of invariance to attributes such
as rotation, scale, perspective, occlusion, and illumination. For evaluations of the quality
and performance of interest point detection methods measured against various robustness
and invariance criteria on standardized datasets, see Mikolajczyk and Schmidt [144] and
Gauglitz et al.[145]. One of the key challenges for interest point detection is scale invariance,
since interest points change dramatically in some cases over scale. Lindberg [212] has
extensively studied the area of scale independent interest point methods.

Affine invariant interest points have been studied in detail by Mikolajcyk and
Schmid [107,141,144,153,306,311]. In addition, Mikolajcyk and Schmid [519] developed
an affine-invariant version of the Harris detector. As shown in [541], it is often useful to
combine several interest point detection methods to form a hybrid, for example, using
the Harris or Hessian to locate suitable maxima regions, and then using the Laplacian to
select the best scale attributes. Variations are common, Harris-based and Hessian-based
detectors may use scale-space methods, while local binary detector methods do not use
scale space.

219

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

A few fundamental concepts behind many interest point methods come from the
field of linear algebra, where the local region of pixels is treated as a matrix. Additional
concepts come from other areas of mathematical analysis. Some of the key math useful
for locating interest points includes:

e Gradient Magnitude. This is the first derivative of the pixels in the
local interest region, and assumes a direction. This is an unsigned
positive number.

(Of (x,y)/ 2x))* +(0f (x,)/ &y))*

e Gradient Direction. This is the angle or direction of the largest
gradient angle from pixels in the local region in the range +mn to -7.

tan™(of (x,y)/ 0y)/ of (x,y) / 6x))

e Laplacian. This is the second derivative and can be computed
directionally using any of three terms:

@*f(x,y)/ ox*
(@*f(x,y)/ oy*

(0°f(x,y)/ oxoy

However, the Laplacian operator ignores the third term and computes a
signed value of average orientation.

(Of (x,y)/ 2x))* +(0f (x,y)/ 3y))*

e Hessian Matrix or Hessian. A square matrix containing
second-order partial derivatives describing surface curvature.
The Hessian has several interesting properties useful for interest
point detection methods discussed in this section.

e Largest Hessian. This is based on the second derivative, as is
the Laplacian, but the Hessian uses all three terms of the second
derivative to compute the direction along which the second
derivative is maximum as a signed value.

e Smallest Hessian. This is based on the second derivative, is
computed as a signed number, and may be a useful metric as a
ratio between largest and smallest Hessian.

e Hessian Orientation, largest and smallest values. This is the
orientation of the largest second derivative in the range += to -7,
which is a signed value, and it corresponds to an orientation
without direction. The smallest orientation can be computed by
adding or subtracting 7t/2 from the largest value.

220

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Determinant of Hessian, Trace of Hessian, Laplacian of Gaussian.
All three names are used to describe the trace characteristic of a
matrix, which can reveal geometric scale information by the absolute
value, and orientation by the sign of the value. The eigenvalues of a
matrix can be found using determinants.

Eigenvalues, Eigenvectors, Eigenspaces. Eigen properties are
important to understanding vector direction in local pixel region
matrices. When a matrix acts on a vector, and the vector orientation
is preserved, and when the sign or direction is simply reversed,
the vector is considered to be an eigenvector, and the matrix factor
is considered to be the eigenvalue. An eigenspace is therefore all
eigenvectors within the space with the same eigenvalue. Eigen
properties are valuable for interest point detection, orientation,
and feature detection. For example, Turk and Petland [158] use
eigenvectors reduced into a smaller set of vectors via PCA for face
recognition, in a method they call Eigenfaces.

Interest Point Method Survey

We will now look briefly at algorithms and computational methods for some common
interest point detector methods including:

Laplacian of Gaussian (LOG)

Moravac corner detector

Harris and Stephens corner detection

Shi and Tomasi corner detector (improvement on Harris method)
Difference of Gaussians (DoG; an approximation of LOG)

Harris methods, Harris-/Hessian-Laplace,
Harris-/Hessian-Affine

Determinant of Hessian (DoH)

Salient regions

SUSAN

FAST, FASTER, AGAST

Local curvature

Morphological interest points

MSER (discussed in the section on polygon shape descriptors)

*NOTE: many feature descriptors, such as SIFT, SURE, BRISK
and others, provide their own detector method along with the
descriptor method, see Appendix A.

221

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Laplacian and Laplacian of Gaussian

The Lapacian operator, as used in image processing, is a method of finding the derivative
or maximum rate of change in a pixel area. Commonly, the Laplacian is approximated
using standard convolution kernels that add up to zero, such as:

f-1 -1 -1
L1 = | -1 8 —1]
-1 -1 -1
r-1 0 -1
L2 =0 4 0]
-1 0 -1

The Laplacian of Gaussian (LOG) is simply the Laplacian performed over a region
that has been processed using a Gaussian smoothing kernel to focus edge energy;
see Gun [155].

Moravac Corner Detector

The Moravic corner detection algorithm is an early method of corner detection whereby
each pixel in the image is tested by correlating overlapping patches surrounding each
neighboring pixel. The strength of the correlation in any direction reveals information
about the point: a corner is found when there is change in all directions, and an edge is
found when there is no change along the edge direction. A flat region yields no change
in any direction. The correlation difference is calculated using the SSD between the two
overlapping patches. Similarity is measured by the near-zero difference in the SSD. This
method is compute intensive; see Moravac [330].

Harris Methods, Harris-Stephens, Shi-Tomasi, and
Hessian-Type Detectors

The Harris or Harris-Stephens corner detector family [156,365] provides improvements
over the Moravic method. The goal of the Harris method is to find the direction of fastest
and lowest change for feature orientation, using a covariance matrix of local directional
derivatives. The directional derivative values are compared with a scoring factor to identify
which features are corners, which are edges, and which are likely noise. Depending on the
formulation of the algorithm, the Harris method can provide high rotational invariance,
limited intensity invariance, and in some of the formulations of the algorithm, scale
invariance is provided such as the Harris-Laplace method using scale space [519] [212].
Many Harris family algorithms can be implemented in a compute-efficient manner.

Note that corners have an ill-defined gradient, since two edges converge at the
corner, but near the corner the gradient can be detected with two different values with
respect to x and y—this is a basic idea behind the Harris corner detector.

222

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Variations on the Harris method include:

e The Shi, Tomasi and Kanade corner detector [157] is an
optimization on the Harris method, using only the minimum
eigenvalues for discrimination, thus streamlining the
computation considerably.

e The Hessian (Hessian-Affine) corner detector [153] is designed to
be affine invariant, and it uses the basic Harris corner detection
method but combines interest points from several scales in a
pyramid, with some iterative selection criteria and a Hessian matrix.

e Many other variations on the basic Harris operator exist, such as
the Harris-Hessian-Laplace [331], which provides improved scale
invariance using a scale selection method, and the
Harris-/Hessian-Affine method [306,153].

Hessian Matrix Detector and Hessian-Laplace

The Hessian Matrix method, also referred to as Determinant of Hessian (DoH) method,
is used in the popular SURF algorithm [160]. It detects interest objects from a multi-scale
image set where the determinant of the Hessian matrix is at a maxima and the Hessian
matrix operator is calculated using the convolution of the second-order partial derivative
of the Gaussian to yield a gradient maxima.

The DoH method uses integral images to calculate the Gaussian partial derivatives
very quickly. Performance for calculating the Hessian Matrix is therefore very good, and
accuracy is better than many methods. The related Hessian-Laplace method [331,306]
also operates on local extrema, using the determinant of the Hessian at multiple scales for
spatial localization, and the Laplacian at multiple scales for scale localization.

Difference of Gaussians

The Difference of Gaussians (DoG) is an approximation of the Laplacian of Gaussians,
but computed in a simpler and faster manner using the difference of two smoothed

or Gaussian filtered images to detect local extrema features. The idea with Gaussian
smoothing is to remove noise artifacts that are not relevant at the given scale, which
would otherwise be amplified and result in false DoG features. The DoG features are used
in the popular SIFT method [161], and as shown later in Figure 6-15, the simple difference
of Gaussian filtered images is taken to identify maxima regions.

223

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Salient Regions

Salient regions [162,163] are based on the notion that interest points over a range of
scales should exhibit local attributes or entropy that are “unpredictable” or “surprising”
compared to the surrounding region. The method proceeds as follows:

1. The Shannon entropy E of pixel attributes such as intensity
or color are computed over a scale space, where Shannon
entropy is used the measure of unpredictability.

2. The entropy values are located over the scale space with
maxima or peak values M. At this stage, the optimal scales are
determined as well.

3. The probability density function (PDF) is computed for
magnitude deltas at each peak within each scale, where the
PDF is computed using a histogram of pixel values taken from
a circular window of desired radius from the peak.

4. Saliency is the product of E and M at each peak, and is
also related to scale. So the final detector is salient and robust
to scale.

SUSAN, and Trajkovic and Hedly

The SUSAN method [164,165] is dependent on segmenting image features based on local
areas of similar brightness, which yields a bimodal valued feature. No noise filtering

and no gradients are used. As shown in Figure 6-3, the method works by using a center
nucleus pixel value as a comparison reference against which neighbor pixels within a
given radius region are compared, yielding a set of pixels with similar brightness, called a
Univalue Segment Assimilating Nucleus (USAN).

Figure 6-3. SUSAN method of computing interest points. The dark region of the image is a
rectangle intersecting USAN’s A, B, and C. USAN A will be labeled as an edge, USAN B will
be labeled as a corner, and USAN C will be labeled as neither an edge nor a corner

224

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Each USAN contains structural information about the image in the local region,
and the size, centroid, and second-order moments of each USAN can be computed. The
SUSAN method can be used for both edge and corner detection. Corners are determined
by the ratio of pixels similar to the center pixel in the circular region: a low ratio around
25 percent indicates a corner, and a higher ratio around 50 percent indicates an edge.
SUSAN is very robust to noise.

The Trajkovic and Hedly method [214] is similar to SUSAN, and discriminates among
points in USAN regions, edge points, and corner points.

SUSAN is also useful for noise suppression, and the bilateral filter [302], discussed in
Chapter 2, is closely related to SUSAN. SUSAN uses fairly large circular windows; several
implementations use 37 pixel radius windows. The FAST [138] detector is also similar to
SUSAN, but uses a smaller 7x7 or 9x9 window and only some of the pixels in the region
instead of all of them; FAST yields a local binary descriptor.

Fast, Faster, AGHAST

The FAST methods [138] are derived from SUSAN with respect to a bimodal segmentation
goal. However, FAST relies on a connected set of pixels in a circular pattern to determine
a corner. The connected region size is commonly 9 or 10 out of a possible 16; either
number may be chosen, referred to as FAST9 and FAST10. FAST is known to be efficient to
compute and fast to match; accuracy is also quite good. FAST can be considered a relative
of the local binary pattern LBP.

FAST is not a scale-space detector, and therefore it may produce many more edge
detections at the given scale than a scale-space method such as used in SIFT.

As shown in Figure 6-4, FAST uses binary comparison with each pixel in a circular
pattern against the center pixel using a threshold to determine if a pixel is less than or
greater than the center pixel The resulting descriptor is stored as a contiguous bit vector
in order from 0 to 15. Also, due to the circular nature of the pixel compare pattern, it is
possible to retrofit FAST and store the bit vector in a rotational-invariant representation,
as demonstrated by the RILBP descriptor discussed later in this chapter; see Figure 6-11.

225

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

o E
0 2 A
4
. =]
A

Figure 6-4. The FAST detector with a 16-element circular sampling pattern grid. Note that
each pixel in the grid is compared against the center pixel to yield a binary value, and each
binary value is stored in a bit vector

Local Curvature Methods

Local curvature methods [208-212] are among the early means of detecting corners, and
some local curvature methods are the first known to be reliable and accurate in tracking
corners over scale variations [210]. Local curvature detects points where the gradient
magnitude and the local surface curvature are both high. One approach taken is a
differential method, computing the product of the gradient magnitude and the level curve
curvature together over scale space, and then selecting the maxima and minima absolute
values in scale and space. One formulation of the method is shown here.

- . . 2
a(x,ytt=L.L,+L L, -2LLL,

Various formulations of the basic algorithm can be taken depending on the curvature
equation used. To improve scale invariance and noise sensitivity, the method can be
modified using a normalized formulation of the equation over scale space, as follows:

Genorm (%, Y38} =17 (L, + 2L, 2L L L)

XYy XTTyTTXy
where
y =.875

Atlarger scales, corners can be detected with less sharp and more rounded features,
while at lower scales or at unity scale sharper corners over smaller areas are detected. The
Wang and Brady method [213] also computes interest points using local curvature on the
2D surface, looking for inflexion points where the surface curvature changes rapidly.

226

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Morphological Interest Regions

Interest points can be determined from a pipeline of morphological operations, such as
thresholding followed by combinations or erosion and dilation to smooth, thin, grown, and
shrink pixel groups. If done correctly for a given application, such morphological features
can be scale and rotation invariant. Note that the simple morphological operations alone
are not enough; for example, erode left unconstrained will shrink regions until they
disappear. So intelligence must be added to the morphology pipeline to control the final
region size and shape. For polygon shape descriptors, morphological interest points define
the feature, and various image moments are computed over the feature, as described in
Chapter 3 and also in the section on polygon shape descriptors later in this chapter.

Morphological operations can be used to create interest regions on binary, gray
scale, or color channel images. To prepare gray scale or color channel images for
morphology, typically some sort of pre-processing is used, such as pixel remapping, LUT
transforms, or histogram equalization. (These methods were discussed in Chapter 2.)

For binary images and binary morphology approaches, binary thresholding is a key
pre-processing step. Many binary thresholding methods have been devised, ranging from
simple global thresholds to statistical and structural kernel-based local methods.

Note that the morphological interest region approach is similar to the maximally
stable extrema region (MSER) feature descriptor method discussed later in the section
on polygon shape descriptors, since both methods look for connected groups of pixels at
maxima or minima. However, MSER does not use morphology operators.

A few examples of morphological and related operation sequences for interest region
detection are shown in Figure 6-5, and many more can be devised.

Figure 6-5. Morphological methods to find interest regions. (Left to right) Original image,
binary thresholded and segmented image using Chan Vese method, skeleton transform,
pruned skeleton transform, and distance transform image. Note that binary thresholding
requires quite a bit of work to set parameters correctly for a given application

Feature Descriptor Survey

This section provides a survey and observations about a few representative feature
descriptor methods, with no intention to directly compare descriptors to each other. In
practice, the feature descriptor methods are often modified and customized. The goal
of this survey is to examine a range of feature descriptor approaches from each feature
descriptor family from the taxonomy that was presented in Chapter 5:

e Local binary descriptors
e Spectra descriptors

e Basis space descriptors

227

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

e Polygon shape descriptors
e 3D, 4D, and volumetric descriptors
For key feature descriptor methods, we provide here a summary analysis:

e General Vision Taxonomy and FME: covering feature attributes
including spectra, shape, and pattern, single or multivariate,
compute complexity criteria, data types, memory criteria,
matching method, robustness attributes, and accuracy.

¢ General Robustness Attributes: covering invariance attributes
such as illumination, scale, perspective, and many others.

No direct comparisons are made between feature descriptors here, but ample
references are provided to the literature for detailed comparisons and performance
information on each method.

Local Binary Descriptors

This family of descriptors represents features as binary bit vectors. To compute the
features, image pixel point-pairs are compared and the results are stored as binary values
in a vector. Local binary descriptors are efficient to compute, efficient to store, and
efficient to match using Hamming distance. In general, local binary pattern methods
achieve very good accuracy and robustness compared to other methods.

A variety of local sampling patterns are used with local binary descriptors to set the
pairwise point comparisons; see the section in Chapter 4 on local binary descriptor point-
pair patterns for a discussion on local binary sampling patterns. We start this section
on local binary descriptors by analyzing the local binary pattern (LBP) and some LBP
variants, since the LBP is a powerful metric all by itself and is well known.

Local Binary Patterns

Local binary patterns (LBP) were developed in 1994 by Ojala et al. [173] as a novel
method of encoding both pattern and contrast to define texture [169,170-173]. LBP’s can
be used as an image processing operator. The LBP creates a descriptor or texture model
using a set of histograms of the local texture neighborhood surrounding each pixel. In this
case, local texture is the feature descriptor.

The LBP metric is simple yet powerful; see Figure 6-6. We cover some level of detail
on LBPs, since there are so many applications for this powerful texture metric as a feature
descriptor as well. Also, hundreds of researchers have added to the LBP literature [173]
in the areas of theoretical foundations, generalizations into 2D and 3D, applied as a
descriptor for face detection, and also applied to spatio-temporal applications such as
motion analysis. LBP research remains quite active at this time. In addition, the LBP is
used as an image processing operator, and has been used as a feature descriptor retrofit
in SIFT with excellent results, described in this chapter.

228

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

’ud'

100 150 200 280

B0
LBP image LBP histogram

[

Figure 6-6. (Above) A local binary pattern representation of an image where the LBP is
used as an image processing operator, and the corresponding histogram of cumulative LBP
features. (Bottom) Segmentation results using LBP texture metrics. (Images courtesy and

© Springer Press, from Computer Vision Using Local Binary Patterns, by Matti Pietikdinen
and Janne Heikkild [173])

In its simplest embodiment, LBP has the goal of creating a binary coded
neighborhood descriptor for a pixel. It does this by comparing each pixel against its
neighbors using the > operator and encoding the compare results (1,0) into a binary
number, as shown later in Figure 6-8. LPB histograms from larger image regions can even
be used as signals and passed into a 1D FFT to create a feature descriptor. The Fourier
spectrum of the LBP histogram is rotational invariant; see Figure 6-6. The FFT spectrum
can then be concatenated onto the LBP histogram to form a multivariate descriptor.

As shown in Figure 6-6, the LBP is used as an image processing operator, region
segmentation method, and histogram feature descriptor. The LBP has many applications.
An LBP may be calculated over various sizes and shapes using various sizes of forming
kernels. A simple 3x3 neighborhood provides basic coverage for local features, while
wider areas and kernel shapes are used as well.

Assuming a 3x3 LBP kernel pattern is chosen, this means that there will be 8 pixel
compares and up to 2¢ combinations of results for a 256-bin histogram possible. However, it
has been shown [18] that reducing the 8-bit 256-bin histogram to use only 56 LBP bins based
on uniform patterns is the optimal number. The 56 bins or uniform patterns are chosen
to represent only two contiguous LBP patterns around the circle, which consists of two
connected contiguous segments rather than all 256 possible pattern combinations [173,15].
The same uniform pattern logic applies to LBPs of dimension larger than 8 bits. So, uniform
patterns provide both histogram space savings and feature compare-space optimization,
since fewer features need be matched (56 instead of all 256).

229

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

LPB feature recognition may follow the steps shown in Figure 6-7.

LBP Feature Detection

LBP Feature Normalization

LBP Histogram Creation

LBP Classifier Training

Figure 6-7. LBP feature flow for feature detection. (Image used by permission, © Intel Press,
from Building Intelligent Systems)

The LBP is calculated by assigning a binary weighting value to each pixel in the local
neighborhood and summing up the pixel compare results as binary values to create a
composite LBP value. The LBP contains region information encoded in a compact binary
pattern, as shown in Figure 6-8, so the LBP is thus a binary coded neighborhood texture
descriptor.

64 128 1
LBP=32+16+8

LBP = 56 (decimal)
LBP = 38 (hexadecimal)
LBP = 00111000 (binary)

> 16
2

Figure 6-8. Assigned LBP weighting values. (Image used by permission, © Intel Press, from
Building Intelligent Systems)

Assuming a 3x3 neighborhood is used to describe the LBP patterns, one may
compare the 3x3 rectangular region to a circular region, suggesting 360 degree
directionality at 45 degree increments, as shown in Figure 6-9.

230

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

o o] o OQ,OO\QO

1—0¢>|1—0
1 1] 0 1\.’0

Figure 6-9. The concept of LBP directionality. (Image used by permission, © Intel Press,
from Building Intelligent Systems)

The steps involved in calculating a 3x3 LBP are illustrated in Figure 6-10.

0~ HK~0

11| 7199 o|ofo O [Q

101 567 1]-1o0 '{ - ;%?
3

Tt 5 |47 11100 i T 0

Forming Kernel Pixel Values Result Result (w/diagram)

LBP Calculations

Binary Bit Values Summed

[0,0]16>[-1,-1]7=0
[0,016>[-1,019=0
[0,016>[-1,1]9=0
[0,0]6>[0-1]5=1
[0,016>[0,+1]7=0
[0,0] 6 > [+1,-1]5=1
[0,0]6 > [+1,-1]4=1
[0,0]16>[+1,-1]7=0

LBP =0

LBP =00

LBP =000

LBP = 0001
LBP = 00010
LBP = 000101
LBP = 0001011
LBP = 00010110

LBP Descriptor = 00010110 (0 x 16 is the Hex Representation of the Binary Value)

Figure 6-10. LBP neighborhood comparison. (Image used by permission, © Intel Press,
from Building Intelligent Systems)

Neighborhood Comparison

Each pixel is compared to its neighbors according to a forming kernel that allows selection
of neighbors for the comparison. In Figure 6-10, all pixels are used in the forming kernel
(all 1s). If the neighbor is > than the center pixel, the binary pattern is 1, otherwise it is 0.

Histogram Composition

Each LBP descriptor over an image region is recorded in a histogram to describe the
cumulative texture feature. Uniform LBP histograms would have 56 bins, since only
single-connected regions are histogrammed.

231

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Optionally Normalization

The final histogram can be reduced to a smaller number of bins using binary decimation for
powers of two or some similar algorithm, such as 256 » 32. In addition, the histograms can
be reduced in size by thresholding the range of contiguous bins used for the histogram—for
example, by ignoring bins 1 to 64 if little or no information is binned in them.

Descriptor Concatenation

Multiple LBPs taken over overlapping regions may be concatenated together into a larger
histogram feature descriptor to provide better discrimination.

LBP Summary Taxonomy

Spectra: Local binary

Feature shape: Square

Feature pattern: Pixel region compares with center pixel
Feature density: Local 3x3 at each pixel

Search method: Sliding window

Distance function: Hamming distance

Robustness: 3 (brightness, contrast, *rotation for RILBP)

Rotation Invariant LBP (RILBP)

To achieve rotational invariance, the rotation invariant LBP (RILBP) [173] is calculated
by circular bitwise rotation of the local LBP to find the minimum binary value. The
minimum value LBP is used as a rotation invariant signature and is recorded in the
histogram bins. The RILBP is computationally very efficient.

To illustrate the method, Figure 6-11 shows a pattern of three consecutive LBP
bits; in order to make this descriptor rotation invariant, the value is left-shifted until a
minimum value is reached.

Original <<1 << 2 <<3 << 4 <<5 << B <<7

“minimum

OO 000000

000107110 00101100 01011000 107110000 | 01100001 | 11000010 | 10000101 | 00001011

Figure 6-11. Method of calculating the minimum LBP by using circular bit shifting of the
binary value to find the minimum value. The LBP descriptor is then rotation invariant.
(Image used by permission, © Intel Press, from Building Intelligent Systems)

Note that many researchers [171, 172] are extending the methods used for LBP
calculation to use refinements such as local derivatives, local median or mean values,
trinary or quinary compare functions, and many other methods, rather than the simple
binary compare function, as originally proposed.

232

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Dynamic Texture Metric Using 3D LBPs

Dynamic textures are visual features that morph and change as they move from frame to
frame; examples include waves, clouds, wind, smoke, foliage, and ripples. Two extensions of
the basic LBP used for tracking such dynamic textures are discussed here: VLBP and LBP-TOP.

Volume LBP (VLBP)

To create the VLBP [175] descriptor, first an image volume is created by stacking together
at least three consecutive video frames into a volume 3D dataset. Next, three LBPs are
taken centered on the selected interest point, one LBP from each parallel plane in the
volume, into a summary volume LBP or VLBP, and the histogram of each orthogonal LBP
is concatenated into a single dynamic descriptor vector, the VLBP. The VLPB can then

be tracked from frame to frame and recalculated to account for dynamic changes in the
texture from frame to frame. See Figure 6-12.

* Y Y
9 8 9
516 |7||3|7]6||a|7]s
4 4 5

y Y

6 8 6
6l6 |7|[3|7]|l6]||5]|7]|7

4 4 5

Figure 6-12. (Top) VLBP method [175] of calculating LBPs from parallel planes. (Bottom)
LBP-TOP method [176] of calculating LBPs from orthogonal planes. (Image used by
permission, © Intel Press, from Building Intelligent Systems)

233

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

LPB-TOP

The LBP-TOP [176] is created like the VLBP, except that instead of calculating the three
individual LBPs from parallel planes, they are calculated from orthogonal planes in the
volume (x,y,z) intersecting the interest point, as shown in Figure 6-12. The 3D composite
descriptor is the same size as the VLBP and contains three planes’ worth of data. The
histograms for each LBP plane are also concatenated for the LBP-TOP like the VLBP.

Other LBP Variants

As shown in Table 6-1, there are many variants of the LBP [173]. Note that the LBP has
been successfully used as a replacement for SIFT, SURF, and also as a texture metric.

Table 6-1. LBP Variants (from reference [173])

ULBP (Uniform LBP) Uses only 56 uniform bins instead of the full 256 bins possible
with 8-bit pixels to create the histogram. The uniform patterns consist of contiguous
segments of connected TRUE values.

RLBP (ROBUST LBP) Adds + scale factor to eliminate transitions due to noise
(p1-p2+SCALE)

CS-LBP Circle-symmetric, half as many vectors an LBP, comparison of opposite pixel
pairs vs. w/center pixel, useful to reduce LBP bin counts

LBP-HF Fourier spectrum descriptor + LBP

MLBP Median LBP Uses area median value instead of center pixel value for comparison
M-LBP Multiscale LBP combining multiple radii LBPs concatenated

MB-LBP Multiscale Block LBP; compare average pixel values in small blocks

SEMB-LBP: Statistically Effective MB-LBP (SEMB-LBP) uses the percentage in
distributions, instead of the number of 0-1 and 1-0 transitions in the LBP and redefines
the uniform patterns in the standard LBP. Used effectively in face recognition using
GENTLE ADA-BOOSTing [549]

VLBP Volume LBP over adjacent video frames OR within a volume - concatenate
histograms together to form a longer vector

LGBP (Local Gabor Binary Pattern) 40 or so Gabor filters are computed over a feature,
LBPs are extracted and concatenated to form a long feature vector that is invariant over
more scales and orientations

LEP Local Edge Patterns: Edge enhancement (Sobel) prior to standard LBP
EBP Elliptic Binary Pattern Standard LBP but over elliptical area instead of circular

EQP Elliptical Quinary Patterns - LBP extended from binary (2) level resolution to
quinary (5) level resolution (-2,-1, 0,-1,2)

(continued)

234

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Table 6-1. (continued)

LTP - LBP extended over Ternary range to deal with near constant areas (-1, 0, 1)

LLBP Local line Binary Pattern - calculates LBP over line patterns (cross shape) and
then calculates a magnitude metrics using SQRT of SQUARES of each X/Y dimension

TPLBP- [x5]three LBPs are calculated together: the basic LBP for the center pixel, plus
two others around adjacent pixels so the total descriptor is a set of overlapping LBP’s,

FPLBP- [x5]four LBPs are calculated together: the basic LBP for the center pixel,
plus two others around adjacent pixels so the total descriptor is a set of overlapping
LBP’s, XPLBP -

*NOTE: The TPLBP and FPLBP method can be extended to 3,4,n dimensions in feature
space. LARGE VECTORS.

TBP - Ternary (3) Binary pattern, like LBP, but uses three levels of encoding (1,0,-1) to
effectively deal with areas of equal or near equal intensity, uses two binary patterns
(one for + and one for -) concatenated together

ETLP - Elongated Ternary Local Patterns (elliptical + ternary [5] levels
FLBP - Fuzzy LBP where each pixel contributes to more than one bin

PLBP - Probabilistic LBP computes magnitude of difference between each pixel &
center pixel (more compute, more storage)

SILTP - Scale invariant LBP using a 3 part piece-wise comparison function to
compensate and support intensity scale invariance to deal with image noise

tLBP - Transition Coded LBP, where the encoding is clockwise between adjacent pixels
in the LBP

dLBP - Direction Coded LBP - similar to CSLBP, but stores both maxima and
comparison info (is this pixel greater, less than, or maxima)

CBP - Centralized Binary pattern - center pixel compared to average of all nine kernel
neighbors

S-LBP Semantic LBP done in a colorimetric-accurate space (like CIE LAB etc.) over
uniform connected LBP circular patterns to find principal direction + arc length used to
form a 2D histogram as the descriptor.

F-LBP - Fourier Spectrum of color distance from center pixel to adjacent pixels
LDP - Local Derivate Patterns (higher order derivatives) - basic

LBP is the first order directional derivative, which is combined with additional nth order
directional derivatives concatenated into a histogram, more sensitive to noise of course

BLBP - Baysian LBP - combination of LBP and LTP together using Baysian methods to
optimize towards a more robust pattern

(continued)

235

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Table 6-1. (continued)

FLS - Filtering, Labeling and Statistical Framework for LBP comparison, translates LBP’s
or any type of histogram descriptor into vector space allowing efficient comparison
“A Bayesian Local Binary Pattern Texture Descriptor”

MB-LBP Multiscale Block LBP - compare average pixel values in small blocks instead of
individual pixels, thus a 3x3 pixel PBL will become a 9x9 block LBP where each block is
a 3x3 region. The histogram is calculated by scaling the image and creating a rendering
at each scale and creating a histogram of each scaled image and concatenating the
histograms together.

PM-LBP Pyramid Based MultiStructured LBP - used 5 templates to extract different
structural info at varying levels 1) Gaussian filters, 4 anisotrophic filters to detect
gradient directions

MSLBF - Multiscale Selected Local Binary Features

RILBP - Rotation Invariant LBP rotates the bins (binary LBP value) until maximum
value is achieved, the max value is considered rotational invariant. This is the most
widely used method for LBP rotational invariance.

ALBP - Adaptive LBP for rotational invariance, instead of shifting to a maximal value as
in the standard LBP method, find the dominant vector orientation and shift the vector
to the dominant vector orientation

LBPV - Local binary pattern variance - uses local area variance to weight pixel
contribution to the LBP, align features to principal orientations, determine
non-dominant patterns and reduce their contribution.

OCLBP - Opponent Color LBP - describes color and texture together - each color
channel LBP is converted, then opposing color channel LBP’s are converted by
using one color as the center pixel and another color as the neighborhood, so 9 total
histograms are computed but only size are used R G B RG RG RB

SDMCLBP - SDM (co -LBP images for each color are used as the basis for generating
occurrence matrices, and then Haralick features are extracted from the images to form a
multi dimensional feature space.

MSCLBP - Multi Scale Color Local Binary Patterns (concatenate 6 histograms together)-
USES COLOR SPACE COMPONENTS

HUE-LBP OPPONENT-LBP (ALL 3 CHANNELS) nOPPONENT-LBP (COMPUTED
OVER 2 CHANNELS)), light intensity change, intensity shift, intensity change+shift,
color-change color-shift, DEFINE SIX NEW OPERATORS: transformed color LBP (RGB)
[subtract mean, divide by STD DEV], opponent LBP, nOpponent LBP, Hue LBP, RGB-LBP,
nRGB-LBP [x8] “Multi-scale Color Local Binary Patterns for Visual Object Classes
Recognition’; Chao ZHU, Charles-Edmond BICHOT, Liming CHEN

3D histograms - 3DRGBLBP [best performance, high memory footprint] - 3D histogram
computed over RGB-LBP color image space using uniform pattern minimization to yield
10 levels or patterns per color yielding a large descriptor: 10 x 10 x 10 = 1000 descriptors.

236

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Census

The Census transform [177] is basically an LBP, and like a population census, it uses
simple greater-than and less-than queries to count and compare results. Census records
pixel comparison results made between the center pixel in the kernel and the other
pixels in the kernel region. It employs comparisons and possibly a threshold, and stores
the results in a binary vector. The Census transform also uses a feature called the rank
value scalar, which is the number of pixel values less than the center pixel. The Census
descriptor thus uses both a bit vector and a rank scalar.

CENSUS Summary Vision Taxonomy

Spectra: Local binary + scalar ranking

Feature shape: Square

Feature pattern: Pixel region compares with center pixel
Feature density: Local 3x3 at each pixel

Search method: Sliding window

Distance function: Hamming distance

Robustness: 2 (brightness, contrast)

Modified Census Transform

The Modified Census trasform (MCT) [205] seeks to improve the local binary pattern
robustness of the original Census transform. The method uses an ordered comparison of
each pixel in the 3x3 neighborhood against the mean intensity of all the pixels of the 3x3
neighborhood, generating a binary descriptor bit vector with bit values set to an intensity
lower than the mean intensity of all the pixels. The bit vector can be used to create an
MCT image using the MCT value for each pixel. See Figure 6-13.

[[] O HE
EEE BN EEE B § EEE
HEE EEE BEE EEE EEE
Figure 6-13. Abbreviated set of 15 out of a possible 511 possible binary patterns for a 3x3
MCT. The structure kernels in the pattern set are the basis set of the MCT feature space
comparison. The structure kernels form a pattern basis set which can represent lines, edges,
corners, saddle points, semi-circles, and other patterns

As shown in Figure 6-13, the MCT relies on the full set of possible 3x3 binary patterns
(2°-1 or 511 variations) and uses these as a kernel index into the binary patterns as
the MCT output, since each binary pattern is a unique signature by itself and highly
discriminative. The end result of the MCT is analogous to a nonlinear filter that assigns
the output to any of the 2°-1 patterns in the kernel index. Results show that the MCT
results are better than the basic CT for some types of object recognition [205].

237

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

BRIEF

As described in Chapter 4, in the section on local binary descriptor point-pair patterns,
and illustrated in Figure 4-11, the BRIEF [132,133] descriptor uses a random distribution
pattern of 256 point-pairs in a local 31x31 region for the binary comparison to create the
descriptor. One key idea with BRIEF is to select random pairs of points within the local
region for comparison.

BRIEF is a local binary descriptor and has achieved very good accuracy and
performance in robotics applications [203]. BRIEF and ORB are closely related; ORB
is an oriented version of BRIEF, and the ORB descriptor point-pair pattern is also built
differently than BRIEE BRIEF is known to be not very tolerant of rotation.

BRIEF Summary Taxonomy

Spectra: Local binary

Feature shape: Square centered at interest point

Feature pattern: Random local pixel point-pair compares
Feature density: Local 31x31 at interest points

Search method: Sliding window

Distance function: Hamming distance

Robustness: 2 (brightness, contrast)

ORB

ORB [134] is an acronymn for Oriented BRIEE and as the name suggests, ORB is based on
BRIEF and adds rotational invariance to BRIEF by determining corner orientation using
FAST9, followed by a Harris corner metric to sort the keypoints; the corner orientation

is refined by intensity centroids using Rosin’s method [61]. The FAST, Harris, and Rosin
processing are done at each level of an image pyramid scaled with a factor of 1.4, rather than
the common octave pyramid scale methods. ORB is discussed in some detail in Chapter 4,
in the section on local binary descriptor point-pair patterns, and is illustrated in Figure 4-11.

It should be noted that ORB is a highly optimized and very well engineered
descriptor, since the ORB authors were keenly interested in compute speed, memory
footprint, and accuracy. Many of the descriptors surveyed in this section are primarily
research projects, with less priority given to practical issues, but ORB focuses on
optimizing and practical issues.

Compared to BRIEE, ORB provides an improved training method for creating the
local binary patterns for pairwise pixel point sampling. While BRIEF uses random point
pairs in a 31x31 window, ORB goes through a training step to find uncorrelated point
pairs in the window with high variance and means ~ .5, which is demonstrated to work
better. For details on visualizing the ORB patterns, see Figure 4-11.

For correspondence search, ORB uses multi-probe locally sensitive hashing (MP-LSH),
which searches for matches in neighboring buckets when a match fails, rather than
renavigating the hash tree. The authors report that MP-LSH requires fewer hash tables,
resulting in a lower memory footprint. MP-LSH also produces more uniform hash bucket
sizes than BRIEF. Since ORB is a binary descriptor based on point-pair comparisons,
Hamming distance is used for correspondence.

238

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

ORB is reported to be an order of magnitude faster than SURF, and two orders of
magnitude faster than SIFT, with comparable accuracy. The authors provide impressive
performance results in a test of over 24 NTSC resolution images on the Pascal dataset [134].

ORB* SURF SIFT

15.3ms 217.3ms 5228.7ms

*Results reported as measured in reference [134].

ORB Summary Taxonomy

Spectra: Local binary + orientation vector

Feature shape: Square

Feature pattern: Trained local pixel point-pair compares
Feature density: Local 31x31 at interest points

Search method: Sliding window

Distance function: Hamming distance

Robustness: 3 (brightness, contrast, rotation, *limited scale)

BRISK

BRISK [131,143] is a local binary method using a circular-symmetric pattern region shape
and a total of 60 point-pairs as line segments arranged in four concentric rings, as shown
in Figure 4-10 and described in detail in Chapter 4. The method uses point-pairs of both
short segments and long segments, and this provides a measure of scale invariance, since
short segments may map better for fine resolution and long segments may map better at
coarse resolution.

The brisk algorithm is unique, using a novel FAST detector adapted to use scale
space, reportedly achieving an order of magnitude performance increase over SURF with
comparable accuracy. Here are the main computational steps in the algorithm:

¢ Detects keypoints using FAST or AGHAST based selection in
scale space.

e Performs Gaussian smoothing at each pixel sample point to get
the point value.

e Makes three sets of pairs: long pairs, short pairs, and unused pairs
(the unused pairs are not in the long pair or the short pair set;
see Figure 4-12).

e Computes gradient between long pairs, sums gradients to
determine orientation.

e Uses gradient orientation to adjust and rotate short pairs.

e Creates binary descriptor from short pair point-wise
comparisons.

239

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

BRISK Summary Taxonomy

Spectra: Local binary + orientation vector

Feature shape: Square

Feature pattern: Trained local pixel point-pair compares
Feature density: Local 31x31 at FAST interest points
Search method: Sliding window

Distance function: Hamming distance

Robustness: 4 (brightness, contrast, rotation, scale)

FREAK

FREAK [130] uses a novel foveal-inspired multiresolution pixel pair sampling shape with
trained pixel pairs to mimic the design of the human eye as a coarse-to-fine descriptor,
with resolution highest in the center and decreasing further into the periphery, as
shown in Figure 4-9. In the opinion of this author, FREAK demonstrates many of the
better design approaches to feature description; it combines performance, accuracy,
and robustness. Note that FREAK is fast to compute, has good discrimination compared
to other local binary descriptors such as LBP, Census, BRISK, BRIEF, and ORB, and
compares favorably with SIFT.

The FREAK feature training process involves determining the point-pairs for the
binary comparisons based on the training data, as shown in Figure 4-9. The training
method allows for a range of descriptor sampling patterns and shapes to be built by
weighting and choosing sample points with high variance and low correlation. Each
sampling point is first smoothed from the local region using variable-sized radius
approximations to create Gaussian kernels over circular regions. The circular regions are
designed with some overlap to adjacent regions, which improves accuracy.

The feature descriptor is thus designed in a coarse-to-fine cascade of four groups of
16 byte coarse-to-fine descriptors containing pixel-pair binary comparisons stored in a
vector. The first 16 bytes, the coarse of highest resolution set in the cascade, is normally
sufficient to find 90 percent of the matching features and to discard nonmatching features.
FREAK uses 45 point pairs for the descriptor from a 31x31 pixel patch sampling region.

By storing the point-pair comparisons in four cascades of decreasing resolution
pattern vectors, the matching process proceeds from coarse to fine, mimicking the
human visual system’s saccadic search mechanism, allowing for accelerated matching
performance when there is early success or rejection in the matching phase. In summary,
the FREAK approach works very well.

FREAK Summary Taxonomy

Spectra: Local binary coarse-to-fine + orientation vector
Feature shape: Square

Feature pattern: 31x31 region pixel point-pair compares
Feature density: Sparse local at AGAST interest points
Search method: Sliding window over scale space
Distance function: Hamming distance

Robustness: 6 (brightness, contrast, rotation, scale,
viewpoint, blur)

240

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Spectra Descriptors

Compared to the local binary descriptor group, the spectra group of descriptors typically
involves more intense computations and algorithms, often requiring floating point
calculations, and may consume considerable memory. In this taxonomy and discussion,
spectra is simply a quantity that can be measured or computed, such as light intensity,
color, local area gradients, local area statistical features and moments, surface normals,
and sorted data such 2D or 3D histograms of any spectral type, such as histograms of
local gradient direction. Many of the methods discussed in this section use local gradient
information.

Local binary descriptors, as discussed in the previous section, are an attempt
to move away from more costly spectral methods to reduce power and increase
performance. Local binary descriptors in many cases offer similar accuracy and
robustness to the more compute-intensive spectra methods.

SIFT

The Scale Invariant Feature Transform (SIFT) developed by Lowe [161,178] is the

most well-known method for finding interest points and feature descriptors, providing
invariance to scale, rotation, illumination, affine distortion, perspective and similarity
transforms, and noise. Lowe demonstrates that by using several SIFT descriptors together
to describe an object, there is additional invariance to occlusion and clutter, since if a few
descriptors are occluded, others will be found [161]. We provide some detail here on SIFT
since it is well designed and well known.

SIFT is commonly used as a benchmark against which other vision methods are
compared. The original SIFT research paper by author David Lowe was initially rejected
several times for publication by the major computer vision journals, and as a result Lowe
filed for a patent and took a different direction. According to Lowe, “By then I had decided
the computer vision community was not interested, so I applied for a patent and intended
to promote it just for industrial applications.”’ Eventually, the SIFT paper was published
and went on to become the most widely cited article in computer vision history!

SIFT is a complete algorithm and processing pipeline, including both an interest point
and a feature descriptor method. SIFT includes stages for selecting center-surrounding
circular weighted Difference of Gaussian (DoG) maxima interest points in scale space
to create scale-invariant keypoints (a major innovation), as illustrated in Figure 6-14.
Feature descriptors are computed surrounding the scale-invariant keypoints. The feature
extraction step involves calculating a binned Histogram Of Gradients (HOG) structure
from local gradient magnitudes into Cartesian rectangular bins, or into log polar bins using
the GLOH variation, at selected locations centered around the maximal response interest
points derived over several scales.

'http://yann.lecun.com/ex/pamphlets/publishing-models.html

241

http://yann.lecun.com/ex/pamphlets/publishing-models.html

CHAPTER 6 ~ INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

| q-\
i\

\ ~

Figure 6-14. (Top) Set of Gaussian Images obtained by convolution with a Gaussian
kernel and the corresponding set of DoG images. (Bottom) In octave sets. The DOG function
approximates a LOG gradient, or tunable bypass filter. Matching features against the
various images in the scaled octave sets yields scale invariant features

The descriptors are fed into a matching pipeline to find the nearest distance ratio
metric between closest match and second closest match, which considers a primary
match and a secondary match together and rejects both matches if they are too similar,
assuming that one or the other may be a false match. The local gradient magnitudes are
weighted by a strength value proportional to the pyramid scale level, and then binned
into the local histograms. In summary, SIFT is a very well thought out and carefully
designed multi-scale localized feature descriptor.

A variation of SIFT for color images is known as CSIFT [179].

Here is the basic SIFT descriptor processing flow (note: the matching stage is omitted
since this chapter is concerned with feature descriptors and related metrics):

Create a Scale Space Pyramid

An octave scale n/2 image pyramid is used with Gaussian filtered images in a scale
space. The amount of Gaussian blur is proportional to the scale, and then the Difference
of Gaussians (DoG) method is used to capture the interest point extrema maxima and
minima in adjacent images in the pyramid. The image pyramid contains five levels.
SIFT also uses a double-scale first pyramid level using pixels at two times the original

242

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

magnification to help preserve fine details. This technique increases the number of stable
keypoints by about four times, which is quite significant. Otherwise, computing the
Gaussian blur across the original image would have the effect of throwing away the
high-frequency details. See Figure 6-15 and 6-16.

Gaussian Filtered Images Difference Of Gaussian Images

Figure 6-15. SIFT DoG as the simple arithmetic difference between the Gaussian filtered
images in the pyramid scale

Octave spaced scaled DOG images

s ya—
I o
2 e a——
1 x ey
A A
s A A A
23_{. =
= — - ,#
2

=
3}(. P — //
P VA — 4

Figure 6-16. SIFT interest point or keypoint detection using scale invariant extrema
detection, where the dark pixel in the middle octave is compared within a 3x3x3 area
against its 26 neighbors in adjacent DOG octaves, which includes the eight neighbors at the
local scale plus the nine neighbors at adjacent octave scales (up or down)

243

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Identify Scale-Invariant Interest Points

As shown in Figure 6-16, the candidate interest points are chosen from local maxima or
minima as compared between the 26 adjacent pixels in the DOG images from the three
adjacent octaves in the pyramid. In other words, the interest points are scale invariant.

The selected interest points are further qualified to achieve invariance by
analyzing local contrast, local noise, and local edge presence within the local 26 pixel
neighborhood. Various methods may be used beyond those in the original method, and
several techniques are used together to select the best interest points, including local
curvature interpolation over small regions, and balancing edge responses to include
primary and secondary edges. The keypoints are localized to sub-pixel precision over
scale and space. The complete interest points are thus invariant to scale.

Create Feature Descriptors

Alocal region or patch of size 16x16 pixels surrounding the chosen interest points is the
basis of the feature vector. The magnitude of the local gradients in the 16x16 patch and
the gradient orientations are calculated and stored in a HOG (Histogram of Gradients)
feature vector, which is weighted in a circularly symmetric fashion to downweight points
farther away from the center interest point around which the HOG is calculated using a
Gaussian weighting function.

As shown in Figure 6-17, the 4x4 gradient binning method allows for gradients to
move around in the descriptor and be combined together, thus contributing invariance to
various geometric distortions that may change the position of local gradients, similar to
the human visual system treatment of the 3D position of gradients across the retina [248].
The SIFT HOG is reasonably invariant to scale, contrast, and rotation. The histogram bins
are populated with gradient information using trilinear interpolation, and normalized to
provide illumination and contrast invariance.

G EERENanEE
EOEaANEaDDED N
IREE PR EREE PR
4 F) B EmE
PR e Yl N Pl e Y
T
wlw M g™ e ||, bl Fd '4:‘0- ""::'Pq’-:
IAAE] n LA . ol a2 %
b Al - il L] Ld ry
T - T [F]
Bl pa g g ¥la]e | Moy b ks 4'-; :-:I
2 :
a.-'.-‘l‘..'.‘- - - il A T s
> 0 7]
v L3 o v O L3 v val| oA vt
[|a - ol MALINER] |3 .,,x..'.p 1-\‘0-’:":
LA LR PR R LA LR P v ry A By |
| I v e
DEE v R A ety Iwa® ™
L AP B P T [Tty e
NEREEARONANEE LA 1] Tty
v e g A e,
TR T A 7
fa s w6 | ol
BN DR
o | AUPEROEERE

Figure 6-17. (Left and center) Gradient magnitude and direction binned into histograms
for the SIFT HOG. (Right) GLOH descriptors

244

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

SIFT can also be performed using a variant of the HOG descriptor called the
Gradient Location and Orientation Histogram (GLOH), which uses a log polar histogram
format instead of the Cartesian HOG format; see Figure 6-17. The calculations for the
GLOH log polar histogram are straightforward, as shown below from the Cartesian
coordinates used for the Cartesian HOG histogram, where the vector magnitude is the
hypotenuse and the angle is the arctangent.

mey) =YyL&x+1L,y-LEx—- 1Ly +Lky+1)—Lxy—)7

0(x,y) =TAN" (L(x,y +) = L(x,y— 1)) /(L(x+ L,y) = L(x— 1,y))

As shown in Figure 6-17, SIFT HOG and GLOH are essentially 3D histograms,
and in this case the histogram bin values are gradient magnitude and direction. The
descriptor vector size is thus 4x4x8=128 bytes. The 4x4 descriptor (center image) is a set
of histograms of the combined eight-way gradient direction and magnitude of each 4x4
group in the left image, in Cartesian coordinates, while the GLOH gradient magnitude
and direction are binned in polar coordinate spaced into 17 bins over a greater binning
region. SIFT-HOG (left image) also uses a weighting factor to smoothly reduce the
contribution of gradient information in a circularly symmetric fashion with increasing
distance from the center.

Overall compute complexity for SIFT is high [180], as shown in Table 6-2. Note
that feature description is most compute-intensive owing to all the local area gradient
calculations for orientation assignment and descriptor generation including histogram
binning with trilinear interpolation. The gradient orientation histogram developed in
SIFT is a key innovation that provides substantial robustness.

Table 6-2. SIFT Compute Complexity (from Vinukonda [180])

SIFT Pipeline Step Complexity Number of Operations
Gaussian blurring pyramid ON?U?s 4AN*Wes

Difference of Gaussian pyramid OsN? 4N?s

Scale-space extrema detection OsN? 104sN?

Keypoint detection O asN? 100salN?

Orientation assignment OsN*(1 - aff) 48sN?

Descriptor generation O(x*N? (af+7)) ©1520x2 (af+ Y)N?

The resulting feature vector for SIFT is 128 bytes. However, methods exist to reduce
the dimensionality and vary the descriptor, which are discussed next.

245

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

SIFT Summary Taxonomy

Spectra: Local gradient magnitude + orientation

Feature shape: Square, with circular weighting

Feature pattern: Square with circular-symmetric weighting
Feature density: Sparse at local 16x16 DoG interest points
Search method: Sliding window over scale space

Distance function: Euclidean distance (*or Hellinger distance
with RootSIFT retrofit)

Robustness: 6 (brightness, contrast, rotation, scale, affine
transforms, noise)

SIFT-PCA

The SIFT-PCA method developed by Ke and Suthankar [183] uses an alternative feature
vector derived using principal component analysis (PCA), based on the normalized
gradient patches rather than the weighted and smoothed histograms of gradients, as used
in SIFT. In addition, SIFT-PCA reduces the dimensionality of the SIFT descriptor to a
smaller set of elements. SIFT originally was reported using 128 vectors, but using
SIFT-PCA the vector is reduced to a smaller number such as 20 or 36.

The basic steps for SIFT-PCA are as follows:

1. Construct an eigenspace based on the gradients from the local
41x41 image patches resulting in a 3042 element vector; this
vector is the result of the normal SIFT pipeline.

2. Compute local image gradients for the patches.

3. Create the reduced-size feature vector from the eigenspace
using PCA on the covariance matrix of each feature vector.

SIFT-PCA is shown to provide some improvements over SIFT in the area of
robustness to image warping, and the smaller size of the feature vector results in faster
matching speed. The authors note that while PCA in general is not optimal as applied to
image patch features, the method works well for the SIFT style gradient patches that are
oriented and localized in scale space [183].

SIFT-GLOH

The Gradient Location and Orientation Histogram (GLOH) [144] method uses polar
coordinates and radially distributed bins rather than the Cartesian coordinate style
histogram binning method used by SIFT. It is reported to provide greater accuracy and
robustness over SIFT and other descriptors for some ground truth datasets [144]. As shown in
Figure 6-17, GLOH uses a set of 17 radially distributed bins to sum the gradient information
in polar coordinates, yielding a 272-bin histogram. The center bin is not direction oriented.
The size of the descriptor is reduced using PCA. GLOH has been used to retrofit SIFT.

246

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

SIFT-SIFER Retrofit

The Scale Invariant Feature Detector with Error Resilience (SIFER) [224] method provides
alternatives to the standard SIFT pipeline, yielding measurable accuracy improvements
reported to be as high as 20 percent for some criteria. However, the accuracy comes at
a cost, since the performance is about twice as slow as SIFT. The major contributions of
SIFER include improved scale-space treatment using a higher granularity image pyramid
representation, and better scale-tuned filtering using a cosine modulated Gaussian filter.
The major steps in the method are shown in Table 6-3. The scale-space pyramid is
blurred using a cosine modulated Gaussian (CMG) filter, which allows each scale of the
octave to be subdivided into six scales, so the result is better scale accuracy.

Table 6-3. Comparison of SIFT, SURE and SIFER Pipelines (adapted from [224])

SIFT SURF SIFER
Scale Space Gaussian 2nd Gaussian 2nd Cosine Modulated
Filtering derivative derivative Gaussian
Detector LoG Hessian Wavelet Modulus Maxima
Filter OK accuracy OK accuracy Good accuracy
approximation level
Optimizations DoG for gradient Integralimages, Convolution, constant

constant time time

Image up-sampling 2x 2x Not used
Sub-sampling Yes Yes Not used

Since the performance of the CMG is not good, SIFER provides a fast approximation
method that provides reasonable accuracy. Special care is given to the image scale and
the filter scale to increase accuracy of detection, thus the cosine is used as a bandpass
filter for the Gaussian filter to match the scale as well as possible, tuning the filter in a filter
bank over scale space with well-matched filters for each of the six scales per octave. The
CMG provides more error resilience than the SIFT Gaussian second derivative method.

SIFT CS-LBP Retrofit

The SIFT-CSLBP retrofit method [202,173] combines the best attributes of SIFT and

the center symmetric LBP (CS-LBP) by replacing the SIFT gradient calculations with
much more compute-efficient LBP operators, and by creating similar histogram-binned
orientation feature vectors. LBP is computationally simpler both to create and to match
than the SIFT descriptor.

The CS-LBP descriptor begins by applying an adaptive noise-removal filter (a Weiner
filter is the variety used in this work) to the local patch for adaptive noise removal, which
preserves local contrast. Rather than computing all 256 possible 8-bit local binary patterns,
the CS-LBP only computes 16 center symmetric patterns for reduced dimensionality, as
shown in Figure 6-18.

247

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

LPB= CS-LPB=
p1 p2 p3 0 0

s(p1-c)+ s(p1 - pd) +

s(p2 - ¢)'+ s(p2 - p6)'+
p8 . p4 s(p3 -)+ s(p3 - p7)’+

s(p4 - ¢)’+ s(p4 - p8)*

4

e e B

s(p7 - ©)°+

s(p8 - c)’

Figure 6-18. CS-LBP sampling pattern for reduced dimensionality

Instead of weighting the histogram bins using the SIFT circular weighting function,
no weighting is used, which reduces compute. Like SIFT, the CS-LBP binning method
uses a 4x4 region Cartesian grid; simpler bilinear interpolation for binning is used, rather
than trilinear, as in SIFT. Overall, the CS-LCP retrofit method simplifies the SIFT compute
pipeline and increases performance with comparable accuracy; greater accuracy is
reported for some datasets. See Table 6-4.

Table 6-4. SIFT and CSLBP Retrofit Performance (as per reference [202])

Feature Descriptor Descriptor Total

extraction construction normalization ms time
CS-LBP 256 0.1609 0.0961 0.007 0.264
CS-LBP 128 0.1148 0.0749 0.0022 0.1919
SIFT 128 0.4387 0.1654 0.0025 0.6066
RootSIFT Retrofit

The RootSift method [174] provides a set of simple, key enhancements to the SIFT
pipeline, resulting in better compute performance and slight improvements in accuracy,
as follows:

e Hellinger distance: RootSIFT uses a simple performance
optimization of the SIFT object retrieval pipeline using Hellinger
distance instead of Euclidean distance for correspondence. All
other portions of the SIFT pipeline remain the same; k-means
is still employed to build the feature vector set, and other
approximate nearest neighbor methods may still be used as
well for larger feature vector sets. The authors claim a simple
modification to SIFT code to perform the Hellinger distance
optimization instead of Euclidean distance can be a simple set of
one-line changes to the code. Other enhancements in RootSIFT
are optional, discussed next.

248

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

¢ Feature augmentation: This method increases total recall.
Developed by Turcot and Lowe [332], it is applied to the features.
Feature vectors or visual words from similar views of the same
object in the database are associated into a graph used for finding
correspondence among similar features, instead of just relying on
a single feature.

¢ Discriminative query expansion (DQE): This method increases
query expansion during training. Feature vectors within a region
of proximity are associated by averaging into a new feature vector
useful for requeries into the database, using both positive and
negative training data in a linear SVM; better correspondence is
reported in reference [174].

By combining the three innovations described above into the SIFT pipeline,
performance, accuracy, and robustness are shown to be significantly improved.

CenSurE and STAR

The Center Surround Extrema or CenSurE [185,184,145] method provides a true
multi-scale descriptor, creating a feature vector using full spatial resolution at all scales
in the pyramid, in contrast to SIFT and SURF, which find extrema at subsampled pixels
that compromises accuracy at larger scales. CenSurE is similar to SIFT and SUREF, but
some key differences are summarized in Table 6-5. Modifications have been made to the
original CenSurE algorithm in OpenCV, which goes by the name of STAR descriptor.

Table 6-5. Major Differences between CenSurE and SIFT and SURF (adapted from
reference [185])

CenSurE SIFT SURF
Resolution Every pixel Pyramid Pyramid
sub-sampled sub-sampled
Edge filter method Harris Hessian Hessian
Scale space extrema method Laplace, Center Laplace, DOG Hessian, DOB
Surround
Rotational invariance Approximate yes no
Spatial resolution in scale Full subsampled Subsampled

The authors have paid careful attention to creating methods which are computationally
efficient, memory efficient, with high performance and accuracy [185]. CenSurE defines an
optimized approach to find extrema by first using the Laplacian at all scales, followed by a
filtering step using the Harris method to discard corners with weak responses.

249

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

The major innovations of CenSurE over SIFT and SURF are as follows:

1. Use of bilevel center-surround filters, as shown in Figure 6-19,
including Difference of Boxes (DoB), Difference of Octagons
(Do0) and Difference of Hexagons (DoH) filters, octagons
and hexagons are more rotationally invariant than boxes. DoB
is computationally simple and may be computed with integral
images vs. the Gaussian scale space method of SIFT. The DoO
and DoH filters are also computed quickly using a modified
integral image method. Circle is the desired shape, but more
computationally expensive.

OO0

Figure 6-19. CenSurE bilevel center surround filter shape approximations to the Laplacian
using binary kernel values of 1 and -1, which can be efficiently implemented using signed
addition rather than multiplication. Note that the circular shape is the desired shape, but
the other shapes are easier to compute using integral images, especially the rectangular
method

2. To find the extrema, the DoB filter is computed using a
seven-level scale space of filters at each pixel, using a 3x3x3
neighborhood. The scale space search is composed using
center-surround Haar-like features on non-octave boundaries
with filter block sizes [1,2,3,4,5,6,7] covering 2.5 octaves
between [1 and 7] yielding five filters. This scale arrangement
provides more discrimination than an octave scale. A threshold
is applied to eliminate weak filter responses at each level, since
the weak responses are likely not to be repeated at other scales.

3. Nonrectangular filter shapes, such as octagons and hexagons,
are computed quickly using combinations of overlapping
integral image regions; note that octagons and hexagons
avoid artifacts caused by rectangular regions and increase
rotational invariance; see Figure 6-19.

4. CenSurE filters are applied using a fast, modified version of
the SURF method called Modified Upright SURF (MU-SURF)
[188,189], discussed later with other SURF variants, which
pays special attention to boundary effects of boxes in the
descriptor by using an expanded set of overlapping
sub-regions for the HAAR responses.

250

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

CenSurE Summary Taxonomy

Spectra: Center-surround shaped bi-level filters

Feature shape: Octagons, circles, boxes, hexagons
Feature pattern: Filter shape masks, 24x24 largest region
Feature density: Sparse at Local interest points

Search method: Dense sliding window over scale space
Distance function: Euclidean distance

Robustness: 5 (brightness, contrast, rotation, scale,
affine transforms)

Correlation Templates

One of the most well known and obvious methods for feature description and detection
is simply to take an image of the complete feature and search for it by direct pixel
comparison—this is known as correlation. Correlation involves stepping a sliding window
containing a first pixel region template across a second image region template and
performing a simple pixel-by-pixel region comparison using a method such as sum of
differences (SAD); the resulting score is the correlation.

Since image illumination may vary, typically the correlation template and the target
image are first intensity normalized, typically by subtracting the mean and dividing by
the standard deviation; however, contrast leveling and LUT transform may also be used.
Correlation is commonly implemented in the spatial domain on rectangular windows,
but can be used with frequency domain methods as well [4,9].

Correlation is used in video-based target tracking applications where translation as
orthogonal motion from frame-to-frame over small adjacent regions predominates. For
example, video motion encoders find the displacement of regions or blocks within the
image using correlation, since usually small block motion in video is orthogonal to the
Cartesian axis and maps well to simple displacements found using correlation. Correlation
can provide sub-pixel accuracy between 1/4 to 1/20 of a pixel, depending on the images
and methods used; see reference [151]. For video encoding applications, correlation allows
for the motion vector displacements of corresponding blocks to be efficiently encoded and
accurately computed. Correlation is amenable to fixed function hardware acceleration.

Variations on correlation include cross-correlation (sliding dot product) normalized
cross-correlation (NCC), zero-mean normalized cross-correlation (ZNCC), and texture
auto correlation (TAC).

In general, correlation is a good detector for orthogonal motion of a constant-sized
mono-space pattern region. It provides sub-pixel accuracy, has limited robustness and
accuracy over illumination, but little to no robustness over rotation or scale. However, to
overcome these robustness problems, it is possible to accelerate correlation over a scale
space, as well as various geometric translations, using multiple texture samplers in a
graphics processor in parallel to rapidly scale and rotate the correlation templates. Then,
the correlation matching can be done either via SIMD SAD instructions or else using the
fast fixed function correlators in the video encoding engines.

Correlation is illustrated in Figure 6-20.

251

CHAPTER 6 ~ INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Figure 6-20. Simplified model of digital correlation using a triangular template region
swept past a rectangular region. The best correlation is shown at the location of the highest
point

Correlation Summary Taxonomy

Spectra: Correlation

Feature shape: Square, rectangle

Feature pattern: Dense

Feature density: Variable sized kernels

Search method: Dense sliding window

Distance function: SSD typical, others possible
Robustness: 1 (illumination, sub-pixel accuracy)

HAAR Features

HAAR-like features [4,9] were popularized in the field of computer vision by the Viola
Jones [186] algorithm. HAAR features are based on specific sets of rectangle patterns, as
shown in Figure 6-21, which approximate the basic HAAR wavelets, where each HAAR
feature is composed of the average pixel value of pixels within the rectangle. This is
efficiently computed using integral images.

SN m-
I- I-.ll.

Figure 6-21. Example HAAR-like features

252

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

By using the average pixel value in the rectangular feature, the intent is to find a set of
small patterns in adjacent areas where brighter or darker region adjacency may reveal a
feature—for example, a bright cheek next to a darker eye socket. However, HAAR features
have drawbacks, since rectangles by nature are not rotation invariant much beyond
15 degrees. Also, the integration of pixel values within the rectangle destroys fine detail.

Depending on the type of feature to be detected, such as eyes, a specific set of HAAR
feature is chosen to reveal eye/cheek details and eye/nose details. For example, HAAR
patterns with two rectangles are useful for detecting edges, while patterns with three
rectangles can be used for lines, and patterns with an inset rectangle or four rectangles
can be used for single-object features. Note that HAAR features may be a rotated set.

Of course, the scale of the HAAR patterns is an issue, and since a given HAAR feature
only works with an image of appropriate scale. Image pyramids are used for HAAR feature
detection, along with other techniques for stepping the search window across the image
in optimal grid sizes for a given application. Another method to address feature scale
is to use a wider set of scaled HAAR features to perform the pyramiding in the feature
space rather than the image space. One method to address HAAR feature granularity
and rectangular shape is to use overlapping HAAR features to approximate octagons and
hexagons; see the CenSurE and STAR methods in Figure 6-19.

HAAR features are closely related to wavelets [227,334]. Wavelets can be considered
as an extension of the earlier concept of Gabor functions [333,187]. We provide only a
short discussion of wavelets and Gabor functions here; more discussion was provided
in Chapter 2. Wavelets are an orthonormal set of small duration functions. Each set of
wavelets is designed to meet various goals to locate short-term signal phenomenon.
There is no single wavelet function; rather, when designing wavelets, a mother wavelet is
first designed as the basis of the wavelet family, and then daughter wavelets are derived
using translation and compression of the mother wavelet into a basis set. Wavelets are
used as a set of nonlinear basis functions, where each basis function can be designed as
needed to optimally match a desired feature in the input function. So, unlike transforms
which use a uniform set of basis functions like the Fourier transform, composed of
SIN and COS functions, wavelets use a dynamic set of basis functions that are complex
and nonuniform in nature. Wavelets can be used to describe very complex short-term
features, and this may be an advantage in some feature detection applications.

However, compared to integral images and HAAR features, wavelets are computationally
expensive, since they represent complex functions in a complex domain. HAAR 2D basis
functions are commonly used owing to the simple rectangular shape and computational
simplicity, especially when HAAR features are derived from integral images.

HAAR Summary Taxonomy

Spectra: Integral box filter

Feature shape: Square, rectangle
Feature pattern: Dense

Feature density: Variable-sized kernels
Search method: Grid search typical
Distance function: Simple difference
Robustness: 1 (illumination)

253

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Viola Jones with HAAR-Like Features

The Viola Jones method [186] is a feature detection pipeline framework based on
HAAR-like features using a perceptron learning algorithm to train a detector matching
network that consists of three major parts:

1. Integral images used to rapidly compute HAAR-like features.

2. The ADA-BOOST learning algorithm to create a strong
pattern matching and classifier network by combining strong
classifiers with good matching performance with weak
classifiers that have been “boosted” by adjusting weighting
factors during the training process.

3. Combining classifiers into a detector cascade or funnel to
quickly discard unwanted features at early stages in the
cascade.

Since thousands of HAAR pattern matches may be found in a single image, the
feature calculations must be done quickly. To make the HAAR pattern match calculation
rapidly, the entire image is first processed into an integral image. Each region of the
image is searched for known HAAR features using a sliding window method stepped
at some chosen interval, such as every n pixels, and the detected features are fed into a
classification funnel known as a HAAR Cascade Classifier. The top of the funnel consists
of feature sets which yield low false positives and false negatives, so the first-order results
of the cascade contain high-probability regions of the image for further analysis. The
HAAR features become more complex progressing deeper into the funnel of the cascade.
With this arrangement, images regions are rejected as soon as possible if the desired
HAAR features are not found, minimizing processing overhead.

A complete HAAR feature detector may combine hundreds or thousands of HAAR
features together into a final classifier, where not only the feature itself may be important
but also the spatial arrangements of features—for example, the distance and angular
relationships between features could be used in the classifier.

SURF

The Speeded-up Robust Features Method (SURF) [160] operates in a scale space and uses
a fast Hessian detector based on the determinant maxima points of the Hessian matrix.
SUREF uses a scale space over a 3x3x3 neighborhood to localize bloblike interest point
features. To find feature orientation, a set of HAAR-like feature responses are computed in
the local region surrounding each interest point within a circular radius, computed at the
matching pyramid scale for the interest point.

The dominant orientation assignment for the local set of HAAR features is found, as
shown in Figure 6-22, using a sliding sector window of size 7 /3. This sliding sector
window is rotated around the interest point at intervals. Within the sliding sector region,
all HAAR features are summed. This includes both the horizontal and vertical responses,
which yield a set of orientation vectors; the largest vector is chosen to represent dominant
feature orientation. By way of comparison, SURF integrates gradients to find the dominant
direction, while SIFT uses a histogram of gradient directions to record orientation.

254

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Figure 6-22. (Left) The sliding sector window used in SURF to compute the dominant
orientation of the HAAR features to add rotational invariance to the SURF features. (Right)
The feature vector construction process, showing a grid containing a 4x4 region subdivided
into 4x4 sub-regions and 2x2 subdivisions

To create the SURF descriptor vector, a rectangular grid of 4x4 regions is established
surrounding the interest point, similar to SIFT, and each region of this grid is split into 4x4
sub-regions. Within each sub-region, the HAAR wavelet response is computed over 5x5
sample points. Each HAAR response is weighted using a circularly symmetric Gaussian
weighting factor, where the weighting factor decreases with distance from the center
interest point, which is similar to SIFT. Each feature vector contains four parts:

v=X4d,.>d,.> |41 |d, 1)

The wavelet responses dx and dy for each sub-region are summed, and the absolute
value of the responses |d,| and |d | provide polarity of the change in intensity. The final
descriptor vector is 4x4x4: 4x4 regions with four parts per region, for a total vector length
of 64. Of course, other vector lengths can be devised by modifying the basic method.

As shown in Figure 6-22, the SURF gradient grid is rotated according to the dominant
orientation, computed during the sliding sector window process, and then the wavelet
response is computed in each square region relative to orientation for binning into the
feature vector. Each of the wavelet directional sums d, d,,|d| , |d | is recorded in the
feature vector.

The SURF and SIFT pipeline methods are generally comparable in implementation
steps and final accuracy, but SURF is one order of magnitude faster to compute than SIFT,
as compared in an ORB benchmarking test [134]. However, the local binary descriptors,
such as ORB, are another order of magnitude faster than SURF, with comparable accuracy
for many applications [134]. For more information, see the section earlier in this chapter
on local binary descriptors.

255

CHAPTER 6

INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

SURF Summary Taxonomy

Spectra: Integral box filter + orientation vector

Feature shape: HAAR rectangles

Feature pattern: Dense

Feature density: Sparse at Hessian interest points
Search method: Dense sliding window over scale space
Distance function: Mahalanobis or Euclidean
Robustness: 4 (scale, rotation, illumination, noise)

Variations on SURF

A few variations on the SURF descriptor [188,189] are worth discussing, as shown in
Table 6-6. Of particular interest are the G-SURF methods [188], which use a differential
geometry concept [190] of a local region gauge coordinate system to compute the
features. Since gauge coordinates are not global but, rather, local to the image feature,
gauge space features carry advantages for geometrical accuracy.

Table 6-6. SURF Variants (as discussed in Alcantarilla et. Al [188])

SURF Circular Symmetric Gaussian Weighting Scheme, 20x20 grid

U-SURF Faster version of SURE only upright features are used; no orientation.

[189] Like M-SUREF except calculated upright “U” with no rotation of the grid,
uses a 20x20 grid, no overlapping HAAR features, modified Gaussian
weighting scheme, bilinear interpolation between histogram bins.

M-SURF Circular symmetric Gaussian weighting scheme computed in two steps

MU-SURF instead of one as for normal SURF, 24x24 grid using overlapping HAAR

[189] features, rotation orientation left out in MU-SURF version.

G-SURE, Instead of HAAR features, substitutes 2" order gauge derivatives in

GU-SURF Gauge coordinate space, no Gaussian weighting, 20x20 grid. Gauge

[188] derivatives are rotation and translation invariant, while the HAAR
features are simple rectangles, and rectangles have poor rotational
invariance, maybe +/-15 degrees at best.

MG-SURF Same as M-SUREF, but uses gauge derivatives.

[188]

NG-SURF N = No Gaussian weighting as in SURF; same as SURF but no Gaussian

[188] weighting applied, allows for comparison between gauge derivate

features and HAAR features.

256

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Histogram of Gradients (HOG) and Variants

The Histogram of Gradients (HOG) method [106] is intended for image classification,
and relies on computing local region gradients over a dense grid of overlapping blocks,
rather than at interest points. HOG is appropriate for some applications, such as person
detection, where the feature in the image is quite large.

HOG operates on raw data; while many methods rely on Gaussian smoothing and
other filtering methods to prepare the data, HOG is designed specifically to use all the
raw data without introducing filtering artifacts that remove fine details. The authors show
clear benefits using this approach. It’s a tradeoff: filtering artifacts such as smoothing vs.
image artifacts such as fine details. The HOG method shows preferential results for the
raw data. See Figure 4-12, showing a visualization of a HOG descriptor.

Major aspects in the HOG method are as follows:

e Raw RGB image is used with no color correction or noise filtering,
using other color spaces and color gamma adjustment provided
little advantage for the added cost.

e Prefers a 64x128 sliding detector window; 56x120 and 48x112
sized windows were also tested. Within this detector window, a
total of 8x16 8x8 pixel block regions are defined for computation
of gradients. Block sizes are tunable.

e For each 8x8 pixel block, a total of 64 local gradient magnitudes
are computed. The preferred method is simple line and column
derivatives [-1,0,1]in x/y; other gradient filter methods are tried,
but larger filters with or without Gaussian filtering degrade
accuracy and performance. Separate gradients are calculated for
each color channel.

e Local gradient magnitudes are binned into a 9-bin histogram of
edge orientations, quantizing dimensionality from 64 to 9, using
bilinear interpolation; <9 bins produce poorer accuracy, >9 bins
does not seem to matter. Note that either rectangular R-HOG or
circular log polar C-HOG binning regions can be used.

¢ Normalization of gradient magnitude histogram values to
unit length to provide illumination invariance. Normalization
is performed in groups, rather than on single histograms.
Overlapping 2x2 blocks of histograms are used within the detector
window; the block overlapping method reduces sharp artifacts,
and the 2x2 region size seems to work best.

e For the 64x128 pixel detector window method, a total of 128
8x8 pixel blocks are defined. Each 8x8 block has four cells for
computing separate 9-bin histograms. The total descriptor size is
then 8x16x4x9=4608.

257

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Note that various formulations of the sliding window and block sizes are used for
dealing with specific application domains. See Figure 4-12, showing a visualization of
HOG descriptor computed using 7x15 8x8 pixel cells. Key findings from the HOG [106]
design approach include:

e The abrupt edges at fine scales in the raw data are required for
accuracy in the gradient calculations, and post-processing and
normalizing the gradient bins later works well.

e L2 style block normalization of local contrast is preferred and
provides better accuracy over global normalization; note that the
local region blocks are overlapped to assist in the normalization.

e Dropping the L2 block normalization stage during histogram
binning reduces accuracy by 27 percent.

e HOG features perform much better than HAAR-style detectors,
and this makes sense when we consider that a HAAR wavelet is
an integrated directionless value, while gradient magnitude and
direction over the local HOG region provides a richer spectra.

HOG Summary Taxonomy

Spectra: Local region gradient histograms

Feature shape: Rectangle or circle

Feature pattern: Dense 64x128 typical rectangle
Feature density: Dense overlapping blocks

Search method: Grid over scale space

Distance function: Euclidean

Robustness: 4 (illumination, viewpoint, scale, noise)

PHOG and Related Methods

The Pyramid Histogram of Oriented Gradients (PHOG) [191] method is designed

for global or regional image classification, rather than local feature detection. PHOG
combines regional HOG features with whole image area features using spatial
relationships between features spread across the entire image in an octave grid region
subdivision; see Figure 6-23.

258

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Y| J.lllhlllllu [FITARIT AT ———

Figure 6-23. Set of PHOG descriptors computed over the whole image, using octave grid
cells to bound the edge information. (Center Left) A single histogram. (Center right) Four
histograms shown concatenated together. (Right) Sixteen histograms shown concatenated

PHOG is similar to related work using a coarse-to-fine grid of region histograms
called Spatial Pyramid Matching by Lazebni, Schmid, and Ponce [534], using histograms
of oriented edges and SIFT features to provide multi-class classification. It is also similar
to earlier work on pyramids of concatenated histogram features taken over a progressively
finer grid, called Pyramid Match Kernel and developed by Grauman and Darrell
[535], which computes correspondence using weighted, multi-resolution histogram
intersection. Other related earlier work using multi-resolution histograms for texture
classification are described in reference [55].

The PHOG descriptor captures several feature variables, including:

e Shape features, derived from local distribution of edges based on
gradient features inspired by the HOG method [106].

e Spatial relationships, across the entire image by computing
histogram features over a set of octave grid cells with blocks of
increasingly finer size over the image.

e Appearance features, using a dense set of SIFT descriptors
calculated across a regularly spaced dense grid. PHOG is
demonstrated to compute SIFT vectors for color images; results
are provided in [191] for the HSV color space.

A set of training images is used to generate a set of PHOG descriptor variables for
a class of images, such as cars or people. This training set of PHOG features is reduced
using K-means clustering to a set of several hundred visual words to use for feature
matching and image classification.

Some key concepts of the PHOG are illustrated in Figure 6-23. For the feature
shape, the edges are computed using the Canny edge detector, and the gradient
orientation is computed using the Sobel operator. The gradient orientation binning is
linearly interpolated across adjacent histogram bins by gradient orientation (HOG),
each bin represents the angle of the edge. A HOG vector is computed for each size of
grid cell across the entire image. The final PHOG descriptor is composed of a weighted
concatenation of all the individual HOG histograms from each grid level. There is no
scale-space smoothing between the octave grid cell regions to reduce fine detail.

259

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

As shown in Figure 6-23, the final PHOG contains all the HOGs concatenated. Note
that for the center left image, the full grid size cell produces 1 HOG, for the center right,
the half octave grid produces 4 HOGs, and for the right image, the fine grid produces
16 HOG vectors. The final PHOG is normalized to unity to reduce biasing due to
concentration of edges or texture.

PHOG Summary Taxonomy

Spectra: Global and regional gradient orientation histograms
Feature shape: Rectangle

Feature pattern: Dense grid of tiles

Feature density: Dense tiles

Search method: Grid regions, no searching

Distance function: 12 norm

Robustness: 3 (image classification under some invariance to
illumination, viewpoint, noise)

Daisy and O-Daisy

The Daisy Descriptor [214.309] is inspired by SIFT and GLOH-like descriptors, and is
devised for dense-matching applications such as stereo mapping and tracking, reported
to be about 40 percent faster than SIFT. See Figure 6-24. Daisy relies on a set of radially
distributed and increasing size Gaussian convolution kernels that overlap and resemble a
flower-like shape (Daisy).

Figure 6-24. (Left) Daisy pattern region, which is composed of four sets of eight
overlapping concentric circles, with increasing Gaussian blur in the outer circles, where the
radius of each circle is proportional to the Gaussian kernel region standard deviation. The
overlapping circular regions provide a degree of filtering against adjacent region transition
artifacts. (Right) A hypothetical binary occlusion mask; darker regions indicate points that
may be occluded and “turned off” in the descriptor during matching

260

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Daisy does not need local interest points, and instead computes a descriptor densely
at each pixel, since the intended application is stereo mapping and tracking. Rather
than using gradient magnitude and direction calculations like SIFT and GLOH, Daisy
computes a set of convolved orientation maps based on a set of oriented derivatives of
Gaussian filters to create eight orientation maps spaced at equal angles.

As shown in Figure 6-24, the size of each filter region and the amount of blur in
each Gaussian filter increase with distance away from the center, mimicking the human
visual system by maintaining a sharpness and focus in the center of the field of view and
decreasing focus and resolution farther away from the center. Like SIFT, Daisy also uses
histogram binning of the local orientation to form the descriptor.

Daisy is designed with optimizations in mind. The convolution orientation map
approach consumes fewer compute cycles than the gradient magnitude and direction
approach of SIFT and GLOH, yet yields similar results. The Daisy method also includes
optimizations for computing larger Gaussian kernels by using a sequential set of
smaller kernels, and also by computing certain convolution kernels recursively. Another
optimization is gained using a circular grid pattern instead of the rectangular grid used
in SIFT, which allows Daisy to vary the rotation by rotating the sampling grid rather than
re-computing the convolution maps.

As shown in Figure 6-24 (right image), Daisy also uses binary occlusion masks
to identify portions of the descriptor pattern to use or ignore in the feature matching
distance functions. This is a novel feature and provides for invariance to occlusion.

An FPGA optimized version of Daisy, called O-Daisy [217], provides enhancements
for increased rotational invariance.

Daisy Summary Taxonomy

Spectra: Gaussian convolution values

Feature shape: Circular

Feature pattern: Overlapping concentric circular
Feature density: Dense at each pixel

Search method: Dense sliding window

Distance function: Euclidean

Robustness: 3 (illumination, occlusion, noise)

CARD

The Compact and Realtime Descriptor (CARD) method [218] is designed with
performance optimizations in mind, using learning-based sparse hashing to convert
descriptors into binary codes supporting fast Hamming distance matching. A novel
concept from CARD is the lookup-table descriptor extraction of histograms of oriented
gradients from local pixel patches, as well as the lookup-table binning into Cartesian

or log polar bins. CARD is reported to achieve significantly better rotation and scale
robustness compared to SIFT and SURF, with performance at least ten times better than
SIFT and slightly better than SURFE.

261

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

CARD follows the method of RIFF [222][219] for feature detection, using FAST
features located over octave levels in the image pyramid. The complete CARD pyramid
includes intermediate levels between octaves for increased resolution. The pyramid
levels are computed at intervals of 1/ V2 , with level 0 being the full image. Keypoints are
found using a Shi-Tomasi [157] optimized Harris corner detector.

Like SIFT, CARD computes the gradient at each pixel, and can use either Cartesian
coordinate binning, or log polar coordinate binning like GLOH; see Figure 6-17. To avoid
the costly biliner interpolation of gradient information into the histogram bins, CARD
instead optimizes this step by rotating the binning pattern before binning, as shown in
Figure 6-25. Note that the binning is further optimized using lookup tables, which contain
function values based on principal orientations of the gradients in the patch.

Figure 6-25. CARD patch pattern containing 17 log polar coordinate bins, with image on
left rotated to optimize binning

As shown in Figure 6-25, to speed up binning, instead of rotating the patch based on
the estimated gradient direction to extract and bin a rotationally invariant descriptor, as
done in SIFT and other methods, CARD rotates the binning pattern over the patch based
on the gradient direction and then performs binning, which is much faster. Figure 6-25
shows the binning pattern unrotated on the right, and rotated by 7 /8 on the left. All
binned values are concatenated and normalized to form the descriptor, which is 128 bits
long in the most accurate form reported [218].

CARD Summary Taxonomy

Spectra: Gradient magnitude and direction

Feature shape: Circular, variable sized based on pyramid scale
and principal orientation

Feature pattern: Dense

Feature density: Sparse at FAST interest points over image
pyramid

262

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Search method: Sliding window
Distance function: Hamming
Robustness: 3 (illumination, scale, rotation)

Robust Fast Feature Matching

Robust Feature Matching in 2.3us developed by Taylor, Rosten and Drummond [220]
(RFM2.3) (this acronym is coined here by the author) is a novel, fast method of feature
description and matching, optimized for both compute speed and memory footprint.
RFM2.3 stands alone among the feature descriptors surveyed here with regard to
the combination of methods and optimizations employed, including sparse region
histograms and binary feature codes. One of the key ideas developed in RFM2.3 is to
compute a descriptor for multiple views of the same patch by creating a set of scaled,
rotated, and affine warped views of the original feature, which provides invariance under
affine transforms such as rotation and scaling, as well as perspective.

In addition to warping, some noise and blurring is added to the warped patch set
to provide robustness to the descriptor. RFM2.3 is one of few methods in the class of
deformable descriptors [344-346]. FAST keypoints in a scale space pyramid are used to
locate candidate features, and the warped patch set is computed for each keypoint. After
the warped patch set has been computed, FAST corners are again generated over each
new patch in the set to determine which patches are most distinct and detectable, and the
best patches are selected and quantized into binary feature descriptors and saved in the
pattern database.

As shown in Figure 6-26, RFM2.3 uses a sparse 8x8 sampling pattern within a 16x16
region to capture the patch. A sparse set of 13 pixels in the 8x8 sampling pattern is chosen
to form the index into the pattern database for the sparse pattern. The index is formed as a
13-bit integer, where each bit is set to 1 if the pixel value is greater than the patch mean value,
limiting the index to 2713 or 8192 entries, so several features in the database may share the
same index. However, feature differences can be computed very quickly using Hamming
distance, so the index serves mostly as a database key for organizing like-patches. A training
phase determines the optimal set of index values to include in the feature database, and the
optimal patterns to save, since some patterns are more distinct than others. Initially, features
are captured at full resolution, but if few good features are found at full resolution, additional
features are extracted at the next level of the image pyramid.

263

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Figure 6-26. RFM?2.3 (Left) Descriptor sparse sampling pattern. (Right) Sparse descriptor
using 13 samples used to build the feature index into the database

The descriptor is modeled during training as a 64-value normalized intensity
distribution function, which is reduced in size to compute the final descriptor vector
in two passes: first, the 64 values are reduced to a five-bin histogram of pixel intensity
distribution; second, when training is complete, each histogram bin is binary encoded
with a 1 bit if the bin is used, and a 0 bit if the bin is rarely used. The resulting descriptor is
a compressed, binary encoded bit vector suitable for Hamming distance.

RFM2.3 Summary Taxonomy

Spectra: Normalized histogram patch intensity encoded into
binary patch index code

Feature shape: Rectangular, multiple viewpoints

Feature pattern: Sparse patterns in 15x15 pixel patch
Feature density: Sparse at FAST9 interest points

Search method: Sliding window over image pyramid
Distance function: Hamming

Robustness: 4 (illumination, scale, rotation, viewpoint)

RIFE CHOG

The Rotation Invariant Fast Features (RIFF) [222][219] method is motivated by tracking
and mapping applications in mobile augmented reality. The basis of the RIFF method
includes the development of a radial gradient transform (RGT), which expresses gradient
orientation and magnitude in a compute-efficient and rotationally invariant fashion.
Another contribution of RIFF is a tracking method, which is reported to be more accurate
than KLT with 26x better performance. RIFF is reported to be 15x faster than SURE

RIFF uses a HOG descriptor computed at FAST interest points located in scale
space, and generally follows the method of the author’s previous work in CHOG [223]
(compressed HOG) for reduced dimensionality, low bitrate binning. Prior to binning the
HOG gradients, a radial gradient transform (RGT) is used to create a rotationally invariant
gradient format. As shown in Figure 6-27 (left image), the RGT uses two orthogonal basis

264

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

vectors (rt) to form the radial coordinate system that surrounds the patch center point
¢, and the HOG gradient g is projected onto (7¢) to express as the rotationally invariant
vector (g"r, g" £). A vector quantizer and a scalar quantizer are both suggested and used
for binning, illustrated in Figure 6-27.

Radial gradients Annuli SQ-25 quantizer VQ-17 quantizer ARGT
Figure 6-27. Concepts behind the RIFF descriptor [222][219], based partially on CHOG [223]

As shown in Figure 6-27 (right image) the basis vectors can be optimized by using
gradient direction approximations in the approximated radial gradient transform (ARGT),
which is optimized to be easily computed using a simple differences between adjacent,
normalized pixels along the same gradient line, and simple 45 degree quantization. Also
note in Figure 6-27 (center left image), that the histogramming is optimized by sampling
every other pixel within the annuli regions, and four annuli regions are used for practical
reasons as a tradeoff between discrimination and performance. To meet real-time system
performance goals for quantizing the gradient histogram bins, RIFF uses a 5x5 scalar
quantizer rather than a vector quantizer.

In Figure 6-27 (left image), the gradient projection of g at point c onto a radial
coordinate system (r,f) is used for a rotationally invariant gradient expression, and the
descriptor patch is centered at c. The center left image (Annuli) illustrates the method of
binning, using four annuli rings, which reduces dimensionality, and sampling only the
gray pixels provides a 2x speedup. The center and center right images illustrate the bin
centering mechanism for histogram quantization: (1) the more flexible scalar quantizer
SQ-25 and (2) the faster vector quantizer VQ-17. And the right image illustrates the
radial coordinate system basis vectors for gradient orientation radiating from the center
outwards, showing the more compute efficient ARGT, or approximated radial gradient
transform (RGT), which does not use floating point math (RGT not shown, see [222]).

RIFF Summary Taxonomy

Spectra: Local region histogram of approximated radial
gradients

Feature shape: Circular

Feature pattern: Sparse every other pixel

Feature density: Sparse at FAST interest points over image
pyramid

Search method: Sliding window

Distance function: Symmetric KL-divergence
Robustness: 4 (illumination, scale, rotation, viewpoint)

265

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Chain Code Histograms

A Chain Code Histogram (CCH) [206] descriptor records the shape of the perimeter as a
histogram by binning the direction of the connected components—connected perimeter
pixels in this case. As the perimeter is traversed pixel by pixel, the direction of the
traversal is recorded as a number, as shown in Figure 6-28, and recorded in a histogram
feature. To match the CCH features, SSD or SAD distance metrics can be used.

|
HEE ER
1 2 3 Chain code starting
at top center pixel,
8 * 4 moving clockwise:

54,6,7,71,1,1,24

Figure 6-28. Chain code process for making a histogram. (Left to right) 1. The 8 possible
directions that the connected perimeter may change. 2. Chain code values for each
connected perimeter direction change; direction for determining the chain code value is
starting from the center pixel. 3. An object with a connected perimeter highlighted by black
pixels. 4. Chain code for the object following the connected perimeter starting at the top
pixel. 5. Histogram of all the chain code values

Chain code histograms are covered by U.S. Patent US4783828. CCH was invented
in 1961 [206] and is also known as the Freeman chain code. A variant of the CCH is the
Vertex chain code [207], which allows for descriptor size reduction and is reported to have
better accuracy.

D-NETS

The D-NETS (Descriptor-NETS) [135] approach developed by Hundelshausen and
Sukthankar abandons patch or rectangular descriptor regions in favor of a set of strips
connected at endpoints. D-NETS allows for a family of strip patterns composed of
directed graphs between a set of endpoints; it does not specifically limit the types of
endpoints or strip patterns that may be used. The D-NETS paper provides a discussion of
results from three types of patterns:

¢ Clique D-NETS: A fully connected network of strips linking all
the interest points. While the type of interest point used may vary
within the method, the initial work reports results using SIFT
keypoints.

e Tterative D-NETS: Dynamically creates the network using a
sub-set of the interest points, increasing the connectivity using
a stopping criterion to optimize the connection density for
obtaining desired matching performance and accuracy.

266

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Densely sampled D-NETS: This variant does not use interest
points, and instead densely samples the nets over a regularly
spaced grid, a 10-pixel grid being empirically chosen and
preferred, with some hysteresis or noise added to the grid
positions to reduce pathological sampling artifacts. The dense
method is suitable for highly parallel implementations for
increased performance.

For an illustration of the three D-NETS patterns and some discussion, see Figure 4-9.

Each strip is an array of raw pixel values sampled between two points. The descriptor
itself is referred to as a d-foken, and various methods for computing the d-token are
suggested, such as binary comparisons among pixel values in the strip similar to FERNS
or ORB, as well as comparing the 1D Fourier transforms of strip arrays, or using wavelets.
The best results reported are a type of empirically engineered d-token, created as follows:

Strip vector sampling, where each pixel strip vector is sampled
at equally spaced locations between 10 and 80 percent of the
length of the pixel strip vector; this sampling arrangement was
determined empirically to ignore pixels near the endpoints.

Quantize the pixel strip vector by integrating the values into a set
of uniform chunks, s, to reduce noise.

Normalize the strip vector for scaling and translation.
Discretize the vector values into a limited bit range, b.

Concatenate all uniform chunks into the d-token, which is a bit
string of length s*b.

Descriptor matching makes use of an efficient and novel hashing and hypothesis
correspondence voting method. D-NETS results are reported to be higher in precision
and recall than ORB or SIFT.

D-NETS Summary Taxonomy

Spectra: Normalized, averaged linear pixel intensity chunks
Feature shape: Line segment connected networks

Feature pattern: Sparse line segments between chosen points
Feature density: Sparse along lines

Search method: Sliding window

Distance function: Hashing and voting

Robustness: 5 (illumination, scale, rotation, viewpoint,
occlusion)

Local Gradient Pattern

A variation of the LBP approach, the local gradient pattern (LGP) [204] uses local
region gradients instead of local image intensity pair comparison to form the binary
descriptor. The 3x3 gradient of each pixel in the local region is computed, then each

267

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

gradient magnitude is compared to the mean value of all the local region gradients, and
the binary bit value of 1 is assigned if the value is greater, and 0 otherwise. The authors
claim accuracy and discrimination improvements over the basic LBP in face-recognition
algorithms, including a reduction in false positives. However, the compute requirements
are greatly increased due to the local region gradient computations.

LGP Summary Taxonomy

Spectra: Local region gradient comparisons between center
pixel and local region gradients

Feature shape: Square

Feature pattern: Every pixel 3x3 kernel region

Feature density: Dense in 3x3 region

Search method: Sliding window

Distance function: Hamming

Robustness: 3 (illumination, scale, rotation)

Local Phase Quantization

The local phase quantization (LPQ) descriptor [166-168] was designed to be robust to
image blur, and it leverages the blur insensitive property of Fourier phase information.
Since the Fourier transform is required to compute phase, there is some compute
overhead; however, integer DFT methods can be used for acceleration. LPQ is reported
to provide robustness for uniform blur, as well as uniform illumination changes. LPQ is
reported to provide equal or slightly better accuracy on nonblurred images than LBP and
Gabor filter bank methods. While mainly used for texture description, LPQ can also be
used for local feature description to add blur invariance by combining LPQ with another
descriptor method such as SIFT.

To compute, first a DFT is computed at each pixel over small regions of the image,
such as 8x8 blocks. The low four frequency components from the phase spectrum are
used in the descriptor. The authors note that the kernel size affects the blur invariance,
so a larger kernel block may provide more invariance at the price of increased compute
overhead.

Before quantization, the coefficients are de-correlated using a whitening transform,
resulting in a uniform phase shift and 8-degree rotation, which preserves blur invariance.
De-correlating the coefficients helps to create samples that are statistically independent
for better quantization.

For each pixel, the resulting vectors are quantized into an 8-dimensional space,
using an 8-bit binary encoded bit vector like the LBP and a simple scalar quantizer to
yield 1 and 0 values. Binning into the feature vector is performed using 256 hypercubes
derived from the 8-dimensional space. The resulting feature vector is a 256-dimensional
8-bit code.

268

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

LPQ Summary Taxonomy

Spectra: Local region whitened phase using DFT -> an 8-bit
binary code

Feature shape: Square

Feature pattern: 8x8 kernel region

Feature density: Dense every pixel

Search method: Sliding window

Distance function: Hamming

Robustness: 3 (contrast, brightness, blur)

Basis Space Descriptors

This section covers the use of basis spaces to describe image features for computer vision
applications. A basis space is composed of a set of functions, the basis functions, which are
composed together as a set, such as a series like the Fourier series (discussed in Chapter 3).
A complex signal can be decomposed into a chosen basis space as a descriptor.

Basis functions can be designed and used to describe, reconstruct, or synthesize
a signal. They require a forward transform to project values into the basis set, and
an inverse transform to move data back to the original values. A simple example is
transforming numbers between the base 2 number system and the base 10 number
system; each basis had advantages.

Sometimes it is useful to transform a dataset from one basis space to another to gain
insight into the data, or to process and filter the data. For example, images captured in
the time domain as sets of pixels in a Cartesian coordinate system can be transformed
into other basis spaces, such as the Fourier basis space in the frequency domain, for
processing and statistical analysis. A good basis space for computer vision applications
will provide forward and inverse transforms. Again, the Fourier transform meets these
criteria, as well as several other basis spaces.

Basis spaces are similar to coordinate systems, since both have invertible transforms to
related spaces. In some cases, simply transforming a feature spectra into another coordinate
system makes analysis and representation simpler and more efficient. (Chapter 4
discusses coordinates systems used for feature representation.) Several of the descriptors
surveyed in this chapter use non-Cartesian coordinate systems, including GLOH, which
uses polar coordinate binning, and RIFE which uses radial coordinate descriptors.

Fourier Descriptors

Fourier descriptors [227] represent feature data as sine and cosine terms, which can be
observed in a Fourier Power Spectrum. The Fourier series, Fourier transform, and Fast
Fourier transform are used for a wide range of signal analysis, including 1D, 2D, and 3D
problems. No discussion of image processing or computer vision is complete without
Fourier methods, so we will explore Fourier methods here with applications to feature
description.

Instead of developing the mathematics and theory behind the Fourier series and
Fourier transform, which has been done very well in the standard text by Bracewell [227],

269

CHAPTER 6 ~ INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

we discuss applications of the Fourier Power Spectrum to feature description and provide
minimal treatment of the fundamentals here to frame the discussion; see also Chapter 3.
The basic idea behind the Fourier series is to define a series of sine and cosine basis
functions in terms of magnitude and phase, which can be summed to approximate any
complex periodic signal. Conversely, the Fourier transform is used to decompose a
complex periodic signal into the Fourier series set of sine and cosine basis terms. The
Fourier series components of a signal, such as a line or 2D image area, are used as a
Fourier descriptor of the region.

For this discussion, a Fourier descriptor is the selected components from a Fourier
Power Spectrum—typically, we select the lower-frequency components, which carry
most of the power. Here are a few examples using Fourier descriptors; note that either or
both the Fourier magnitude and phase may be used.

¢ Fourier Spectrum of LBP Histograms. As shown in Figure 3-10,
an LBP histogram set can be represented as a Fourier Spectrum
magnitude, which makes the histogram descriptor invariant to
rotation.

e Fourier Descriptor of Shape Perimeter. As shown in Figure 6-29,
the shape of a polygon object can be described by Fourier methods
using an array of perimeter to centroid line segments taken at
intervals, such as 10 degrees. The array is fed into an FFT to
produce a shape descriptor, which is scale and rotation invariant.

f

\\ /
AN

]

Figure 6-29. (Left) Polygon shape major and minor axis and bounding box. (Center)
Object with radial sample length taken from the centroid to the perimeter, each sample
length saved in an array, normalized. (Right) Image fed into the Fourier Spectrum to yield
a Fourier descriptor

e Fourier Descriptor of Gradient Histograms. Many descriptors
use gradients to represent features, and use gradient magnitude
or direction histograms to bin the results. Fourier Spectrum
magnitudes may be used to create a descriptor from gradient
information to add invariance.

270

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

¢ Fourier Spectrum of Radial Line Samples. As used in the RFAN
descriptor [136], radial line samples of pixel values from local
regions can be represented as a Fourier descriptor of Fourier
magnitudes.

e Fourier Spectrum Phase. The LPQ descriptor, described in this
chapter, makes use of the Fourier Spectrum phase information in
the descriptor, and the LPQ is reported to be insensitive to blur
owing to the phase information.

Other Basis Functions for Descriptor Building

Besides the Fourier basis series, other function series and basis sets are used for descriptor
building, pattern recognition, and image coding. However, such methods are usually
applied over a global or regional area. See Chapter 3 for details on several other methods.

Sparse Coding Methods

In this discussion on basis space descriptors, we briefly discuss sparse coding methods,
since they are analogous to a basis space. Many approaches are taken to sparse coding
[530-533], using subtle differences in terminology, including visual vocabularies and bag
of words methods [537]. However, sparse coding methods use a reduced set of learned
feature descriptors or codes instead of basis functions. The key idea is to build a sparse
codebook of basis features from the training images, and match against the sparse
codebook. The sparse codes may be simple image patches or other descriptors.

A range of machine learning methods (outside the scope of this book, see [546] by
Prince for more on machine learning) are used for finding the optimal sparse feature set.
In addition, each sparse coding method may prefer a particular style of classification and
matching. Sparse codes are associated as subsets or signatures to identify objects. Any of
the local feature descriptor methods discussed in this chapter may be used as the basis
for a sparse codebook. Sparse coding and related methods are discussed in more detail in
Chapter 4. See the work by Aharon, Alad, and Bruckstein [536] for more details on sparse
coding, as well as Fei-Fei, Fergus, and Torralba [537].

Examples of Sparse Coding Methods

As an example of the use of sparse codes for object recognition, Ren and Ramaan [125]
retrofit the HOG method by replacing the HOG histogram of gradients feature with a new
feature descriptor called Histograms of Sparse Codes (HSC); see Figure 6-30. Related work
using sparse code books includes the Hierarchical Matching Pursuit method (HMP) [140],
which builds a layered feature hierarchy of patch-level sparse codes derived from image
patches to produce local features. The patch-level sparse codes from across the whole image
are combined to produce image-level features. A close variation on HMP is the multipath
sparse coding method [124], which effectively combines multiple sizes of smaller and
medium-size patches and multiple layers of sparse coding into a single system.

271

CHAPTER 6 ~ INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

;=
Sliding

. . . J :—1 . V.. ﬂ ll.]llll.lui.ll.’ Window Detection

Learned sparse patch codebook Histogram of sparse codes

Figure 6-30. One method of feature learning using sparse coding, showing how Histograms
of Sparse Codes (HSC) are constructed from a set of learned sparse codes. The HSC method
[125] is reported to outperform HOG in many cases

Polygon Shape Descriptors

Polygon shape descriptors compute a set of shape features for an arbitrary polygon or blob,
and the shape is described using statistical moments or image moments (as discussed in
Chapter 3). These shape features are based on the perimeter of the polygon shape. The
methods used to delineate image perimeters to highlight shapes prior to measurement
and description are often complex, empirically tuned pipelines of image pre-processing
operations, like thresholding, segmentation, and morphology (as discussed in Chapter

2). Once the polygon shapes are delineated, the shape descriptors are computed; see
Figure 6-31. Typically, polygon shape methods are applicable to larger region-size
features. In the literature, this topic may also be discussed as image moments. For a deep
dive into the topic of image moments, see Flusser et. al. [518].

Figure 6-31. Polygon shape descriptors. (Left) Malachite pieces. (Right) Polygon shapes
defined and labeled after binary thresholding, perimeter tracing, and feature labeling.
(Image processing and particle analysis performed using Image] Fiji)

Polygon shape methods are commonly used in medical and industrial applications,
such as automated microscopy for cell biology, and also for industrial inspection; see
Figure 6-31. Commercial software libraries are available for polygon shape description,
commonly referred to as particle analysis or blob analysis. See Appendix C.

272

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

MSER Method

The Maximally Stable Extremal Regions (MSER) method [194] is usually discussed in the
literature as an interest region detector, and in fact it is. However we include MSER in the
shape descriptor section because MSER regions can be much larger than other interest
point methods, such as HARRIS or FAST.

The MSER detector was developed for solving disparity correspondence in a wide
baseline stereo system. Stereo systems create a warped and complex geometric depth
field, and depending on the baseline between cameras and the distance of the subject to
the camera, various geometric effects must be compensated for. In a wide baseline stereo
system, features nearer the camera are more distorted under affine transforms, making
it harder to find exact matches between the left/right image pair. The MSER approach
attempts to overcome this problem by matching on blob-like features. MSER regions are
similar to morphological blobs and are fairly robust to skewing and lighting. MSER is
essentially an efficient variant of the watershed algorithm, except that the goal of MSER is
to find a range of thresholds that leave the watershed basin unchanged in size.

The MSER method involves sorting pixels into a set of regions based on binary
intensity thresholding; regions with similar pixel value over a range of threshold values in
a connected component pattern are considered maximally stable. To compute a MSER,
pixels are sorted in a binary intensity thresholding loop, which sweeps the intensity value
from min to max. First, the binary threshold is set to a low value such as zero on a single
image channel— luminance, for example. Pixels < the threshold value are black, pixels
>=are white. At each threshold level, a list of connected components or pixels is kept. The
intensity threshold value is incremented from 0 to the max pixel value. Regions that do
not grow or shrink or change as the intensity varies are considered maximally stable, and
the MSER descriptor records the position of the maximal regions and the corresponding
thresholds.

In stereo applications, smaller MSER regions are preferred and correlation is used for
the final correspondence, and similarity is measured inside a set of circular MSER regions
at chosen rotation intervals. Some interesting advantages of the MSER include:

e Multi-scale features and multi-scale detection. Since the MSER
features do not require any image smoothing or scale space, both
coarse features and fine-edge features can be detected.

e Variable-size features computed globally across an entire region,
not limited to patch size or search window size.

e Affine transform invariance, which is a specific goal.

e General invariance to shape change, and stability of detection,
since the extremal regions tend to be detected across a wide range
of image transformations.

The MSER can also be considered as the basis for a shape descriptor, and as an
alternative to morphological methods of segmentation. Each MSER region can be
analyzed and described using shape metrics, as discussed later in this chapter.

273

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Object Shape Metrics for Blobs and Polygons

Object shape metrics are powerful and yield many degrees of freedom with respect to
invariance and robustness. Object shape metrics are not like local feature metrics, since
object shape metrics can describe much larger features. This is advantageous for tracking
from frame to frame. For example, a large object described by just a few simple object
shape metrics such as area, perimeter, and centroid can be tracked from frame to frame
under a wide range of conditions and invariance. For more information, see references
[128,129] for a survey of 2D shape description methods.

Shape can be described by several methods, including:

¢ Object shape moments and metrics: the focus of this section.
¢ Image moments: see Chapter 3 under “Image Moments.”

e Fourier descriptors: discussed in this chapter and Chapter 3.
e Shape Context feature descriptor: discussed in this section.

e Chain code descriptor for perimeter description: discussed in
this section.

Object shape is closely related to the field of morphology, and computer methods
for morphological processing are discussed in detail in Chapter 2. Also see the discussion
about morphological interest points earlier in this chapter.

In many areas of computer vision research, local features seem to be favored over
object shape-based features. The lack of popularity of shape analysis methods may
be a reaction to the effort involved in creating pre-processing pipelines of filtering,
morphology, and segmentation to prepare the image for shape analysis. If the image is
not pre-processed and prepared correctly, shape analysis is not possible. (See Chapter 8
for a discussion of a hypothetical shape analysis pre-processing pipeline.)

Polygon shape metrics can be used for virtually any scene analysis application to
find common objects and take accurate measurements of their size and shape; typical
applications include biology and manufacturing. In general, most of the polygon shape
metrics are rotational and scale invariant. Table 6-7 provides a sampling of some of the
common metrics that can be derived from region shapes, both binary shapes and gray
scale shapes.

Table 6-7. Various Common Object Shape and Blob Object Metrics

Object Binary Shape Metrics Description

Perimeter Length of all points around the edge of the object,
including the sum of diagonal lengths ~=1.4 and
adjacent lengths =1

Area Total area of object in pixels
Convex hull Polygon shape or set of line segments enclosing all
perimeter points

(continued)

274

Table 6-7. (continued)

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Object Binary Shape Metrics Description

Centroid

Fourier descriptor

Major/minor axis

Feret
Breadth
Aspectratio
Circularity

Roundness

Area equivalent diameter

Perimeter equivalent
diameter

Equivalent ellipse
Compactness
Solidity
Concavity
Convexity

Shape

Modification ratio

Shape matrix

Center of object mass, average value of all pixel
coordinates or average value of all perimeter coordinates

Fourier spectrum result from an array containing the
length of a set of radial line segments passing from
centroid to perimeter at regular angles used to model a
1D signal function, the 1D signal function is fed into a
1D FFT and the set of FFT magnitude data is used as a
metric for a chosen set of octave frequencies

Longest and shortest line segments passing through
centroid contained within and touching the perimeter

Largest caliper diameter of object
Shortest caliper diameter

Feret / Breadth

4 X PiX Area / Perimeter2

4 X Area / (Pi X Feret2)
(Can also be calculated from the Fourier descriptors)

sqrt((4 / Pi) X Area)
Area/Pi

(Pi X Feret X Breadth) / 4
sqrt((4 / Pi) X Area) / Feret
Area / Convex_Area
Convex_Area - Area
Convex_Hull / Perimeter
Perimeter2 / Area

(2 X MinR) / Feret

A 2D matrix representation or plot of a polygon shape
(may use Cartesian or polar coordinates; see Figure 6-32)

(continued)

275

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Table 6-7. (continued)

Object Binary Shape Metrics Description

Grayscale Object
Shape Metrics
SDM plots *See Chapter 3, “Texture Metrics” section.
Scatter plots *See Chapter 3, “Texture Metrics” section.
Statistical moments of gray Minimum
scale pixel values Maximum

Median

Average

Average deviation
Standard deviation
Variance

Skewness

Kurtosis

Entropy

*Note: some of binary object metrics also apply to gray scale objects.

HEEE
coococooocoo

(= - I - A - -
(= - T — I~ I~ S -
o OoOO0O00o o
(=2 - - - -
(=D = == -~
(= - -]
coocoococoocoo

Figure 6-32. A shape matrix descriptor [335] for the perimeter of an object. (Left two
images) Cartesian coordinate shape matrix. (Right two images) polar coordinate shape
matrix using three rows of eight numbered bin regions, gray boxes represent pixels to be
binned. Note that multiple shape matrices can be used together. Values in matrix are set if
the pixel fills at least half of the bin region, no interpolation is used

Shape is considered to be binary; however, shape can be computed around intensity
channel objects as well, using gray scale morphology. Perimeter is considered as a set of
connected components. The shape is defined by a single pixel wide perimeter at a binary
threshold or within an intensity band, and pixels are either on, inside, or outside of the
perimeter. The perimeter edge may be computed by scanning the image, pixel by pixel,
and examining the adjacent touching pixel neighbors for connectivity. Or, the perimeter
may be computed from the shape matrix [335] or chain code discussed earlier in this
chapter. Perimeter length is computed for each segment (pixel), where segment length =1
for horizontal and vertical neighbors, and V2 otherwise for diagonal neighbors.

276

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

The perimeter may be used as a mask, and gray scale or color channel statistical
metrics may be computed within the region. The object area is the count of all the pixels
inside the perimeter. The centroid may be computed either from the average of all (x,y)
coordinates of all points contained within the perimeter area, or from the average of all
perimeter (x,y) coordinates.

Shape metrics are powerful. For example, shape metrics may be used to remove
or excluding objects from a scene prior to measurement. For example, objects can be
removed from the scene when the area is smaller than a given size, or if the centroid
coordinates are outside a given range.

As shown in Figure 6-29 and Figure 2-18, the Fourier descriptor provides a rotation
and scale invariant shape metric, with some occlusion invariance also. The method
for determining the Fourier descriptor is to take a set of equally angular-spaced radius
measurements, such as every 10 degrees, from the centroid out to points on the
perimeter, and then to assemble the radius measurements into a 1D array that is run
through a 1D FFT to yield the Fourier moments of the object. Or radial pixel spokes can
be used as a descriptor.

Other examples of useful shape metrics, shown in Figure 6-29, include the bounding
box with major and minor axis, which has longest and shortest diameter segments
passing through the centroid to the perimeter; this can be used to determine rotational
orientation of an object.

The SNAKES method [540] uses a spline model to fit a collection of interest points,
such as selected perimeter points, into a region contour. The interest points are the
spline points. The SNAKE can be used to track contoured features from frame to frame,
deforming around the interest point locations.

In general, the 2D object shape methods can be extended to 3D data; however, we do
not explore 3D object shape metrics here, see reference [200,201] for a survey of 3D shape
descriptors.

Shape Context

The shape context method developed by Belongie, Malik, and Puzicha [239-241],
describes local feature shape using a reference point on the perimeter as the Cartesian
axis origin, and binning selected perimeter point coordinates relative to the reference
point origin. The relative coordinates of each point are binned into a log polar histogram.
Shape context is related to the earlier shape matrix descriptor [335] developed in 1985

as shown in Figure 6-32, which describes the perimeter of an object using log polar
coordinates also. The shape context method provides for variations, described in several
papers by the authors [239-241]. Here, we look at a few key concepts.

To begin, the perimeter edge of the object is sparsely sampled at uniform intervals,
typically keeping about 100 edge sample points for coarse binning. Sparse perimeter
edge points are typically distinct from interest points, and found using perimeter
tracing. Next, a reference point is chosen on the perimeter of the object as the origin of
a Cartesian space, and the vector angle and magnitude (r,0) from the origin point to
each other perimeter point are computed. The magnitude or distance is normalized to fit
the histogram. Each sparse perimeter edge point is used to compute a tangent with the
origin. Finally, each normalized vector is binned using (r,0) into a log polar histogram,
which is called the shape context.

277

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

An alignment transform is generated between descriptor pairs during matching,
which yields the difference between targets and chosen patterns, and could be used for
reconstruction. The alignment transform can be chosen as desired from affine, Euclidean,
spline-based, and other methods. Correspondence uses the Hungarian method, which
includes histogram similarity, and is weighted by the alignment transform strength using
the tangent angle dissimilarity. Matching may also employ a local appearance similarity
measure, such as normalized correlation between patches or color histograms.

The shape context method provides a measure of invariance over scale, translation,
rotation, occlusion, and noise. See Figure 6-33.

Figure 6-33. Shape context method. (Left) Perimeter points are measured as a shape vector,
both angle and distance, with respect to a chosen perimeter point as the reference Cartesian
origin. (Right) Shape vectors are binned into a log polar histogram featrure descriptor

3D, 4D, Volumetric, and Multimodal Descriptors

With the advent of more and more 3D sensors, such as stereo cameras and other
depth-sensing methods, as well as the ubiquitous accelerometers and other sensors built
into inexpensive mobile devices, the realm of 3D feature description and multimodal
feature description is beginning to blossom.

Many 3D descriptors are associated with robotics research and 3D localization. Since
the field of 3D feature description is early in the development cycle, it is not yet clear which
methods will be widely adopted, so we present only a small sampling of 3D descriptor
methods here. These include 3D HOG [196], 3D SIFT [195], and HON 4D [198], which are
based on familiar 2D methods. We refer the interested reader to references [200,201,216]
for a survey of 3D shape descriptors. Several interesting 3D descriptor metrics are available
as open source in the Point Cloud Library,? including Radius-Based Surface Descriptors
(RSD) [539], Principal Curvature Descriptors (PCD), Signatures of Histogram Orientations
(SHOT) [541], Viewpoint Feature Histogram (VFH) [398], and Spin Images [538].

*http://pointclouds.org

278

http://pointclouds.org/

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Key applications driving the research into 3D descriptors include robotics and
activity recognition, where features are tracked frame to frame as they morph and
deform. The goals are to localize position and recognize human actions, such as walking,
waving a hand, turning around, or jumping. See also the LBP variants for 3D: V-LBP and
LBP-TOP, which are surveyed earlier in this chapter as illustrated in Figure 6-12, which
are also used for activity recognition. Since the 2D features are moving during activity
recognition, time is the third dimension incorporated into the descriptors. We survey
some notable 3D activity-recognition research here.

One of the key concepts in the action-recognition work is to extend familiar 2D
features into a 3D space that is spatio-temporal, where the 3D space is composed of 2D
x,y video image sequences over time ¢ into a volumetric representation with the form
v(x,y,t). In addition, the 3D surface normal, 3D gradient magnitude, and 3D gradient
direction are used in many of the action-recognition descriptor methods.

3D HOG

The 3D HOG [196] is partially based on some earlier work in volumetric features [199].
The general idea is to employ the familiar HOG descriptor [106] in a 3D HOG descriptor
formulation, using a stack of sequential 2D video frames or slices as a 3D volume, and
to compute spatio-temporal gradient orientation on adjacent frames within the volume.
For efficiency, a novel integral video approach is developed as an alternative to image
pyramids based on the same line of thinking as the integral image approach use in the
Viola Jones method.

A similar approach using the integral video concept was also developed in [199]
using a sub-sampled space of 64x64 over 4 to 40 video frames in the volume, using pixel
intensity instead of the gradient direction. The integral video method, which can also
be considered an integral volume method, allows for arbitrary cuboid regions from
stacked sequential video frames to be integrated together to compute the local gradient
orientation over arbitrary scales. This is space efficient and time efficient compared to
using pre-computed image pyramids. In fact, this integral video integration method is
a novel contribution of the work, and may be applied to other spectra such as intensity,
color, and gradient magnitude in either 2D or 3D to eliminate the need for image
pyramids—providing more choices in terms of image scale besides just octaves.

The 3D HOG descriptor computations are illustrated in Figure 6-34. To find feature
keypoints to anchor the descriptors, a space-time extension of the Harris operator [197]
is used, then a histogram descriptor is computed from the mean of the oriented gradients
in a cubic region at the keypoint. Since gradient magnitude is sensitive to illumination
changes, gradient orientation is used instead to provide invariance to illumination, and
itis computed over 3D cuboid regions using simple x,y,z derivatives. The mean gradient
orientation of any 3D cuboid is computed quickly using the integral video method.
Gradient orientations are quantized into histogram bins via projection of each vector
onto the faces of a regular icosahedron 20-sided shape to combine all vectors, as shown
in Figure 6-34. The 20 icosahedron faces act as the histogram bins. The sparse set of
spatio-temporal features is combined into a bag of features or bag of words in a visual
vocabulary.

279

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

N

Figure 6-34. HOG 3D descriptor computation. (Left) 2x2x2 descriptor cell block. (Left
center) Gradient orientation histogram computed over 2x2x2 cell sub-blocks. (Right center)
Gradient orientations quantized by projecting the vector intersection to the faces of a
20-faceted icosahedron. (Right) Mean gradient orientation computed over integral video
blocks (volume vector integral)

HON 4D

A similar approach to the 3D HOG is called HON 4D [198], which computes descriptors
as Histogram of Oriented 4D Normals, where the 3D surface normal + time add up to four
dimensions (4D). HON 4D uses sequences of depth images or 3D depth maps as the basis
for computing the descriptor, rather than 2D image frames, as in the 3D HOG method.

So a depth camera is needed. In this respect, HON 4D is similar to some volume
rendering methods which compute 3D surface normals, and may be accelerated using
similar methods [452,453,454].

In the HON 4D method, the surface normals capture the surface shape cues of each
object, and changes in normal orientation over time can be used to determine motion
and pose. Only the orientation of the surface normal is significant in this method, so the
normal lengths are all normalized to unity length. As a result, the binning into histograms
acts differently from the HOG style binning, so that the fourth dimension of time encodes
differences in the gradient from frame to frame. The HON 4D descriptor is binned and
quantized using 4D projector functions, which quantize local surface normal orientation
into a 600-cell polychron, which is a geometric extension of a 2D polygon into 4-space.

Consider the discrimination of the HON 4D method using gradient orientation vs.
the HOG method using gradient magnitude. If two surfaces are the same or similar with
respect to gradient magnitude, the HOG style descriptor cannot differentiate; however,
the HON 4D style descriptor can differentiate owing to the orientation of the surface
normal used in the descriptor. Of course, computing 3D normals is compute-intensive
without special optimizations considering the noncontiguous memory access patterns
required to access each component of the volume.

3D SIFT

The 3D SIFT method [195] starts with the 2D SIFT feature method and reformulates the
feature binning to use a volumetric spatio-temporal area v(x,y,t), as shown in Figure 6-35.

280

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

IME 4 ¥ | al %
M V N :: ' "‘ ‘A A
| Slw A
*.| w. - A
L : v .
4 g A
4, e HAPY

-- yS A P -‘_“ ¥ ..‘a .
' IS _Y_}
z';! PR

Figure 6-35. Computation of the 3D SIFT [195] vector histogram bins as a combination
of the combined gradient orientation of the sub-volumes in a volume space or 3D
spatio-temporal region of three consecutive 2D image frames

The 3D orientation of the gradient pair orientation is computed as follows:
m3D(x,y,t)=, |2 +L+ L
L
0(x,y,t)=tan™ [LJJ

X

L,

2 2
L +Ly

X

¢(x,y,t)=tan™

This method provides a unique two-valued (¢, 6) representation for each angle of the
gradient orientation in 3-space at each keypoint. The binning stage is handled differently
from SIFT, and instead uses orthogonal bins defined by meridians and parallels in a
spherical coordinate space. This is simpler to compute, but requires normalization of
each value to account for the spherical difference in the apparent size ranging from the
poles to the equator.

To compute the SIFT descriptor, the 3D gradient orientation of each sub-histogram
is used to guide rotation of the 3D region at the descriptor keypoint to point to 0,
which provides a measure of rotational invariance to the descriptor. Each point will be
represented as a single gradient magnitude and two orientation vectors (¢, 6) instead
of one, as in 2D SIFT. The descriptor binning is computed over three dimensions into
adjacent cubes instead of over two dimensions in the 2D SIFT descriptor.

281

CHAPTER 6 * INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR SURVEY

Once the feature vectors are binned, the feature vector set is clustered into groups of
like features, or words, using hierarchical K-means clustering into a spatio-temporal word
vocabulary. Another step beyond the clustering could be to reduce the feature set using
sparse coding methods [115-117], but the sparse coding step is not attempted.

Results using 3D SIFT for action recognition are reported to be quite good compared
to other similar methods; see reference [195].

Summary

In this chapter we surveyed a wide range of local interest point detectors and feature
descriptor methods to learn ‘what’ practitioners are doing, including both 2D and 3D
methods. The vision taxonomy from Chapter 5 was used to divide the feature descriptor
survey along the lines of descriptor families, such as local binary methods, spectra
methods, and polygon shape methods. There is some overlap between local and regional
descriptors, however this chapter tries to focus on local descriptor methods, leaving
regional methods to Chapter 3. Local interest point detectors are discussed in a simple
taxonomy including intensity-based regions methods, edge-based region methods, and
shape-based region methods, including background on key concepts and mathematics
used by many interest point detector methods. Some of the difficulties in choosing an
appropriate interest point detector were discussed and several detector methods were
surveyed.

This chapter also highlighted retrofits to common descriptor methods. For example,
many descriptors are retrofitted by changing the descriptor spectra used, such as LBP vs.
gradient methods, or by swapping out the interest point detector for a different method.
Summary information was provided for feature descriptors following the taxonomy
attributes developed in Chapter 5 to enable limited comparisons, using concepts from the
analysis of local feature description design concepts presented in Chapter 4.

282

CHAPTER 7

Ground Truth Data, Content,
Metrics, and Analysis

Buy the truth and do not sell it.
—Proverbs 23:23

This chapter discusses several topics pertaining to ground truth data, the basis for
computer vision metric analysis. We look at examples to illustrate the importance of
ground truth data design and use, including manual and automated methods. We then
propose a method and corresponding ground truth dataset for measuring interest
point detector response as compared to human visual system response and human
expectations. Also included here are example applications of the general robustness
criteria and the general vision taxonomy developed in Chapter 5 as applied to the
preparation of hypothetical ground truth data. Lastly, we look at the current state of the
art, its best practices, and a survey of available ground truth datasets.

Key topics include:

e Creating and collecting ground truth data: manual vs. synthetic
methods

e Labeling and describing ground truth data: automated vs. human
annotated

e Selected ground truth datasets

e Metrics paired with ground truth data

e Over-fitting, under-fitting, and measuring quality
e Publically available datasets

e Anexample scenario that compares the human visual system to
machine vision detectors, using a synthetic ground truth dataset

Ground truth data may not be a cutting-edge research area, however it is as
important as the algorithms for machine vision. Let’s explore some of the best-known
methods and consider some open questions.

283

CHAPTER 7 © GROUND TRUTH DATA, CONTENT, METRICS, AND ANALYSIS

What Is Ground Truth Data?

In the context of computer vision, ground truth data includes a set of images, and a set of
labels on the images, and defining a modelfor object recognition as discussed in Chapter 4,
including the count, location, and relationships of key features. The labels are added
either by a human or automatically by image analysis, depending on the complexity of
the problem. The collection of labels, such as interest points, corners, feature descriptors,

shapes, and

histograms, form a model.

A model may be trained using a variety of machine learning methods. At run-time,
the detected features are fed into a classifier to measure the correspondence between
detected features and modeled features. Modeling, classification, and training are
statistical and machine learning problems, however, that are outside the scope of this
book. Instead, we are concerned here with the content and design of the ground truth

images.

Creating a ground truth dataset, then, may include condieration of the following

major tasks:

Figure 7-1.
examples

284

Model design. The model defines the composition of the
objects—for example, the count, strength, and location
relationship of a set of SIFT features. The model should be
correctly fitted to the problem and image data so as to yield
meaningful results.

Training set. This set is collected and labeled to work with the
model, and it contains both positive and negative images and
features. Negatives contain images and features intended to
generate false matches; see Figure 7-1.

All Images

Positive Negative

Images Images

Set of all ground truth data, composed of both positive and negative training

Test set. A set of images is collected for testing against the training
set to verify the accuracy of the model to predict the correct
matches.

CHAPTER 7 © GROUND TRUTH DATA, CONTENT, METRICS, AND ANALYSIS

¢ (lassifier design. This is constructed to meet the application
goals for speed and accuracy, including data organization and
searching optimizations for the model.

e Training and testing. This work is done using several sets of
images to check against ground truth.

Unless the ground truth data contains carefully selected and prepared image
content, the algorithms cannot be measured effectively. Thus, ground-truthing is closely
related to root-causing: there is no way to improve what we cannot measure and do not
understand. Being able to root-cause algorithm problems and understand performance
and accuracy are primary purposes for establishing ground truth data. Better ground
truth data will enable better analysis.

Ground truth data varies by task. For example, in 3D image reconstruction or face
recognition, different attributes of the ground truth data must be recognized for each
task. Some tasks, such as face recognition, require segmentation and labeling to define
the known objects, such as face locations, position and orientation of faces, size of faces,
and attributes of the face, such as emotion, gender, and age. Other tasks, such as 3D
reconstruction, need the raw pixels in the images and a reference 3D mesh or point cloud
as their ground truth.

Ground truth datasets fall into several categories:

e Synthetic produced: images are generated from computer
models or renderings.

e Real produced: a video or image sequence is designed and
produced.

e Real Selected: real images are selected from existing sources.

¢ Machine-automated annotation: feature analysis and learning
method are used to extract features from the data.

e Human annotated: an expert defines the location of features and
objects.

e Combined: any mixture of the above.

Many practitioners are firmly against using synthetic datasets and insist on using
real datasets. In some cases, random ground truth images are required; in other cases,
carefully scripted and designed ground truth images need to be produced, similar to
creating a movie with scenes and actors.

Random and natural ground truth data with unpredictable artifacts, such as poor
lighting, motion blur, and geometric transformation, is often preferred. Many computer
problems demand real images for ground truth, and random variations in the images
are important. Real images are often easy to obtain and/or easy to generate using a video
camera or even a cell phone camera. But creating synthetic datasets is not as clear; it
requires knowledge of appropriate computer graphics rendering systems and tools, so the
time investment to learn and use those tools may outweigh their benefits.

However, synthetic computer-generated datasets can be a way to avoid legal and
privacy issues concerning the use of real images.

285

CHAPTER 7 © GROUND TRUTH DATA, CONTENT, METRICS, AND ANALYSIS

Previous Work on Ground Truth Data:
Art vs. Science

In this section, we survey some literature on ground truth data. We also highlight several
examples of automatic ground truth data labeling, as well as other research on metrics
for establishing if, in fact, the ground truth data is effective. Other research surveyed
here includes how closely ground truth features agree with human perception and
expectations, for example, whether or not the edges that humans detect in the ground
truth data are, in fact, found by the chosen detector algorithms.

General Measures of Quality Performance

Compared to other topics in computer vision, little formal or analytic work has been
published to guide the creation of ground truth data. However, the machine learning
community provides a wealth of guidance for measuring the quality of visual recognition
between ground truth data used for training and test datasets. In general, the size of the
training set or ground truth data is key to its accuracy [336-338] and the larger the better,
assuming the right data is used.

Key journals to dig deeper into machine learning and testing against ground truth
data include the journal IEEE PAMI for Pattern Analysis and Machine Intelligence,
whose articles on the subject go back to 1979. While the majority of ground truth datasets
contain real images and video sequences, some practitioners have chosen to create
synthetic ground truth datasets for various application domains, such as the standard
Middlebury dataset with synthetic 3D images. See Appendix B for available real ground
truth datasets, along with a few synthetic datasets.

One noteworthy example framework for ground truth data, detector, and descriptor
evaluation is the Mikolajczyk and Schmidt methodology (M&S), discussed later in this
chapter. Many computer vision research projects follow the M&S methodology using a
variety of datasets.

Measures of Algorithm Performance

Ericsson and Karlsson[102] developed a ground truth correspondence measure (GCM)
for benchmarking and ranking algorithm performance across seven real datasets and
one synthetic dataset. Their work focused on statistical shape models and boundaries,
referred to as polygon shape descriptors in the vision taxonomy in Chapter 5. The goal was
to automate the correspondence between shape models in the database and detected
shapes from the ground truth data using their GCM. Since shape models can be fairly
complex, the goal of automating model comparisons and generating quality metrics
specific to shape description is novel.

Dutagaci et al.[91] developed a framework and method, including ground truth
data, to measure the perceptual agreement between humans and 3D interest point
detectors—in other words, do the 3D interest point detectors find the same interest points
as the humans expect? The ground truth data includes a known set of human-labeled
interest points within a set of images, which were collected automatically by an Internet

286

CHAPTER 7 © GROUND TRUTH DATA, CONTENT, METRICS, AND ANALYSIS

scraper application. The human-labeled interest points were sorted toward a consensus
set, and outliers were rejected. The consensus criterion was a radius region counting

the number of humans who labeled interest points within the radius. A set of 3D interest
point detectors was ran against the data and compared using simple metrics such as false
positives, false negatives, and a weighted miss error. The ground truth data was used to
test the agreement between humans and machine vision algorithms for 3D interest point
detectors. The conclusions included observations that humans are indecisive and widely
divergent about choosing interest points, and also that interest point detection algorithms
are a fuzzy problem in computer vision.

Hamameh et al.[88] develop a method of automatically generating ground truth
data for medical applications from a reference dataset with known landmarks, such as
segmentation boundaries and interest points. The lack of experts trained to annotate the
medical images and generate the ground truth data motivated the research. In this work,
the data was created by generating synthetic images simulating object motion, vibrations,
and other considerations, such as noise. Prestawa et al.[89] developed a similar approach
for medical ground truth generation. Haltakov et al.[510] developed synthetic ground
truth data from an automobile-driving simulator for testing driver assistance algorithms,
which provided situation awareness using computer vision methods.

Vedaldi et al.[90] devised a framework for characterizing affine co-variant detectors,
using synthetically generated ground truth as 3D scenes employing raytracing,
including simulated natural and man-made environments; a depth map was provided
with each scene. The goal was to characterize co-variant detector performance under
affine deformations, and to design better covariant detectors as a result. A set of
parameterized features were defined for modeling the detectors, including points,
disks and oriented disks, and various ellipses and oriented ellipses. A large number of
3D scenes were generated, with up to 1,000 perspective views, including depth maps
and camera calibration information. In this work, the metrics and ground truth data
were designed together to focus on the analysis of geometric variations. Feature region
shapes were analyzed with emphasis on disks and warped elliptical disks to discover
any correspondence and robustness over different orientations, occlusion, folding,
translation, and scaling. (The source code developed for this work is available.")

Rosin’s Work on Corners

Research by Rosin[61,92] involved the development of an analytical taxonomy for gray
scale corner properties, as illustrated in Figure 7-2. Rosin developed a methodology and
case study to generate both the ground truth dataset and the metric basis for evaluating
the performance and accuracy of a few well-known corner detectors. The metric is based
on the receiver operating characteristic (ROC) to measure the accuracy of detectors to
assess corners vs. noncorners. The work was carried out over 13,000 synthetic corner
images with variations on the synthetic corners to span different orientations, subtended
angles, noise, and scale. The synthetic ground truth dataset was specifically designed

to enable the detection and analysis of a set of chosen corner properties, including
bluntness or shape of apex, boundary shape of cusps, contrast, orientation, and
subtended angle of the corner.

'See the “VLFeat” open-source project online (http://www.vlfeat.org”).

287

http://www.vlfeat.org/

CHAPTER 7 © GROUND TRUTH DATA, CONTENT, METRICS, AND ANALYSIS

Figure 7-2. Images illustrating the Rosin corner metrics: (Top left) Corner orientation and
subtended angle. (Top right) Bluntness. (Bottom left) Contrast. (Bottom right) Black/white
corner color. (Images © Paul Rosin and used by permission[61])

A novel aspect of Rosin’s work was the generation of explicit types of synthetic
interest points such as corners, nonobvious corners, and noncorners into the dataset,
with the goal of creating a statistically interesting set of features for evaluation that
diverged from idealized features. The synthetic corners were created and generated in a
simulated optical system for realistic rendering to produce corners with parameterized
variations including affine transformations, diffraction, sub-sampling, and in some
cases, adding noise. Rosin’s ground truth dataset is available for research use, and has
been used for corner detector evaluation of methods from Kitchen and Rosenfeld,
Paler, Foglein, and Illingworth, as well as the Kittler Detector and the Harris & Stephens
Detector.

Similar to Rosin, a set of synthetic interest point alphabets are developed later in
this chapter snf tested in Appendix A, including edge and corner alphabets, with the
goal of comparing human perception of interest points against machine vision methods.
The synthetic interest points and corners are designed to test pixel thickness, edge
intersections, shape, and complexity. The set diverges significantly from those of Rosin
and others, and attempts to fill a void in the analysis of interest point detectors. The
alphabets are placed on a regular grid, allowing for detmining position detection count.

288

CHAPTER 7 © GROUND TRUTH DATA, CONTENT, METRICS, AND ANALYSIS

Key Questions For Constructing Ground
Truth Data

In this section we identify some key questions to answer for creating ground truth data,
rather than provideing much specific guidance or answers. The type of work undertaken
will dictates the type of guidance, for example, published research usually requires widely
accepted ground truth data to allow for peer review and duplication of results. In medical
or automobile industries,there may be government regulations, and also legal issues
if competitors publish measurement or performance data. For example, if a company
publishes any type of benchmark results against a ground truth data set comparing the
results with those of competitor systems, all such data and claims should be reviewed by
an attorney to avoid the complexities and penalties of commerce regulations, which can
be daunting and severe.

For real products and real systems, perhaps the best guidance comes from the
requirements, expectations and goals for performance and accuracy.Once a clear set of
requirements are in place, then the ground truth selection process can begin.

Content: Adopt, Modify, or Create

It is useful to become familiar with existing ground truth datasets prior to creating a new
one. The choices are obvious:

¢ Adopt an existing dataset.
e Adopt-And-Modify an existing data set.

L4 Create a new dataset.

Survey Of Available Ground Truth Data

Appendix B has information on several existing ground truth datasets. Take some time

to get to know what is already available, and study the research papers coming out of
SIGGRAPH, CVPR, IJCV, NIPS in Appendix C, and other research conferences to learn
more about new datasets and how they are being used. The available datasets come from
avariety of sources, including:

e Academic research organizations, usually available free of charge
for academic research.

e Government datasets, sometimes with restricted use.

e Industry datasets, available from major corporations like
Microsoft, sometimes can be licensed for commercial use.

289

CHAPTER 7 © GROUND TRUTH DATA, CONTENT, METRICS, AND ANALYSIS

Fitting Data to Algorithms

Perhaps the biggest challenge is to determine whether a dataset is a correct fit for the
problem at hand. Is the detail in the ground truth data sufficient to find the boundaries
and limits of the chosen algorithms and systems? “Fitting” applies to key variables
such as the ground truth data, the algorithms used, the object models, classifier, and
the intended use-cases. See Figure 7-3, which shows how ground truth data, image
pre-processing, detector and descriptor algorithms, and model metrics should be
fitted together.

Figure 7-3. (Top left) Image pre-processing for edges shown using Shen-Castan edge
detection against ground truth data. (Top right) Over-fitting detection parameters
yield too many small edges. (Bottom left) Under fitting parameters yield too few edges.
(Bottom right) Relaxed parameters yield reasonable edges

290

CHAPTER 7 © GROUND TRUTH DATA, CONTENT, METRICS, AND ANALYSIS

Here are a few examples to illustrate the variables.

e Data fitting: If the dataset does not provide enough pixel
resolution or bit depth, or there are insufficient unique samples
in the training set, the model will be incomplete, the matching
may suffer, and the data is under-fitted to the problem. Oy, if the
ground truth contains too many different types of features that
will never be encoutered in the test set or in real applications.
If the model resolution is 16 bits per RGB channel when only
8 bits per color channel are provided in real data, the data and
model are over-fitted to the problem.

e Algorithm fitting: If scale invariance is included in the ground
truth data, and the LBP operator being tested is not claimed to be
scale invariant, then the algorithm is under-fitted to the data. If the
SIFT method is used on data with no scale or rotation variations,
then the SIFT algithm is over-fitted to the data.

e Use-case fitting: If the use-cases are not represented in the data
and model, the data and model are under-fitted to the problem.

Scene Composition and Labeling

Ground truth data is composed of labeled features such as foreground, background, and
objects or features to recognize. The labels define exactly what features are present in
the images, and these labels may be a combination of on-screen labels, associated label
files, or databases. Sometimes a randomly composed scene from the wild is preferred as
ground truth data, and then only the required items in the scene are labeled. Other times,
ground truth data is scripted and composed the way a scene for a movie would be.

In any case, the appropriate objects and actors in the scene must be labeled, and
perhaps the positions of each must be known and recorded as well. A database or file
containing the labels must therefore be created and associated with each ground truth
image to allow for testing. See Figure 7-4, which shows annotated or labeled ground
truth dataset images for a scene analysis of cuboids [62]. See also the Labelme database
described in Appendix B, which allows contributors to provide labeled databases.

2901

CHAPTER 7 GROUND TRUTH DATA, CONTENT, METRICS, AND ANALYSIS

Figure 7-4. Annotated or labeled ground-truth dataset images for scene analysis of cuboids
(left and center). The labels are annotated manually into the ground- truth dataset, in yellow
(light gray in B&W version) marking the cuboid edges and corners. (right) Ground-truth
data contains pre-computed 3D corner HOG descriptor sets, which are matched against live
detected cuboid HOG feature sets. Successful matches shown in green (dark gray in B&W
version). (Images used by permission © Bryan Russel, Jianxiong Xiao, and Antonio Torralba)

Composition

Establishing the right set of ground truth data is like asssembling a composition; several
variables are involved, including:

¢ Scene Content: Designing the visual content, including fixed
objects (those that do not move), dynamic objects (those that
enter and leave the scene), and dynamic variables (such as
position and movement of objects in the scene).

e Lighting: Casting appropriate lighting onto the scene.

¢ Distance: Setting and labeling the correct distance for each
object to get the pixel resolution needed—too far away means not
enough pixels.

e Motion Scripting: Determining the appropriate motion of objects
in the scene for each frame; for example, how many people are
in the scene, what are their positions and distances, number of
frames where each person appears, and where each person enters
and exits. Also, scripting scenes to enable invariance testing for
changes in perspective, scale, affine geometry, occlusion.

e Labeling: Creating a formatted file, database, or spreadsheet to
describe each labeled ground truth object in the scene for each
frame.

¢ Intended Algorithms: Deciding which algorithms for interest
point and feature detection will be used, what metrics are to be
produced, and which invariance attributes are expected from
each algorithm; for example, an LBP by itself does not provide
scale invariance, but SIFT does.

292

CHAPTER 7 © GROUND TRUTH DATA, CONTENT, METRICS, AND ANALYSIS

¢ Intended Use-Cases: Determining the problem domain or
application. Does the ground truth data represent enough real
use-cases?

¢ Image Channel Bit Depth, Resolution: Setting these to match
requirements.

e Metrics: Defining the group of metrics to measure—for example,
false positives and false negatives. Creating a test fixture to run
the algorithms against the dataset, measuring and recording all
necessary results.

e Analysis: Interpreting the metrics by understanding the
limitations of both the ground truth data and the algorithms,
defining the success criteria.

¢ Open Rating Systems: Exploring whether there is an open rating
system that can be used to report the results. For example, the
Middlebury Dataset provides an open rating system for 3D stereo
algorithms, and is described in Appendix B; other rating systems
are published as a part of grand challenge contests held by
computer vision organizations and governments, and some are
reviewed in Appendix B. Open rating systems allow existing and
new algorithms to be compared on a uniform scale.

Labeling

Ground truth data may simply be images returned from a search engine, and the

label may just be the search engine word or phrase. Figure 7-5 shows a graph of photo
connectivity for photo tourism [63-65] that is created from pseudo-random images of a
well-known location, the Trevi Fountain in Rome. It is likely that in five to ten years, photo
tourism applications will provide high-quality image reconstruction including textures,
3D surfaces, and rerenderings of the same location, rivaling real photographs.

293

CHAPTER 7 =~ GROUND TRUTH DATA, CONTENT, METRICS, AND ANALYSIS

Figure 7-5. Graph of photo connectivity (center) created from analyzing multiple public
images from a search engine of the Trevi Fountain (a). Edges show photos matched and
connected to features in the 3D scene, including daytime and nighttime lighting (b)(c)(d).
(Images © Noah Snavely and used by permission)

For some applications, labels and markers are inserted into the ground truth
datasets to enable analysis of results, as shown in the 3D scene understanding database
for cuboids in Figure 7-4. Another example later in this chapter composes scenes using
synthetic alphabets of interest points and corners that are superimposed on the images
of a regularly spaced grid to enable position verification (see also Appendix A). In some
visual tracking applications, markers are attached to physical objects (a wrist band, for
example) to establish ground truth features.

Another example is ground truth data composed to measure gaze detection, using
avideo sequence containing labels for two human male subjects entering and leaving
the scene at a known location and time, walking from left to right at a known speed and
depth in the scene. The object they are gazing at would be at a known location and be
labeled as well.

Defining the Goals and Expectations

To establish goals for the ground truth data, questions must be asked. For instance, what
is the intended use of the application requiring the ground truth data? What decisions
must be made from the ground truth data in terms of accuracy and performance? How is
quality and success measured? The goals of academic research and commercial systems
are quite different.

294

CHAPTER 7 © GROUND TRUTH DATA, CONTENT, METRICS, AND ANALYSIS

Mikolajczyk and Schmid Methodology

A set of well-regarded papers by Mikolajczyk, Schmid and others [45,79,82,91,306]
provides a good methodology to start with for measuring local interest points and feature
detector quality. Of particular interest is the methodology used to measure scale and
affine invariant interest point detectors [306] which uses natural images to start, then
applies a set of known affine transformations to those images, such as homography,
rotation, and scale. Interest point detectors are run against the images, followed by
feature extractors, and then the matching recall and precision are measured across the
transformed images to yield quality metrics.

Open Rating Systems

The computer vision community is, little by little, developing various open rating
systems, which encourage algorithm comparisons and improvements to increase quality.
In areas where such open databases exist, there is rapid growth in quality for specific
algorithms. Appendix B lists open rating systems such as the Pascal VOC Challenge for
object detection. Pascal VOC uses an open ground truth database with associated grand
challenge competition problems for measuring the accuracy of the latest algorithms
against the dataset.

Another example is the Middlebury Dataset, which provides ground truth datasets
covering the 3D stereo algorithm domain, allowing for open comparison of key metrics
between new and old algorithms, with the results published online.

Corner Cases and Limits

Finding out where the algorithms fail is valuable. Academic research is often not
interested in the rigor required by industry in defining failure modes. One way to find
the corner cases and limits is to run the same tests on a wide range of ground truth data,
perhaps even data that is outside the scope of the problem at hand. Given the availability
of publicly available ground truth databases, using several databases is realistic.

However, once the key ground truth data is gathered, it can also be useful to devise
arange of corner cases—for example, by providing noisy data, intensity filtered data, or
blurry data to test the limits of performance and accuracy.

Interest Points and Features

Interest points and features are not always detected as expected or predicted. Machine
vision algorithms detect a different set of interst points than those humans expect. For
example, Figure 7-6 shows obvious interest points missed by the SURF algorithm with

a given set of parameters, which uses a method based on determinant of Hessian blob
detection. Note that some interest points obvious to humans are not detected at all, some
false positives occur, and some identical interest points are not detected consistently.

295

CHAPTER 7 © GROUND TRUTH DATA, CONTENT, METRICS, AND ANALYSIS

Figure 7-6. Interest points detected on the same image using different methods: (Left)
Shi-Tomasi corners marked with crosses. (Right) SURF interest points marked with circles.
Results are not consistent or deterministic

Also, real interest points change over time—for example, as objects move and
rotate—which is a strong agrument for using real ground truth data vs. synthetic data to
test a wide range of potential interest points for false positives and false negatives.

Robustness Criteria for Ground Truth Data

In Chapter 5, a robustness criteria was developed listing various invariance attributes,
such as rotation and scale. Here, we apply the robustness criteria to the development of
ground truth data.

Illustrated Robustness Criteria

Table 7-1 discusses various robustness criteria attributes, not all attributes are needed
for a given application. For example, if radial distortion might be present in an optical
system, then the best algorithms and corresponding metrics will be devised that are
robust to radial distortion, or as mitigation, the vision pipeline must be designed with
a pre-processing section to remove or compensate for the radial distortion prior to
determining the metrics.

296

CHAPTER 7 © GROUND TRUTH DATA, CONTENT, METRICS, AND ANALYSIS

Table 7-1. Robustness Criteria for Ground Truth Data

Attribute Discussion

Uneven Define range of acceptable illumination for the application;

illumination uneven illumination may degrade certain algorithms, some
algorithms are more tolerant.

Brightness Define expected brightness range of key features, and prepare
ground-truth data accordingly.

Contrast Define range of acceptable contrast for the application; some
algorithms are more tolerant.

Vignette Optical systems may degrade light and manifest as dim

Color accuracy

Clutter

Occlusion and
clipping

Outliers and
proximity

Noise

Motion blur

Jitter and judder

illumination at the edges. Smaller the features are localized better
and may be able to overcome this situation; large features that
span areas of uneven light are affected more.

Inaccurate color space treatment may result in poor color
performance. Colorimetry is important; consider choosing the
right color space (RGB, YIQ, Lab, Jab, etc.) and use the right level
of bit precision for each color, whether 8/16 bits is best.

Some algorithms are not tolerant of clutter in images and rely on
the scene to be constructed with a minimal number of subjects.
Descriptor pixel size may be an issue for block search methods—
too much extraneous detail in a region may be a problem for the
algorithm.

Objects may be occluded or hidden or clipped. Algorithms may or
may not tolerate such occlusion. Some occlusion artifacts can be
eliminated or compensated for using image pre-processing and
segmentation methods.

Sometimes groups of objects within a region are the subject, and
outliers are to be ignored. Also, proximity of objects or features
may guide classification, so varying the arrangement of features
or objects in the scene may be critical.

Noise may take on regular or random patterns, such as snow, rain,
single-pixel spot nose, line noise, random electrical noise affecting
pixel bit resolution, etc.

Motion blur is an important problem for almost all real-time
applications. This can be overcome by using faster frame rates
and employing image pre-processing to remove the motion blur,
if possible.

Common problem in video images taken from moving cameras,
where each scan line may be offset from the regular 2D grid.

(continued)

297

CHAPTER 7 © GROUND TRUTH DATA, CONTENT, METRICS, AND ANALYSIS

Table 7-1. (continued)

Attribute

Discussion

Focal plane or
depth

Pixel depth
Resolution

Geometric
distortion

Scale, projection

Affine transforms
and rotation

Feature mirroring,
translation

Reflection

Radial distortion

If the application or use-case for the algorithm assumes all depths
of the image to be in focus, then using ground truth data with out-
of-focus depth planes may be a good way to test the limits.

If features are matched based on the value of pixels, such as gray
scale intensity or color intensity, pixel resolution is an issue. For
example, if a feature descriptor uses 16 bits of effective gray scale
intensity but the actual use-case and ground truth data provide
only 8 bits of resolution, the descriptor may be over-fitted to the
data, or the data may be unrealistic for the application.

Complex warping may occur due to combinations of geometric
errors from optics or distance to subject. On deformable surfaces
such as the human face, surface and feature shape may change in
ways difficult to geometrically describe.

Near and far objects will be represented by more or less pixels,
thus a multi-scale dataset may be required for a given application,
as well as multi-scale feature descriptors. Algorithm sensitivity to
feature scale and intended use case also dictate ground truth data
scale.

In some applications like panoramic image stitching, very little
rotation is expected between adjacent frames—perhaps up to

15 degrees may be tolerated. However, in other applications li