
OPEN SOURCE IN DEPENDABLE SYSTEMS:
CURRENT AND FUTURE BUSINESS MODELS

Cyrille Comar and Franco Gasperoni
AdaCore/ACT Europe
8 rue de Milan, 75009 Paris, France

comar@act-europe.com

gasperoni@act-europe.com

Copyright is the exclusive legal right to copy, distribute, modify, display,
perform, rent or more generally exploit a work by its copyright holder. Copy-
right applies to software works. In the context of software, both source code
and binaries are protected by copyright. Loading a copy of the software onto
a computer is considered copying. Only the copyright holder of a software
program is allowed to copy, modify, make derivative works, and distribute the
software. Anybody else needs permission from the copyright holder. In the
software industry this permission is called a software license.

Abstract This article begins by describing the legal foundations of business models in the
software industry. It then introduces the Free Software (FS) and Open Source
Software (OSS) movements, and surveys various business models found in the
FS/OSS based on them. A special emphasis is placed on the applicability of
these business models to industries that produce dependable systems. This arti-
cle concludes by exploring a FS/OSS co-op model that could enable the devel-
opment of software components for dependable systems.

Keywords: Business Model, Free Software, Open Source Software, Co-op, Safety-Critical
Software, Integrated Modular Avionics.

1. Introduction

This section provides the legal background to understand business models
commonly adopted in the computer software industry. It then explains the
Free and Open Source Software movements and how they relate to dependable
systems.

Legal Background



700 Cyrille Comar and Franco Gasperoni

Nothing requires the copyright holder of a software work to give a license,
or to give the same license to all possible users. Copyright holders can, at their
discretion, charge a fee in exchange for a copy of the software work and its
attached license. In this case what the recipient is buying is not the software
per se but a copy of it. Virtually all software products are sold this way.

The software license specifies the conditions under which the recipient can
(and more often, cannot) copy, distribute or modify the copy of the software
received.

Free Software and Open Source Software

The Free Software (FS) movement created by Richard Stallman in the early
80’s aims to “preserve, protect and promote the freedom to use, study, copy,
modify, and redistribute computer software, and to defend the rights of FS
users” [1]. To protect the freedoms of FS, Richard Stallman created the GPL
(General Public License) [2].

In this respect, FS is no different from proprietary software sold by compa-
nies like Microsoft. A FS program comes with a license (the GPL), just as does
software from “closed-source” software vendors. The big difference between
the GPL and closed-source software licenses is that the GPL is written to favor
the users of FS, while the license of closed-source software vendors is written
to allow as little as necessary, and to favor the closed-source software vendor.
Specifically, the GPL allows:

Copying with no restrictions of any kind;

Furthermore in the case of redistribution the GPL requires:

Redistribution of original software with sources;

Redistribution of derived works with full sources.

Note that the term “free” in Free Software is intended to connote “freedom” but
is often misinterpreted as “no cost”. As a result the term Open Source Software
(OSS) was coined to address this problem. Given the rapid gain in popularity
of the FS/OSS movement, unscrupulous software vendors have claimed their
programs to be “Open Source” by simply adjoining the sources along with their
binaries - while imposing draconian restrictions on what could be done with
those sources. Such actions repudiate the notion of freedom that founded the
FS/OSS movement.

To counter such abuse, the Open Source Initiative (OSI) was created to un-
ambiguously define the term “Open Source Software” [3]. This non-profit
corporation defines “OSS”, and lists a number of approved OSS licenses that
match the definition. There are many approved OSS licenses. In addition to



Open Source in Dependable Systems:Current and Future Business Models 701

the GPL, examples include: the BSD License, the MIT License, the Apache
Software License, the Mozilla Public License. There are over 50 approved
OSS licenses enumerated on the OSI site [4].

FS/OSS and Dependable Systems

FS/OSS projects have blossomed due to the synergy created by openly shar-
ing software and ideas. The FSF/UNESCO Free Software directory contains
over 3,000 packages from visible projects such as GCC (the GNU Compiler
Collection) to Gnome (the GNU desktop [5]). The SourceForge site alone
hosts over 80,000 projects accessed by nearly 850,000 registered users [12].

As opposed to most existing FS/OSS, the software in a dependable system
cannot be reduced only to a set of sources with build scripts and instructions.
Evidence of dependability also resides in the availability of other artifacts, such
as requirement documents, system models, design specs, proofs of correctness,
test suites, verification and validation processes. In the most critical safety
and/or security contexts, these kinds of evidence are formalised as certification
materials to be provided according to the requirements of a recognized, often
international, standard. The creation and evolution of the software component
in a dependable system must be part of an auditable and repeatable process
with stringent quality requirements.

These aspects of system development are not the primary concern of FS/OSS
projects. This does not mean that FS/OSS programs are not dependable. It
does mean that a record of quality assurance measures used to achieve depend-
ability in a FS/OSS application is often not readily available. The focus of a
FS/OSS project is typically to offer a useful, reliable software program to a
given community.

Given that FS/OSS projects have shown that they can produce high-quality,
widely available software programs for the benefit of all, it is natural to wonder
how people building dependable systems can leverage, or even contribute, to
the FS/OSS movement. In [6] the authors analyze this question in the area of
safety-critical systems. The question they ask is: “What would be the bene-
fit of using FS/OSS in safety-critical systems, and under what conditions can
FS/OSS be used”?

In the remainder of this article we look at business models that have sprung
up in the context of FS/OSS and analyze their relevance to the production of
dependable software. We conclude by elaborating one of them and examining
how it might be adapted to the benefit of the dependable software industry.



702 Cyrille Comar and Franco Gasperoni

2. Business Models and the Computer Industry

The business models underlying most of the traditional computer industry
rest, at least initially, on the notion of supplier scarcity. Put simply, there are
three basic types of scarcities: product, expertise, and infrastructure.

An example of software product scarcity is the MS Windows operating sys-
tem: you can purchase MS Windows only from Microsoft. An example of
hardware product scarcity is the Pentium-compatible microprocessor: you can
purchase Pentium chips from Intel, the originator of the Pentium design, or
AMD. An example of expertise scarcity is the expertise required to manage
a large IT (Information Technology) project: you can purchase this expertise
from companies such as IBM Global Services, EDS, Cap Gemini, and a few
others. An example of scarcity of infrastructure is the infrastructure developed
by Dell in the PC industry. The PC industry has become a commodity industry,
i.e. an industry with an abundance of suppliers. Thanks to its infrastructure,
Dell has evolved from a garage-like operation to the PC industry leader.

In closed-software products, initial scarcities can be made into long-lasting
ones thanks to the creation of technical entry barriers that give rise to monop-
olies or oligopolies. This phenomenon is well described in [7].

3. Business Models of FS/OSS

In contrast to traditional scarcity-based models as described in the previous
section, the FS/OSS movement has created economies of abundance leading
to a “community/network effect”. In the “network effect”, a community of
software developers is created. This community, and the mind-share that is
associated with it, is leveraged to sell products, expertise, infrastructure, ad-
vertising space, or some mixture of these.

The purpose of this section is to explore some business models involving
FS/OSS. It will also examine how the three previously mentioned kinds of
scarcities (product, expertise, infrastructure), along with the “network effect”,
are used to generate revenue. The list given here is by no means exhaustive.

Pure FS/OSS Product

As for any software product, there is no restriction on the price that can
be charged for software licensed under a FS/OSS license. In this model the
FS/OSS vendor limits itself to selling a standalone, self-contained set of FS/OSS
programs with perhaps some minimal installation help.

Recipients of FS/OSS can buy one copy of the software and install/run it on
as many machines as they like. This means that the conventional sell-per-unit
business model does not work very well for FS/OSS since FS/OSS licenses
favor an economy of software abundance. Furthermore, recipients of FS/OSS



Open Source in Dependable Systems:Current and Future Business Models 703

programs have themselves the freedom to redistribute copies of the software
product and to charge for it. This limits the amount that the initial vendor can
charge to pretty much commodity prices, unless the FS/OSS product is both
one-of-a-kind and sold in low volume to address specialized business needs.

Thus, this business model leverages solely on scarcity of infrastructure (as-
sembling of proper FS/OSS packages and redistribution). Most commercial
GNU/Linux distributions until recently were based on this pure FS/OSS prod-
uct commodity price model. Because the infrastructure required for this kind
of operation is easily available, this type of business model has been abandoned
by a number of GNU/Linux distributors.

For developers of dependable systems, this business model is not particu-
larly attractive or relevant. Development of dependable software is an expertise-
intensive task usually employing sophisticated technology. As such, buying a
CD-ROM at commodity prices with little or no associated service is not par-
ticularly interesting for two reasons. Either the FS/OSS product is a sophisti-
cated toolset (in which case it is critical that high-quality service accompany
the product, regardless of its FS/OSS status), or it is a component, such as a
library or operating system to be embedded in the final dependable system (in
which case getting a CD containing sources is nice, but not nearly enough to
meet the customer’s need for evidence).

Dual License Product

In this model, the FS/OSS work is distributed at no cost under the terms of
the GPL, as well being sold under a different license to customers who do not
want to be bound by the terms of the GPL. This model is available only to the
copyright holders of the software, and leverages product scarcity. It is viable
only when the software being sold is included, in whole or in part, in another
application that is in turn sold by a customer under terms different from the
GPL. If a customer were to include in his own work FS licensed under the
GPL, then his application would be considered a derivative work of the FS,
thereby forbidding redistribution unless the whole application were licensed
under the GPL.

MySQL, a database, and Cygwin, a UNIX-like environment for Windows,
are licensed this way. This is an interesting illustration of the fact that the copy-
right holder can distribute the same version of a software work with different
licensing conditions.

With respect to dependable systems, this business model rests on vendor
lock-in. It has the advantage, relative to the completely proprietary model,
of offering the sources of the product at no extra cost. It may also leverage
a larger community of users and perhaps additional expertise independent of
the vendor. Apart from these, it offers no significant advantage over a propri-



704 Cyrille Comar and Franco Gasperoni

etary software model. Its appropriateness to industries developing dependable
software depends more on the relevance of the product and associated services
than on any enhancement of value due to the business model.

The Proprietary FS/OSS Product

This business model is an oxymoron, or we could call it the have-your-cake-
and-eat-it-too business model. In this model the software vendor assembles a
set of FS/OSS and proprietary applications, and markets the bundle on the basis
of perceived synergy among them. The vendor uses the conventional charge-
per-unit model where the unit price can be higher because of the scarcity cre-
ated by the proprietary components in the bundle. Some GNU/Linux distribu-
tors have adopted, often temporarily, this business model.

This model is so anchored in the conceptual milieu of proprietary soft-
ware business that it offers no advantage to the customer over the conventional
closed-software model.

FS/OSS Leveraged Hardware

With the advent of 64-bit chips such as the Itanium from Intel [8] a number
of hardware vendors have announced 64-bit workstations running (sometimes
customized versions of) Linux. An interesting example is the SGI Altix plat-
form [9]. In this business model hardware vendors leverage the Linux “network
effect” to offer high-performance servers at premium prices.

Bundling a FS/OSS operating system (OS) and related software compo-
nents, along with services covering the complete platform, is an interesting
offer to developers of dependable software: the entire system on which their
application rests becomes open for inspection. The QA and other documents
typically needed when developing dependable software are not available, but
for certain types of dependable systems having access to the OS source code
allows a dependable system vendor to create an in-house team to qualify and
tailor the OS according to the dependable system requirements. The addi-
tional support provided by the hardware vendor for the platform (and typically
bundled into its premium pricing) is a differentiating factor for customers de-
veloping dependable systems, compared to commodity hardware with little or
no vendor support.

Infrastructure Provider

Companies such as VA Software [10] with its OSDN (Open Source De-
velopment Network, Inc.) [11] leverage scarcity of infrastructure to provide
an OSS development website, SourceForge [12] with a large repository of
FS/OSS projects for whom the basic service is free of charge, while advanced
services come at a fee. OSDN delivers more than 222 million page views and



Open Source in Dependable Systems: Current and Future Business Models 705

reaches 12 million unique visitors per month. On the strength of this network
effect, some of its revenue is indirect from web advertising. Other online rev-
enue comes from per-user annual subscriptions that give access to advanced
services on the SourceForge.net web site, such as advanced search capabili-
ties, priority technical support, project monitoring, etc. The annual cost per
user is low (less that USD 50 in 2004).

VA Software also sells SourceForge Enterprise Edition [13] to manage and
execute offshore and distributed team development. The SourceForge appli-
cation itself does not appear to be FS/OSS. VA Software leverages the free
service it provides to the FS/OSS communities to sell and promote its Source-
Forge product.

This business model is interesting for developers of dependable system that
have a large and possibly distributed development teams. Leveraging the expe-
rience with collaborative development in the FS/OSS community and using the
same infrastructure that was created to support it can be an attractive solution.

Pure Service

In this model a service company builds expertise around a number of FS/OSS
works and helps its clients with installation, support, use, maintenance, up-
grades and adjustments or customizations that may be needed. This business
model is based on a relative abundance of software, but scarcity of expertise,
to market service. An example is Alcove, a European company providing pro-
fessional FS/OSS services [14]. Another interesting example in this domain
is what IBM is doing with Linux with over 2,000 Linux-skilled IBM Global
Services professionals [15, 16].

Offering service, and in this case expertise, is certainly interesting in the
context of dependable systems development, if the consultants being engaged
are experts and contributors to the FS/OSS being used in the construction of
the dependable system. The difference between this business model and that of
“regular” service companies is that in the FS/OSS case consultants can inspect
and contribute to the development of the FS/OSS product. As such they are
in a position to provide a deep level of know-how to the client developing a
dependable system.

Leveraged Service

A leveraged service is an expertise-based service that facilitates the effec-
tive application of a FS/OSS product to specific business needs. This prod-
uct/service combination is typically sold as a yearly subscription comprising
the FS/OSS toolset with upgrades, high-quality toolset support and online con-
sulting from toolset specialists. GNAT Pro, the FS development environment



706 Cyrille Comar and Franco Gasperoni

for the Ada programming language used in mission- and safety-critical systems
is an example [17].

We use the GNAT Pro offering to illustrate the value proposition of this
model. GNAT Pro customers receive a high-quality FS product accompanied
by service directly from Ada experts and the GNAT Pro developers. The GNAT
Pro experts serve as partners to the customer’s development team. They work
closely with the customer team to help them make optimal use of GNAT Pro
and to assist them with all aspects of their Ada software development. As part
of that dialogue the GNAT Pro engineers regularly address issues such as code
optimization, programming language semantics, multi-language systems, and
code organization. In addition to the benefits stemming from a high-quality
product, this level of service leads to higher productivity and reduced risk in
projects using GNAT Pro.

This business model leverages the subtle combination of two scarcities:
scarcity of the FS/OSS expertise and scarcity of the FS/OSS quality assurance
(QA) infrastructure. In the case of GNAT Pro, the GNAT Pro development
team has built a sophisticated QA infrastructure comprising over 30,000 real-
life test cases (a total of over 6 million lines of Ada source code) and automated
capabilities for execution and evaluation of the tests, supporting nightly inte-
gration, regression testing and analysis on multiple platforms.

This business model works for FS/OSS used in fairly to highly technical
software projects requiring sophisticated tools, libraries, and other software
components, along with a high degree of expertise, and of confidence in the
reliablility of the products. The software deployed in a dependable system is
often of this sort. As a result, this business model is well-suited for industries
producing highly-dependable software. What’s more, this business model is
in the interest of the companies ultimately responsible for the software used
in dependable systems because it aligns their interests with those of their tool
vendors. A company developing software for a dependable system is interested
in receiving a high-quality product with high quality service in order to develop
its dependable application. The only way a FS/OSS company can secure recur-
ring revenue with this business model is by ensuring that the customer renews
his subscription. This will happen only if the customer is happy with the tech-
nology and the service he receives: unlike for closed-software, the FS/OSS
product alone provides no vendor lock-in.

OSS Co-Ops

The Eclipse Foundation [18] and the Apache Software Foundation [19] have
an interesting and unconventional business model.

Eclipse is an open, extensible IDE (integrated development environment)
built on a mechanism for developing, integrating, and running modules called



Open Source in Dependable Systems:Current and Future Business Models 707

plug-ins. Put it another way, Eclipse is a platform providing a common IDE
infrastructure for tool providers to plug-in their tools.

The Apache Software Foundation provides support for the Apache commu-
nity of open-source software projects such as the Apache HTTP server.

Both the Eclipse Foundation and the Apache Software Foundation are non-
profit organizations. They are characterized by a collaborative, consensus-
based organization and development process. They form a tightly-coupled
community of developers and users governed by an open and pragmatic soft-
ware license. We call these types of organizations OSS cooperatives or OSS
co-ops.

A general-purpose co-op is an association formed and operated for the ben-
efit of those using it. Its business purpose lies more in cost reduction than in
revenue generation. The roots of the co-op concept lie in the work of Peter
Kropotkin in 1902 [21]. In his book Kropotkin describes how in Siberia ani-
mals, instead of competing for resources, have to work together to stay alive.
Throughout his book, Kropotkin stresses that cooperation is the main factor in
evolution, rather than the competing forces posited by Darwin and his adher-
ents.

It is precisely this drive for cooperation to solve a mutual problem, too hard
or too costly to solve alone, that is the business case for OSS co-ops. The idea
of industrial cooperation is not new. The Eurofighter consortium [22] is a good
example of cooperative effort across aerospace companies and nations. What
is novel, and what the FS/OSS movement has shown, is that this idea can be
applied to the development of software.

In the next section we look into how this concept of OSS co-ops can be put
to work in the development of software for dependable systems.

4. OSS Co-Ops and Dependable Systems

In this section we explore, through an example, how the OSS co-op business
model could lead to a new model for the development of software components
in dependable systems.

Example: Integrated Modular Avionics

Our example is set in the avionics industry - an industry where dependable
software is crucial. Until recently, the avionics industry has relied on federated
architectures where separate avionics subsystems (computers) each perform a
dedicated function. With the constant increase in aircraft functionalities, com-
putional requirements, and corresponding embedded software, the life-cycle
cost of this federation of individual systems has led aerospace companies and
program offices to seek alternative approaches. The main solution is a move
towards generic computing platforms that can run multiple applications con-



708 Cyrille Comar and Franco Gasperoni

currently, possibly at different levels of safety criticality. This approach, known
as Integrated Modular Avionics (IMA), results in a reduced number of subsys-
tems (computers) and reduced weight [23, 24]. One of the outcomes is the
need for an operating system to support the IMA software architecture.

When an aeronautics company FlightEX wants to supply IMA-compatible
avionics software, for instance a flight management system (FMS), they need
to re-engineer their current FMS software to execute under an IMA-compatible
operating system (OS). The re-engineering effort of their FMS is within the
core competence of FlightEX since the FMS represents an important part of its
avionics software know-how. On the other hand, creating and maintaining an
IMA-compatible OS layer is not part of the usual activities of FlightEX. Since
this is a requirement for new avionics programs, it must be done. To solve this
dilemma FlightEX has adopted the following strategies:

Follow the conventional “do-it-yourself” approach. Use internal resources
to design, develop, provide certification evidence, and maintain the IMA-
compatible OS.

Purchase a commercial off-the-shelf (COTS) OS and adapt it to be IMA-
compatible along with providing all the certification artifacts necessary
for its deployment in avionics applications.

Team up with commercial off-the-shelf (COTS) OS vendors to provide
avionics guidance and funding for the development of IMA-compatible
OSes.

Example Continued: What to Do for the OS?

Faced with the absence of IMA-compatible OSes it is tempting for FlightEX
to develop its own OS, or internally adapt an existing one. On the positive side,
the OS specifications can be customized to match the exact needs of FlightEX.
Furthermore, the first steps for the development of such an OS are based on
the company’s detailed avionics know-how. On the negative side, internal re-
sources are diverted from the core avionics focus of FlightEX, in addition to
the necessity for long-term maintenance of the home-grown OS and the related
expertise. Further, the adapted FMS, which is one of the company’s core prod-
ucts, runs the risk of being less flexible to deploy in other IMA architecture
implemented over a different OS choice.

Faced with this unpleasant situation a number of avionics companies have
transferred the commercial rights of the IMA-compatible OS to a commercial
vendor. The idea being that the vendor can sell the IMA-compatible OS to
other avionics companies and, with the resulting revenue, ensure long-term
maintenance and evolution of the OS. This approach is based on the insight



Open Source in Dependable Systems:Current and Future Business Models 709

that the IMA-compatible OS alone will not be the key differentiating factor
when competing for avionics projects.

Following a proprietary COTS-only approach has its own risks. In fact,
a commercial offering can live for as long as it is profitable. This is an issue
when the required expertise and related investments are high and the customers
few. This, along with the viability of the COTS supplier, is a risk factor when
software choices must stand for decade-long projects. In addition, there are
potential geo-political concerns: European avionics companies may need to
avoid COTS OSes restricted by US export regulations and vice-versa. See [6]
for a complete discussion of the risks related to the use of COTS in avionics
software.

5. Conclusion: Towards an OSS Co-Op

In addition to the home-grown or the COTS approaches described above,
a cooperative approach may provide an interesting middle ground. Instead
of going alone, or relying on a third party, aeronautics companies and others
sharing similar OS needs, can cooperate towards a common OS. The objective
would be to ensure long-term availability to all co-op members of the OS along
with a reduction in their overall costs of deployment.

The OSS co-ops such as Apache and Eclipse offer an interesting model for
sharing the development and maintenance effort as well as the ownership of
the software. They also provide interesting ideas on how to manage software
independence from any particular member of the co-op. In the case of the
avionics industry, the co-op model needs to be enhanced to take into account
the specificities of safety-critical software (creating and sharing certification
material, putting in place a strict QA infrastructure for software evolution, etc.)

Sharing the source code is insufficient. Other things need to be shared
and jointly owned, in particular certification materials.

A strict QA infrastructure needs to be put in place as part of the evolution
process.

As in the Apache and Eclipse cases, an independent organization made of
its co-op members can play the leading role in hosting and maintaining the
overall infrastructure, as well as guaranteeing the quality and independence of
the certification material that is shared by co-op members. The software would
be available as OSS and made available publicly, to spread its use and allow
third part vendors to adapt their toolset easily. To encourage others to become
members of the co-op, certification artifacts along with support and expertise
as detailed in the “leveraged service” business model would be provided to
members of the co-op for their projects.



710 Cyrille Comar and Franco Gasperoni

This software co-op business model leverages the economics of sharing
which has made the success of the FS/OSS movement. A COTS OS ven-
dor may even get it started by pitching its own OS, in order to gain a decisive
competitive advantage over its competitors. A fantasy?

References

http://www.fsf.org/

http://www.gnu.org/copyleft/gpl.html

http://www.opensource.org/

http://www.opensource.org/licenses/

http://www.gnu.org/

Logiciel libre et sûreté de fonctionnement, by Philippe David and Hélène Waeselynck
Editors, 2003, Lavoisier. In French.

The Gorilla Game, by Geoffrey A. Moore, Paul J. Johnson, and Tom Kippola, 1998, Harper
Business Publisher.

http://www.intel.com/products/server/processors/server/itanium2/

http://www.sgi.com/servers/altix/

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

http://www.vasoftware.com/

http://www.osdn.com/

http://sourceforge.net/

http://www.vasoftware.com/products/index.php

http://www.alcove.com/

http://www.ibm.com/linux/

http://www-5.ibm.com/services/be/pdf/linux_services_opportunity.pdf

http://www.gnat.info/

http://www.eclipse.org/

http://www. apache. org/

http://www.eclipse.org/

Mutual Aid: A Factor of Evolution, by Peter Kropotkin, 1902.
Available from Porter Sargent Publisher (December 1976). Also at
http://socserv.socsci.mcmaster.ca/ econ/ugcm/3113/kropotkin/mutaid.txt

http://www.eurofighter.com/

DO-255: Requirements Specification for Avionics Computer Resource, RTCA, 2000.
Available at http://www.rtca.org/onlinecart/product.cfm?id=193.

ARINC 653-1: Avionics Application Software Standard Interface, ARINC, 2003. Avail-
able at https://www.arinc.com/cf/store/catalog_detail.cfm?item_id=495.

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]




