aiT:
WORST-CASE EXECUTION TIME PREDICTION
BY STATIC PROGRAM ANALYSIS

Christian Ferdinand and Reinhold Heckmann
AbsInt Angewandte Informatik GmbH,
Stuhlsatzenhausweg 69, D-66123 Saarbrucken, Germany

info@absint.com http://www.absint.com

1. Introduction

Many tasks in safety-critical embedded systems have hard real-time char-
acteristics. Failure to meet deadlines may result in the loss of life or in large
damages. Utmost carefulness and state-of-the-art machinery have to be applied
to make sure that all requirements are met. To do so lies in the responsibility
of the system designer(s). Fortunately, the state of the art in deriving run-time
guarantees for real-time systems has progressed so much that tools based on
sound methods are commercially available and have proved their usability in
industrial practice.

AbsInt’s WCET Analyzer aiT (http://www.absint.de/wcet.htm)is
the first automatic tool for checking the correct timing behavior of software in
safety-critical embedded systems as found in the aeronautics and automotive
industries. To compute automatically upper bounds for the worst-case execu-
tion time (WCET), aiT first derives safe upper bounds for the execution times
of basic blocks and then computes, by integer linear programming, an upper
bound on the execution times over all possible paths of the program. These up-
per bounds are valid for all inputs and each task execution, and usually tight,
i.e. the overestimation of the WCET is small.

2. Challenges of Modern Processor Architecture

In modern microprocessor architectures caches, pipelines, and all kinds of
speculation are key features for improving performance. Caches are used to
bridge the gap between processor speed and the access time of main mem-
ory. Pipelines enable acceleration by overlapping the executions of different
instructions. The consequence is that the execution times of individual in-
structions, and thus the contribution of one execution of an instruction to the

378 aiT: Worst-Case Execution Time Prediction by Static Program Analysis

Executable |
program

CFG Builder |

Loop Trafo

{1 Value Analyzer :

AlP
: File
|| Cache/Pipeline
- WCET |
T ST Visualization [
PER i
File)

Figure 1. Phases of WCET computation

program’s execution time can vary widely. The timing difference between
the minimal case (when execution of an instruction goes smoothly through
pipeline and cache) and a timing accident (when everything goes wrong) can
be in the order of several hundred processor cycles. Since the execution time of
an instruction depends on the execution state, e.g., the contents of the cache(s),
the occupancy of other resources, and thus on the execution history, the execu-
tion time cannot be determined in isolation from the execution history.

3. Phases of WCET Computation

AbsInt’s WCET tool aiT determines the WCET of a program task in several
phases [Ferdinand et al., 2001] (see Figure 1)

® CFG Building decodes, i.e. identifies instructions, and reconstructs the
control-flow graph (CFG) from a binary program;

® Value Analysis computes value ranges for registers and address ranges
for instructions accessing memorys;

® Loop Bound Analysis determines upper bounds for the number of iter-
ations of simple loops;

® (Cache Analysis classifies memory references as cache misses or hits
[Ferdinand, 1997];

Christian Ferdinand & Reinhold Heckmann 379

» Pipeline Analysis predicts the behavior of the program on the processor
pipeline [Langenbach et al., 2002];

® Path Analysis determines a worst-case execution path of the program
[Theiling and Ferdinand, 1998].

Cache Analysis uses the results of value analysis to predict the behavior of the
(data) cache. The results of cache analysis are used within pipeline analysis
allowing the prediction of pipeline stalls due to cache misses. The combined
results of the cache and pipeline analyses are the basis for computing the ex-
ecution times of program paths. Separating WCET determination into sev-
eral phases makes it possible to use different methods tailored to the subtasks
[Theiling and Ferdinand, 1998]. Value analysis, cache analysis, and pipeline
analysis are done by abstract interpretation [Cousot and Cousot, 1977]. Integer
linear programming is used for path analysis.

Value Analysis

Value analysis tries to determine the values in the processor registers for
every program point and execution context. Often it cannot determine these
values exactly, but only finds safe lower and upper bounds, i.e. intervals that are
guaranteed to contain the exact values. The results of value analysis are used
to determine loop bounds and possible addresses of indirect memory accesses
(important for cache analysis).

Value analysis uses the framework of abstract interpretation: an abstract
state maps registers to intervals of possible values. Each machine instruction
is modeled by a transfer function mapping input states to output states in a
way that is compatible with the semantics of the instruction. At control-flow
joins, the incoming abstract states are combined into a single outgoing state
using a combination function. Because of the presence of loops, transfer and
combination functions must be applied repeatedly until the system of abstract
states stabilizes. Termination of this fixed-point iteration is ensured on a the-
oretical level by the monotonicity of transfer and combination functions and
the fact that a register can only hold finitely many different values. Practi-
cally, value analysis becomes only efficient by applying suitable widening and
narrowing operators as proposed in [Cousot and Cousot, 1977]. The results
of value analysis are usually so good that only a few indirect accesses cannot
be determined exactly. Address ranges for these accesses may be provided by

user annotations.

Pipeline Analysis

Pipeline analysis models the pipeline behavior to determine execution times
for sequential flows (basic blocks) of instructions, as done in [Schneider and

380 aiT: Worst-Case Execution Time Prediction by Static Program Analysis

Ferdinand, 1999]. It takes into account the current pipeline state(s), in particu-
lar resource occupancies, contents of prefetch queues, grouping of instructions,
and classification of memory references by cache analysis. The result is an ex-
ecution time for each basic block in each distinguished execution context.

Like value and cache analysis, pipeline analysis is based on the framework
of abstract interpretation. Pipeline analysis of a basic block starts with a set
of pipeline states determined by the predecessors of the block and lets this
set evolve from instruction to instruction by a kind of cycle-wise simulation
of machine instructions. In contrast to a real simulation, the abstract execu-
tion on the instruction level is in general non-deterministic since information
determining the evolution of the execution state is missing, e.g., due to non-
predictable cache contents. Therefore, the abstract execution of an instruction
may cause a state to split into several successor states. All the states computed
in such tree-like structures form the set of entry states for the successor instruc-
tion. At the end of the basic block, the final set of states is propagated to the
successor blocks. The described evolution of state sets is repeated for all basic
blocks until it stabilizes, i.e. the state sets do not change any more.

The output of pipeline analysis is the number of cycles a basic block takes
to execute, for each context, obtained by taking the upper bound of the number
of simulation cycles for the sequence of instructions for this basic block. These
results are then fed into path analysis to obtain the WCET for the entire task.

4. Usage of aiT

aiT reads an executable, user annotations, a description of the (external)
memories and buses (i.e. a list of memory areas with minimal and maximal
access times), and a task (identified by a start address). A task denotes a se-
quentially executed piece of code (no threads, no parallelism, and no waiting
for external events). This should not be confused with a task in an operating
system that might include code for synchronization or communication.

aiT computes an upper bound of the running time of the task (assuming
no interference from the outside). Effects of interrupts, 10 and timer (co-)
processors are not reflected in the predicted running time and have to be con-
sidered separately (e.g., by a quantitative analysis).

In addition to the raw information about the WCET, detailed information
delivered by the analysis can be visualized by AbsInt’s aiSee tool
(http://www.alsee.com). Figure 2 shows the graphical representation of
the call graph for some small example. The calls (edges) that contribute to the
worst-case running time are marked by the color red. The computed WCET is
given in CPU cycles and in microseconds.

Figure 3 shows the basic block graph of a loop. The number max # de-
scribes the maximal number of traversals of an edge in the worst case, while

Christian Ferdinand & Reinhold Heckmann 381

Worst Case Execution Time: 2889 cycles = 53.089 us

routine: main

[routine: min| [routine: max|

routine: swap

Figure 2. Call graph with WCET results

routine: 1oop_0000
= M max #: 19

max t: B

max #: 19
max t: 10

max #: 1B
max t: 4

max L: B

1 max #: 1B
4 max t: 41

max #:
max L:

max #: 1B
max t: 0

Figure 3. Basic block graph in a loop, with timing information

max t describes the maximal execution time of the basic block from which the
edge originates (taking into account that the basic block is left via the edge).
The worst-case path, the iteration numbers and timings are determined auto-
matically by aiT.

Figure 4 shows the development of possible pipeline states for a basic block
in this example. Such pictures are shown by aiT upon special demand. The
grey boxes correspond to the instructions of the basic block, and the smaller

382 aiT: Worst-Case Execution Time Prediction by Static Program Analysis

Figure 4. Possible pipeline states in a basic block

Figure 5. Individual pipeline state

rectangles are individual pipeline states. Their cycle-wise evolution is indi-
cated by the edges connecting them. Each layer in the trees corresponds to one
CPU cycle. Branches in the trees are caused by conditions that could not be
statically evaluated, e.g., a memory access with unknown address in presence
of memory areas with different access times. On the other hand, two pipeline
states fall together when the details they differ in leave the pipeline. This hap-
pened for instance at the end of the second instruction.

Figure 5 shows part of the top left pipeline state from Figure 4 in greater
magnification. It displays a diagram of the architecture of the CPU (in this
case a PowerPC 555) showing the occupancy of the various pipeline stages
with the instructions currently being executed.

Christian Ferdinand & Reinhold Heckmann 383

5. Conclusion

aiT enables one to develop complex hard real-time systems on state-of-the-
art hardware, increases safety, and saves development time. It has been applied
to real-life benchmark programs containing realistically sized code modules.
Precise timing predictions make it possible to choose the most cost-efficient
hardware. Tools like aiT are of high importance as recent trends, e.g., X-by-
wire, require the knowledge of the WCET of tasks.

References

Cousot, Patrick and Cousot, Radhia (1977). Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In Proceedings
ofthe 4th ACM Symposium on Principles of Programming Languages, Los Angeles, Cali-
fornia.

Ferdinand, Christian (1997). Cache Behavior Prediction for Real-Time Systems. PhD thesis,
Saarland University.

Ferdinand, Christian, Heckmann, Reinhold, Langenbach, Marc, Martin, Florian, Schmidt,
Michael, Theiling, Henrik, Thesing, Stephan, and Wilhelm, Reinhard (2001). Reliable and
precise WCET determination for a real-life processor. In Proceedings of EMSOFT 2001,
First Workshop on Embedded Software, volume 2211 of Lecture Notes in Computer Sci-
ence, pages 469-485. Springer-Verlag.

Langenbach, Marc, Thesing, Stephan, and Heckmann, Reinhold (2002). Pipeline modeling for
timing analysis. In Proceedings of the 9th International Static Analysis Symposium SAS
2002, volume 2477 of Lecture Notes in Computer Science, pages 294-309. Springer-Verlag.

Schneider, Jern and Ferdinand, Christian (1999). Pipeline Behavior Prediction for Superscalar
Processors by Abstract Interpretation. In Proceedings of the ACM SIGPLAN Workshop on
Languages, Compilers and Toolsfor Embedded Systems, volume 34, pages 35-44.

Theiling, Henrik and Ferdinand, Christian (1998). Combining abstract interpretation and ILP
for microarchitecture modelling and program path analysis. In Proceedings ofthe 19th IEEE
Real-Time Systems Symposium, pages 144-153, Madrid, Spain.

