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The University of Illinois has been active in research in the dependable
computing field for over 50 years. Fundamental ideas have been proposed and
major contributions made by researchers at the University of Illinois in the
areas of error detection and recovery, fault tolerance middleware, testing and
diagnosis, experimental evaluation and benchmarking of system dependability,
dependability modeling, and secure system design and validation. This paper
traces the origins of these ideas and their development within the University of
Illinois, as well as their influence upon research at other institutions, and
outlines current research directions.

error detection and recovery, experimental evaluation of dependability, fault
injection, dependability modeling, secure and survivable system design and
validation.

1. INTRODUCTION

The University of Illinois, though nestled in cornfields far from any
center of industry, has been surprisingly productive in the field of computers.
The first electronic digital computer at the University was ORDVAC [92],
built for the Ordnance Department and patterned after the machine
developed at the Institute for Advanced Study, Princeton. One of the
pioneers in the field of fault-tolerant computing was Professor S. Seshu,
whose fundamental contributions to fault diagnosis and fault simulation laid
the groundwork for continued research in the field. From those beginnings in
the late 1950s and early 1960s, the research has continued at a strong pace at
the University, where, at present, around 50 faculty and graduate students
are active in the area.
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Researchers at the University of Illinois have consistently contributed to
the dependable computing community. Over the years they actively
participated in primary symposiums on dependable systems, including the
FTCS International Symposium on Fault-Tolerant Computing (now DSN,
the International Conference on Dependable Systems and Networks), both
by presentation of papers and by serving as program and general chairs.
Program and general chairs who were at the University, or who have come
from the University, include Professor Algirdas Avižienis (FTCS-1, 1971),
Professor Gernot Metze (FTCS-2, 1972 and FTCS-4, 1974), Professor John
Hayes (FTCS-7, 1977), Professor Jacob Abraham (FTCS-11, 1981 and
FTCS-19, 1989), Professor Ravi Iyer (FTCS-19, 1989 and FTCS-25, 1995),
Professor William H. Sanders (FTCS-29, 1999), and Dr. Zbigniew
Kalbarczyk (DSN 2002).

We are delighted with this opportunity to participate in an event honoring
Professor Algirdas Avižienis, a distinguished alumnus of the ECE
Department of the University of Illinois and a founder of IFIP WG 10.4 and
the Fault-Tolerant Computing Symposium.

2. EARLY COMPUTERS

When ILLIAC 1 (essentially a duplicate of ORDVAC) and ILLIAC II
were built at the University of Illinois in the 1950s, fault diagnosis consisted
of running a battery of programs that exercised different sections of the
machine. These test programs typically compared answers computed two
different ways (essentially emulating hardware multiplication in software) or
tended to stress what was suspected to be a vulnerable part (e.g., punch and
subsequently read a continuous stream of characters on paper tape). In
ILLIAC I, a vacuum tube computer (about 2,500 tubes, consuming 35 KW),
the maintenance engineers found it useful to vary supply and heater voltages
by some margins, to tap tubes and chassis with a small plastic mallet while
the test programs were running, and to use only replacement tubes that had
been aged at least 100 hours. Special tests were used for the electrostatic
Williams-tube memory to determine the Read-Around Ratio (RAR) for the
day, i.e., the number of times a cell’s neighbors could be bombarded
between refreshes without altering the cell’s contents. An RAR of 300 was
considered pretty good [156]. By present-day standards, this approach was
very primitive; no attempt was made to model faults systematically or to
evaluate precisely which segments of the machine were covered by the tests.
Yet the routine, preventive, marginal testing maintenance approach and the
clinical experience of the maintenance engineers, coupled with the healthy
skepticism of the users who didn’t completely trust either their numerical
methods or the computer, resulted in a highly reliable operation. Of course,
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the equivalent of the entire ILLIAC I, including its 1024-word memory,
could now be put on one IC chip.

The approach to testing in ILLIAC II, a discrete-component transistor
machine put in service in 1961, was quite similar. However, to simplify fault
diagnosis, the arithmetic unit’s control (involving the equivalent of about
100 flipflops) had been designed to operate asynchronously, using
essentially a double handshake for each control signal and its
acknowledgement. The basic idea came from the theory of speed-
independent circuits developed at the University of Illinois [93]. A large
percentage of failures would, therefore, simply cause the control to wait for
the next step of the handshake sequence; the missing step could easily be
identified from the indicator lights on the flipflops. By contrast, the logic for
the lookahead control did not use handshaking and exhibited some failures
that were extremely difficult to trace. (Incidentally, a subtle design bug in
the arithmetic unit, (-2) * (-2) giving (-4), escaped detection by the tests
using pseudo-random operands but was caught after about nine months by a
numerical double-check built into a user’s program.) Note again that no
attempt was made to model faults systematically, although the handshake
mechanism used in the ALU control exhibited the basic idea of what is now
called self-checking operation.

3. TESTING AND DIAGNOSIS

3.1 Fault simulation and automatic test generation

In the early 1960s, S. Seshu [134], [135], [136] developed the Sequential
Analyzer, which included a set of programs that can generate fault
simulation data (for single, logical, stuck-line faults) for a given logic circuit
and a given test sequence and also has the ability to generate test sequences
for combinational as well as sequential circuits. Although these test
sequences usually were not minimal, they were generated automatically. The
Sequential Analyzer was applied directly, but on a limited scale, at Bell
Telephone Laboratories to check for design errors in IC designs prior to
production, to generate test sequences that could be incorporated into factory
test equipment, and to improve diagnosis procedures for the No. 1 Electronic
Switching System (ESS-1). It was also used extensively at the University of
Illinois to study computer self-diagnosis when an unduplicated processor
was performing checkout and diagnosis of itself [88], [90]. Again, this self-
diagnosis procedure relied on the idea that a processor fault could cause the
processor to stop prematurely. Fault simulators were soon available
commercially. Chang, Manning, and Metze produced, as a tribute to Seshu,
what is probably the first book devoted entirely to digital fault diagnosis



138 R. K. Iyer, W. H. Sanders, J. H. Patel, Z. Kalbarczyk

[20]. Marlett went on to write the first successful commercial software for
automatic test generation in sequential circuits [89].

In the 1980s research continued on fault simulation and automatic test
pattern generation (ATPG). Cheng completed his Ph.D. at Illinois under
Patel and went on to produce the sequential circuit ATPG at AT&T Bell
Labs [25]. Cheng later launched a start-up company (Check Logic Inc.) to
produce commercial ATPG and fault simulation tools. Check Logic was
later acquired by Mentor Graphics. Cheng’s ATPG tools are still being
offered by Mentor Graphics. Niermann, also a student of Patel, advanced the
APTG and fault simulation algorithms even further [98]. Niermann and Patel
launched Sunrise Test Systems in 1989 to productize the research tools from
Illinois. Through subsequent acquisitions, Sunrise became a part of
Synopsys Inc., which continues to offer these test tools and their derivatives.
One of the most notable breakthroughs that came out of this research was a
very fast, memory-efficient fault simulation algorithm, PROOFS [99]. The
then-entrenched algorithm, Concurrent Fault Simulation [151], was replaced
by PROOFS throughout academia and industry and is still the algorithm of
choice for fault simulation of synchronous sequential circuits for simulating
stuck-at faults and many other fault types. A number of researchers have
used the PROOFS fault simulator for research in fault diagnosis, transient
error propagation, and logic verification.

As the IC chip size grew, interconnect faults, such as opens and shorts,
became far more dominant than transistor faults in the semiconductor
manufacturing process. PROOFS was readily adapted to simulate resistive
shorts in ICs [52], [114]. With the availability of accurate resistive bridge
fault simulators, an ATPG for such faults was not far behind [37].

The late 1990s and beyond brought to the forefront the problem of test
application time and test data volume in large scan-based circuits with close
to a million flip-flops in scan. Research at Illinois on generating the smallest
set of test vectors produced theoretical lower bounds as well as the vector set
meeting these bounds in a majority of benchmark circuits [57]. However,
reduction of vectors alone was not enough to bring down the test application
time and data by large factors. Large reduction was achieved with a novel
scan organization called the Illinois Scan Architecture [58], [61]. Illinois
Scan is now in use in many large chips.

3.2 Fault models

Another area in which the research done at the University of Illinois
proved to be seminal is fault representation [130], [131], [132]. Indistin-
guishable or dominated faults can easily be identified, a priori, from the net-
work structure and be eliminated from further consideration. Other research
in fault representation was carried out, primarily at Stanford University [91]
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and at Western Electric Company [148]. Further work by Hayes, Smith, and
Metze at the University of Illinois concentrated on the analysis of multiple
faults, including masking relationships [16], [60], and some surprising
results concerning the undetectability of certain multiple faults, i.e., multiple
redundancies that have no sub-redundancies [140] and extensions [138].

Detailed studies (by Banerjee and Abraham) at the transistor level
indicated that the conventional stuck-at fault model is inadequate for
modeling the effects of physical failures on MOS circuits [9]. Those studies
were used to develop accurate, higher-level fault models for modules such as
decoders and multiplexers, which include the effects of realistic physical
failures. A new logical model, in the form of a multivalued algebra, has also
been developed [11]. It can be used to model the effects of physical failures
at the transistor level, since the model allows for strong interactions among
all three terminals of a transistor. As interconnect became dominant in
today’s large multilayer chips, the focus shifted from transistor defects to
interconnect defects, specifically bridges between signal lines in metal. As
mentioned in the previous section, a number of fault simulation and ATPG
tools were developed to target bridge faults [37], [52], [114].

3.3 Functional-level test generation

As complex chips such as memories and microprocessors began to be
used widely in systems because of their increasing density and decreasing
cost, the problem of testing these chips without the availability of informa-
tion about their internal structure became acute. An interesting solution to
this problem was initially obtained in the case of memories, for which a
higher, functional-level fault model was developed; it was used as the basis
for deriving tests. Thus, the initial fault model for memories included stuck
bits in the memory as well as coupling between cells in a memory. An

algorithm, which will detect all the faults in the fault model, was
developed by Thatte and Abraham [146]. This test generation algorithm was
improved by Nair, Thatte, and Abraham [94] to one of complexity O(n). The
work was extended by others, including Suk and Reddy [145] at Iowa.

An extrapolation of the approach to testing memories, using only
functional-level information, was used by Thatte and Abraham [147] to
develop test generation procedures for microprocessors in a user
environment. A general graph-theoretic model was developed at the register-
transfer level to model any microprocessor using only information about its
instruction set and the functions performed. A fault model was developed on
a functional level, quite independent of the implementation details. These
were used to generate test patterns for microprocessors. A fault simulation
study on a real microprocessor showed extremely good fault coverage for
tests developed using these procedures.
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3.4 Testable design of regular structures

Techniques for deriving testable structures from high-level descriptions
were studied in [1]. The generated structures in that case were cellular and
interconnected in a tree structure, and a general algorithm to test those tree
structures that grows only linearly with the size of the tree was developed.

In 1985, Cheng and Patel [27], [28], [29] developed a comprehensive
theory of testing for multiple failures in iterative logic arrays. The theory
provided the necessary and sufficient conditions for deriving small test sets
and showed that testing for multiple faults required only slightly more effort
than testing for single faults. Techniques for testing VLSI bit-serial
processors and designing them for testability were also studied in [39].

3.5 Diagnosis and repair

The basic idea of computer self-diagnosis, posed (by Metze) in simplified
form as a problem on the Electrical Engineering Ph.D. qualifying
examination given in December 1965, led to abstract questions of mutual
diagnosis of several computers; those questions were collectively known as
the Connection Assignment Problem [109]. That study created an enormous
amount of interest, and systems that use different fault models, more general
test outcomes, other measures of diagnosability, probabilistic fault diagnosis,
and diagnosis of intermittent faults are still being investigated at several
different institutions. A survey paper [50] lists 26 derived papers. The idea
of not having a global supervisor that detects failures and removes failed
units was investigated in [3], in which a new technique for distributed
systems, called roving diagnosis, was presented.

Diagnosis and repair became important in improving the yield of rectan-
gular arrays of logic with spare rows and columns. Such arrays are common in
processor arrays, PLAs, and static and dynamic random access memory chips
(RAMs). Fuchs developed a graph theoretic model of such arrays to represent
the relationship between faults and spares [78]. The model was used to imp-
rove the yield of RAMs [21]. Following that work, many others have publi-
shed work on RAM yield improvement. In addition to RAMs, these methods
are also in use for large cache memories in present-day microprocessors.

Logic diagnosis of defective chips became important in the 1990s as the
chips began to have multi-millions of logic gates. Traditional methods of
using full fault dictionaries were running into trouble from the explosive
growth in the size of the dictionaries. The problem of size was first
addressed at Illinois by Fuchs in collaboration with Intel Corp. [119]. Fuchs
continued his work on diagnosis with many of his Ph.D. students [14], [59].
Much of that work is used today by semiconductor manufacturers for failure
analysis of defective chips.
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4. ERROR DETECTION AND RECOVERY

4.1 Self-checking circuits

Self-diagnosis concepts, coupled with the earlier, fundamental results on
“dynamically checked computers” by Carter and Schneider [15], led to the
formulation of Totally Self-Checking (TSC) circuits by Anderson and Metze
[5], [6]. A TSC circuit uses inputs and outputs that are encoded in a suitable
code, together with a TSC checker that indicates whether the output is a code
word or a non-code word. TSC circuits satisfy the following properties:
(1) only code word inputs are needed to diagram the circuit completely (self-
checking property), and (2) no fault causes the circuit to output an incorrect
code word, i.e., the output is either the correct code word or is an incorrect,
non-code word (fault-secure property). Actually, these requirements can be
relaxed somewhat for strongly fault-secure networks, which are a larger
class of networks that achieve the totally self-checking goal [139], [141].
The main advantages of TSC circuits are that transient errors are either
caught or have no effect, that the outputs can be trusted as long as the check-
ers indicate no error (i.e., that erroneous information is not propagated), and
that the circuit diagnoses itself with normally occurring inputs. However,
since the normally occurring inputs do not necessarily cycle through the
inputs required for a complete test, the circuit nevertheless has to be taken
out of service periodically for testing. It should also be mentioned that the
problem of finding a code whose error protection capabilities match the
error-generation capabilities of the logic is non-trivial (e.g., [48]). TSC
research has also led to numerous extensions at other institutions, including
Bell Telephone Laboratories, Stanford University, USC, and the University
of Iowa, among others. The strongly fault-secure concept has also been
adapted and extended, for example, by Jansch and Courtois [68].

4.2 Time redundancy

The use of time redundancy for checking errors in hardware gained
renewed attention in a series of papers from Illinois starting in the late
1970s. The papers dealt with a variety of techniques and circuits. The first in
a series of these results was a report on the fault detection capabilities of
alternating logic in circuits by Reynolds and Metze [118]. The alternating
logic used circuits, which were arranged to be functionally self-dual.
Conditions were presented that, if satisfied by a circuit, guaranteed the
detection of errors due to single stuck-at faults. The paper also discussed the
application of alternating logic and sequential logic.

A method of error detection called Recomputing with Shifted Operands
(RESO) was proposed and analyzed for arithmetic and logic units (ALU) by
Patel and Fung [105]. That was the first time that a unified method was used
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for both arithmetic and logic operations. That paper also differed from the
earlier papers on self-checking logic in that it assumed a far more general
fault model, which was suitable for the emerging VLSI circuits. Depending
on the number of shifts used for the recomputed step, a variable amount of
fault coverage was provided. For example, if k shifts were used in an adder,
then any (k -1) consecutive failed cells would be covered, although the cells
may fail in any arbitrary way. The method of RESO was then applied to
more complex circuits of multiply and divide arrays [106]. The method was
extended to arbitrary one-dimensional iterative logic arrays [26]. Variants of
RESO were also used for error correction in arithmetic operations [79] and
data transmission [108].

4.3 Memory error detection and recovery

Abraham, Davidson, and Patel developed a new memory system design
for tolerating errors due to single-event radiation upsets [2]. The design used
coding, control duplication, and scrubbing to tolerate soft errors from single-
event upsets, and had much lower cost than a straightforward application of
redundancy. An analytical model for reliability of memory with scrubbing
was also developed, and is now widely used in industry [121].

4.4 Application-aware techniques

The field of control-flow checking has been the focus of intense research
over the last two decades and resulted in a number of hardware- and/or
software-based schemes. Most of the existing solutions, however, are not
preemptive in nature, i.e., often the system crashes before any error detection
is triggered. PECOS (Preemptive Control Signatures) techniques developed
by Bagchi and Iyer enable preemptive detection of errors in the execution
flow of an application [7], [8]. The strengths of the technique are that (1) it is
preemptive, i.e., the detection happens before a branch/jump is taken, and (2)
it significantly reduces events of silent data corruption. PECOS was applied
and evaluated on a call-processing application. Fault/error injection results
show that use of PECOS eliminates silent data corruptions and application
hangs, and the crash incidences of the entire call-processing application are
reduced by almost three times. A generalization of preemptive checking is
instruction checking, which is a focus of current work [95].

Data audits are traditionally used in the telecommunications industry and
implement a broad range of custom and ad hoc application-level techniques
for detecting and recovering from errors in a switching environment. In [8]
Liu, Kalbarczyk, and Iyer presented design, implementation, and assessment
of a dependability framework for a call-processing environment in a digital
mobile telephone network controller. The framework contains a data audit
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subsystem to maintain the structural and semantic integrity of the database.
The fault-injection-based evaluation of the proposed solution indicates that
the data audit detects 85% of the errors and significantly reduces the
incidence of escaped errors.

The semantic of application programs usually exhibits instruction-level
parallelism, which can be exploited in a super-scalar architecture for
increasing performance. However, there is a limit to this parallelism due to
dependency between instructions, which forces the processor to execute the
dependent instructions in separate cycles. For example, one instruction may
use the result produced by a previous instruction as its operand. Failure of
the processor to execute the instructions in the correct sequence may ad-
versely affect the output of the program and therefore should be considered
an error. Instruction sequence checking verifies (through monitoring the
issue and execution of the instructions in the pipeline at runtime) whether a
sequence of dependent instructions is executed in the correct order.

4.5 Checkpointing and recovery

Deployment of distributed applications supporting critical services, e.g.,
banking, aircraft control, or e-commerce, created a need for efficient error
recovery mechanisms and algorithms. In this context an important research
area, led by Fuchs and his students Wang, Alewine, and Neves, was the
development of novel checkpointing and rollback recovery strategies.

Independent checkpointing for parallel and distributed systems allows
maximum process autonomy, but suffers from possible domino effects
(processes have to roll back an unbounded number of times as they attempt
to find a consistent global state for recovery) and storage space overhead for
maintaining multiple checkpoints and message logs. In [155] it was shown
that transformation and decomposition can be successfully applied to the
problem of efficiently identifying all discardable message logs to achieve
optimal garbage collection, and hence optimize the space overhead and
improve performance of checkpointing schemes.

Another research avenue pursued by Fuchs focused on investigation of
the applicability of a compiler-assisted multiple instructions rollback scheme
(a technique developed for recovery from transient processor failures) to aid
in speculative execution repair. The work took advantage of the fact that
many problems encountered during recovery from branch misprediction or
from instruction re-execution due to exceptions in speculative execution
architecture are similar to those encountered during multiple instructions
rollback. Consequently, extensions to the compiler-assisted scheme were
added to support branch and exception repair [4].

In subsequent work Neves and Fuchs [96] developed a new low-overhead
coordinated checkpoint protocol for long-running parallel applications and
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high-availability applications. The protocol uses time to avoid all types of
direct coordination (e.g., message exchanges and message tagging), reducing
the overheads to almost a minimum. To ensure that rapid recoveries can be
attained, the protocol guarantees small checkpoint latencies. The protocol was
implemented and tested on a cluster of workstations, and the results show very
small overhead. In [97] the RENEW toolset for rapid development and testing
of checkpoint protocols with standard benchmarks was proposed.

4.6 Algorithm-based fault tolerance

An exciting new direction in the design of fault-tolerant systems was
started when Huang and Abraham [63] developed matrix encoding schemes
for detecting and correcting errors when matrix operations are performed
using processor arrays. The schemes were generalized to the new system-
level method of achieving high reliability called algorithm-based fault
tolerance (ABFT). The technique encodes data at a high level, and
algorithms are designed to operate on the encoded data and produce encoded
output data. The computation tasks within the algorithm are appropriately
distributed among multiple computation units so that failure of one of the
units affects only a portion of the output data, enabling the correct data to be
recovered from the encoding [64]. This result was applied to matrix
operations using multiple processor arrays. The work was generalized to
linear arrays by Jou and Abraham [71] and also extended to Laplace
equation solvers [65], as well as FFT networks [72]. [10] developed fault
tolerance techniques for three powerful paradigms: the multiplex, the
recursive combination, and the multiplex/demultiplex paradigms. In the
proposed approach, processors that are idle during normal computation are
used to check the results of other processors. In later work, a general theory
of algorithm-based fault tolerance was developed that gives bounds on the
processor and time overhead in the ABFT scheme [12]. This approach seems
to be ideal for low-cost fault tolerance for special-purpose computations,
including a wide class of signal-processing applications. The work has been
extended in [85]. ABFT has been widely explored by a large number of
researchers, more recently as part of the Remote Exploration and
Experimentation (REE) program at the Jet Propulsion Laboratory [55].

5. MIDDLEWARE AND HARDWARE SUPPORT
FOR FAULT TOLERANCE AND SECURITY

In the 1990s, the high cost of custom hardware solutions, plus the
availability of inexpensive COTS hardware, led to development of methods
for providing dependability via software middleware. In this spirit, several
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University of Illinois projects were initiated that jointly provide reliability
and security services. The solution space ranges from purely software
approaches (ARMORs [71], AQuA [116], and ITUA [35]) to more recent
work on hardware-based (or processor-level) support for error detection,
masking of security vulnerabilities, and recovery under one umbrella, in a
uniform, low-overhead manner (RSE [95]).

5.1 ARMOR high availability and security
infrastructure

The ARMOR approach, proposed by Whisnant, Kalbarczyk, and Iyer,
relies on a network of self-checking reconfigurable software modules, which
collectively provide high availability and security to applications [71], [158].
The ARMOR infrastructure (consisting of multiple ARMOR processes) is
designed to manage redundant resources across interconnected nodes, to foil
security threats, to detect errors in both the user applications and the infra-
structure components, and to recover quickly from failures when they occur.
Because of the flexible ARMOR infrastructure, security protection and
detection and recovery services can be added or removed depending on
application requirements. The modular design ensures that there is a clear
upgrade path through which additional protection capabilities can be added
to the ARMOR infrastructure in the future. The architecture has been dem-
onstrated and evaluated (using fault injection) on several real-world appli-
cations in the areas of telecommunication (e.g., call processing) [154] and
scientific distributed computing (JPL-NAS Mars Rover application) [157].

5.2 A processor-level framework for high dependability
and security

A middleware is effective in handling errors as long as they propagate
and manifest at that level. Often, however, propagating lower-level errors
crash the system (i.e., never reach the middleware level) or cause silent data
corruption (i.e., generate latent errors) before being detected. Understanding
of that fact, together with an increasing rate of soft errors due to CMOS
scaling, led to renewed interest in supporting hardware/processor-based
techniques. Recently, Nakka, Kalbarczyk, and Iyer proposed the Reliability
and Security Engine (RSE), a hardware-level framework implemented as an
integral part of a modern microprocessor and providing application-aware
reliability and security support in the form of customizable hardware
modules [95]. The detection mechanisms investigated include (1) the
Memory Layout Randomization (MLR) Module, which randomizes the
memory layout of a process in order to foil attackers who assume a fixed
system layout, (2) the Data Dependency Tracking (DDT) Module, which
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tracks the dependencies among threads of a process and maintains check-
points of shared memory pages in order to roll back the threads when an
offending (potentially malicious) thread is terminated, and (3) the Instruction
Checker Module (ICM), which checks an instruction for its validity or the
control flow of the program just as the instruction enters the pipeline for
execution. Performance simulations for the studied modules indicate low
overhead of the proposed solutions.

5.3 AQuA and ITUA

At the network level, three factors have significantly lowered the ability
to withstand hostile attacks on critical networked systems: (1) an economic
mandate to construct systems with more cost-effective commercial off-the-
shelf (COTS) solutions, thereby accepting known and unknown limitations;
(2) the increasingly sophisticated nature of commonly available
technologies, capable of mounting more complex and sustained attack
patterns against these systems; and (3) the fact that systems are increasingly
inter-networked and need to remain open to meet interoperability goals. The
first of these factors makes it more likely that some systems will be
compromised and corrupted by adversaries. The second makes it likely that
preplanned, coordinated, and sustained attacks will be mounted against high-
value systems. The third implies that effects of successful intrusion will be
compounded as multiple systems are impacted. All of these factors have led
to recent work in intrusion-tolerant networked systems.

Significant work on designing, implementing, and validating fault- and
intrusion-tolerant systems has gone on at the University of Illinois, together
with its industrial partners (most notably BBN Technologies) since the late
1990s. In the AQuA project [116], Sanders and his group (including
Research Programmer M. Seri) developed the concept of a property
gateway, which provides adaptation between different types of replication,
each providing a different performance/fault-tolerance trade-off, depending
on a high-level dependability specification [120],[133]. J. Ren’s Ph.D. thesis
work [117],[115], completed in 2001, documented much of the AQuA work.
In addition to providing differing levels of dependability, AQuA provided
tunable consistency and soft real-time performance using algorithms
developed by S. Krishnamurthy as part of her Ph.D. thesis [77],[76].

In the ITUA project [35],[104], the AQuA approach was extended to
include malicious attacks by combining redundancy management techniques
(specifically countering faults resulting from a partially successful attack)
and diversity with techniques that produce unpredictable (to the attacker)
and variable responses to complicate the ability to preplan a coordinated
attack. In the process, new Byzantine algorithms were developed [113],[112]
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that tolerate the characteristic Byzantine faults resulting from a class of
staged, coordinated intrusions.

6. DEPENDABILITY MODELING

6.1 UltraSAN

When Sanders joined the University of Illinois in 1994 from the
University of Arizona, he brought with him a team of people working on
dependability modeling. Sanders’s and his team’s work in the early and mid-
1990s was implemented in a software tool called UltraSAN [129].

UltraSAN was a software package for model-based evaluation of systems
represented as stochastic activity networks (SANs) [127]. The model speci-
fication process in UltraSAN was carried out in a hierarchical fashion.
Subsystems, specified as SANs, could be replicated and joined together in a
composed model [126] using the “SAN-based reward models” that Sanders
had introduced in his Ph.D. thesis in 1988 [122]. On top of the composed
model, reward structures could be used to define performance, depend-
ability, and performability measures [128]. To solve a specified model,
UltraSAN provided analytic solvers [150] (developed by J. Tvedt) as well as
discrete-event simulators (developed by R. Friere) [125]. When analytic
solvers were used, the state space of the underlying stochastic process was
first generated through reduced base model construction [126]. Using that
approach, state-space lumping was automatically performed when SANs
were replicated in the composed model, thus reducing the state-space size
for the models. The models that could be solved analytically by UltraSAN
included Markov models as well as certain models with deterministic delays
[87],[86], which were developed by L. Malhis as part of his Ph.D work.
Moreover, an importance sampling component, developed by D. Obal as part
of his Master’s thesis, was provided to speed up the simulation [101].
UltraSAN also contained novel methods for computing the distribution of
reward accumulated in a finite interval developed by A. Qureshi as part of
his Ph.D thesis [111],[110]. A. van Moorsel developed the theory for, and
implemented, adaptive uniformization in UltraSAN, which significantly
reduces the time to obtain a transient solution of many stiff Markov chains,
particularly those that arise in dependability evaluation [152],[153]. Finally,
although never implemented in UltraSAN, D. Obal significantly extended
these methods in his Ph.D. thesis to the more general “graph”-based
composed models [100] and path-based reward structures [102],[103].

UltraSAN was licensed a large number of sites for commercial use, and
many universities for teaching and research. For example, it was used for many
telecommunications applications at Motorola and was the primary dependability
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evaluation tool in the Indium project. It has also been used to design disk drive
controllers and system-managed storage software at IBM, and ATM and frame-
relay networks at US West and Bellcore, among other applications.

6.2 Möbius

By the mid 1990s, it became clear that while the UltraSAN approach was
successful at evaluating the dependability and performance of many systems,
further work was needed to develop performance/dependability modeling
frameworks and software environments that could predict the performance
of complete networked computing systems, accounting for all system
components, including the application itself, the operating system, and the
underlying computing and communication hardware.

Ultimately, the experiences with UltraSAN showed that a framework
should provide a method by which multiple, heterogeneous models can be
composed together, each representing a different software or hardware
module, component, or aspect of the system. The composition techniques
developed should permit models to interact with one another by sharing
state, events, or results, and should be scalable. A framework should also
support multiple modeling languages (i.e., formalisms), as well as methods
to combine models at different levels of resolution. Furthermore, a
framework should support multiple model solution methods, including both
simulation and analysis, that are efficient. Finally, a framework should be
extensible, in the sense that it should be possible to add, with reasonably
little effort, new modeling formalisms, composition and connection methods,
and model solution techniques.

Those goals were realized in the performance/dependability/security
evaluation framework developed at the University of Illinois known as
Möbius [123],[41]. The first version of Möbius was released in 2001;
T. Courtney coordinated the development of this and future versions. The
fundamental ideas concerning the Möbius framework were developed by
D. Deavours as part of his Ph.D. thesis [43],[42],[40]. Although Möbius was
originally developed for studying the reliability, availability, and
performance of computer and network systems, its use has expanded rapidly.
It is now used for a broad range of discrete-event systems, from biochemical
reactions within genes to the effects of malicious attackers on secure
computer systems, in addition to the original applications.

That broad range of use is possible because of the flexibility found in
Möbius, which comes from its support of multiple high-level modeling for-
malisms (e.g., Modest [13] and PEPA [34]) and multiple solution
techniques. This flexibility allows users to represent their systems in model-
ing languages appropriate to their problem domains, and then accurately and
efficiently solve the systems using the solution techniques best suited to the
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systems’ size and complexity. Time- and space-efficient distributed discrete-
event simulation and numerical solution are both supported.

The various components of the Möbius tool are divided into two
categories: model specification components and model solution components.
The Möbius tool is designed so that new formalisms can be implemented
and employed if they adhere to the model-level AFI, as specified in a paper
by Deavours and Sanders [43]. The model AFI views models as consisting
of two sets of components: state variables, which store model state, and
actions, which change model state. This design allows new model
formalisms and editors to be incorporated without modification of the
existing code, supporting the extensibility of the Möbius tool. Similarly,
Derisavi, Kemper, Sanders, and Courtney [46] developed a state-level AFI to
cleanly separate numerical solution algorithms from a state-level model
representation. A. Christensen developed a connection method by which
models could exchange results, in an ordered or fixed-point fashion, to build
large system models [32].

Models can be solved, through interface to the state-level AFI, either
analytically/numerically or by simulation. Innovative data structures, devel-
oped by S. Derisavi as part of his Ph.D work and based on multi-valued
decision diagrams, are used to represent system models with tens of millions
of states compactly [44],[45]. From each model, C++ source code is gener-
ated and compiled, and the object files are linked together to form a library
archive [33]. The libraries are linked together along with the Möbius base
libraries to form the executable for the solver. Most recently, D. Daly has
developed methods for constructing approximate models that have smaller
state spaces but bound the error induced by the state space reduction using
stochastic ordering arguments [38], and V. Lam has developed path-based
methods to solve for instant-of-time variables that do not require explicit
representation of either a state-transition-rate matrix or solution vector [80].

Möbius has been distributed widely to other academic and industrial
sites. There are now approximately 130 academic and industrial licensees of
Möbius, and Illinois is now collaborating with the University of Twente in
The Netherlands, Dortmund University, TU Dresden, and the Universität der
Bundeswehr München in Germany, and the University of Florence in Italy to
further enhance Möbius.

6.3 Depend

In the early 1990s Goswami and Iyer initiated the DEPEND project to
develop a framework for designing dependable systems [51]. DEPEND is a
simulation-based environment that supports the design of systems for fault
tolerance and high availability. It takes as inputs both VHDL and C++ sys-
tem description and produces as output dependability characteristics includ-
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ing fault coverage, availability, and performance. At the core of DEPEND
are simulation engines supported by a fault injector, a set of fault diction-
aries, and component libraries. The fault injector provides mechanisms to
inject faults. The component libraries contain model-building blocks with
detailed functional descriptions and characteristics. The fault dictionaries
embody possible fault effects of the given fault types, devices, and circuits.
DEPEND was developed with DARPA support and it was licensed to
several companies and employed to simulate a number of industrial systems,
including Integrity S2 from Tandem (now a division of HP).

7. EXPERIMENTAL EVALUATION /
BENCHMARKING OF SYSTEM DEPENDABILITY

7.1 Fault injection

Fault injection has been used since the early days of experimental
assessment of dependable systems as a mechanism to evaluate computing
systems. At Illinois, research on fault/error injection was driven by failure
data analysis of real systems. Tsai and Iyer employed stress-based fault
injection to evaluate one of the first UNIX-based fault-tolerant systems
developed by Tandem (now a division of HP). The stress-based approach
ensures fault/error injection to system components when they are heavily
used (i.e., highly stressed) [149]. This allowed meaningful comparison of
systems and was an important step towards benchmarking. In order to
facilitate automated fault/error injection experiments, NFTAPE, a
sophisticated environment for software-implemented automated fault/error
injection experiments, was developed [144], [143].

In more recent studies Gu, Kalbarczyk, and Iyer [53], [54] applied error
injection to characterize Linux kernel behavior under errors that impact
kernel code, kernel data, kernel stack, and processor system registers, and to
provide an insight on how processor hardware architecture (instruction set
architecture and register set) impacts kernel behavior in the presence of
errors. Two target Linux-2.4.22 systems were used: the Intel Pentium 4 (P4)
running RedHat Linux 9.0 and the Motorola PowerPC (G4) running
YellowDog Linux 3.0. The study found, for example, that (1) the activation
of errors is generally similar for both processors, but that the manifestation
percentages are about twice as high for the Pentium 4, (2) less-compact fixed
32-bit data and stack access makes the G4 platform less sensitive to errors,
and (3) the most severe crashes (those that require a complete reformatting
of the file system on the disk) are caused by reversing the condition of a
branch instruction. Since the recovery from such failures may take tens of
minutes, those failures have a profound impact on availability.
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An important research avenue pursued by Xu, Kalbarczyk, and Iyer is the
exploration of the possibility of security violations due to errors. In [159] it
was shown that naturally occurring hardware errors can cause security
vulnerabilities in network applications such as an FTP (file transfer protocol)
and SSH (secure shell). As a result, relatively passive but malicious users can
exploit the vulnerabilities. While the likelihood of such events is small,
considering the large number of systems operating in the field, the
probability of such vulnerabilities cannot be neglected. In the following
study, Chen, another student of Iyer, employed fault/error injection to
experimentally evaluate and model the error-caused security vulnerabilities
and the resulting security violations on two Linux kernel-based firewall
facilities (IPChains and Netfilter) [22]. Using data on field failures, data
from the error injection experiments, and system performance parameters
such as processor cache miss and replacement rates, a SAN (Stochastic
Activity Network) model was developed and simulated to predict the mean
time to security vulnerability and the duration of the window of vulnerability
under realistic conditions. The results indicate that the error-caused
vulnerabilities can be a non-negligible source of security violations.

In parallel with that work, members of Sanders’s group, which included
R. Chandra, M. Cukier, D. Henke, K. Joshi, R. Lefever, and J. Pistole,
worked to develop a new form of fault and attack injection for distributed
systems in which the introduction of faults is triggered based on the global
state of the system. In addition to developing the basic concepts, and
supporting theorems related to global-state-based fault injection (GSBFI),
they deployed Loki, a global-state-based fault injector [18],[36],[19],[17],
and used it to experimentally evaluate two large-scale distributed systems. In
particular, in [70] K. Joshi used Loki to assess the unavailability induced by
a group membership protocol in Ensemble, a widely used group
communication system. R. Lefever employed Loki to evaluate the effects of
correlated network partitions on Coda, a popular distributed file system [82].

There are two benefits of using GSBFI. The first is the ability to validate a
system when its fault models rely on states that are hard to target either
because they are short-lived or because they occur infrequently. Examples
include correlated faults, stress-based faults, and malicious faults. The second
benefit is the ability to perform evaluations beyond the scope of fault
forecasting. GSBFI can be used to estimate a broad range of conditional
measures for use in system models to compute a variety of unconditional
performance and dependability measures. Efforts are currently underway to
apply GSBFI to the experimental evaluation of the survivability of systems by
systematically injecting the effects of cyber attacks in a correlated manner.
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7.2 Operational life monitoring and failure data analysis

The use of measured data to study failures in a real use environment has
been the focus of active research for quite some time. Rossetti and Iyer [66]
used measured data to study the effect of increasing workload on hardware
and software fault tolerance. Analysis showed that the probability of a CPU-
related error increases nonlinearly with increasing workload. The resulting
increase in the error probability can be 50 to 100 times more than that at a
low workload. Those results show that reliability models cannot be
considered representative unless the system workload environment is taken
into account, since the gain in performance is more than offset by
degradation in reliability. Similar results relating to operating system
reliability appeared in [67]. A novel experiment to obtain, for the first time,
distributions of error latency was performed by Chillarege and Iyer [31]. The
extension of that work to the study of various fault models appears in [30].

More recent studies by Kalyanakrishnam, Xu, Kalbarczyk, and Iyer
focused on error and failure analysis of a LAN of Windows NT-based
servers [75], [161] and reliability of Internet hosts [74] with particular focus
on the importance of the user’s perspective in assessing the systems. For
example, while the measured availability of the LAN of Windows-based
mail servers is 99%, the user-perceived availability is only 92% [75]. The
study on Internet hosts’ reliability showed that on average, a host remained
unavailable to the user for 6.5 hours (during the 40-day experiment, i.e.,
approx. 2.5 days per year), which is an availability of about 99%. However,
closer analysis of data revealed that an average (or mean value) is not always
an adequate measure, because it may hide the reality experienced by the
user. For example, a more detailed data breakdown revealed that (1) 45% of
hosts had a total downtime ranging from 1,000 seconds to 7,000 seconds,
and a median downtime of nearly an hour (i.e, approximately 9.5 hours per
year), (2) 49% of hosts had a total downtime ranging from 7,000 seconds to
70,000 seconds and a median downtime of about 4.5 hours (i.e.,
approximately 40 hours per year), and (3) 6% of hosts had a total downtime
ranging from 90,000 seconds to 120,000 seconds, and a median downtime of
about 2.2 days (i.e., approx. 20 days per year).

8. SECURE SYSTEM DESIGN AND VALIDATION:
FROM DATA ANALYSIS TO PROTECTION AND
TOLERANCE MECHANISMS

Challenged by the increasing number and severity of malicious attacks,
security has become an issue of primary importance in designing dependable
systems. There is no better way to understand the security characteristics of
computer systems than by direct measurement and analysis.
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8.1 Measurement-driven security vulnerability analysis

In a seminal work, Chen, Kalbarczyk, and Iyer employed a combination
of an in-depth analysis of real data on security vulnerabilities and a focused
source-code examination to develop a finite state machine (FSM) model to
depict and reason about the process of exploiting vulnerabilities and to
extract logic predicates that need to be met to ensure vulnerability-free
system implementation [24]. In the FSM approach, each predicate is
represented as a primitive FSM (pFSM), and multiple pFSMs are combined
to develop FSM models of vulnerable operations and possible exploitations.
The proposed FSM methodology is demonstrated by analysis of several
types of vulnerabilities reported in the Bugtraq [62] database: stack buffer
overflow, integer overflow, heap overflow, file race condition, and format
string vulnerabilities, which constitute 22% of all vulnerabilities in the
database. For the studied vulnerabilities, three types of pFSMs were
identified that can be used to analyze operations involved in exploitation of
vulnerabilities and to identify the security checks to be performed at the
elementary activity level.

A practical demonstration of the usefulness of the approach was the
discovery of a new heap overflow vulnerability now published in Bugtraq
(ID 6255). The discovery was made during construction of the FSM model
for another known vulnerability of the null HTTPD application (a
multithreaded web server for Linux and Windows platforms).

8.2 Vulnerability avoidance

The low-level analysis of severe security vulnerabilities indicates that a
significant number of vulnerabilities are caused by programmers’ improper
use of library functions. For example, omitting buffer size checking before
calling string manipulation functions, such as strcpy and strcat, causes many
buffer overflow vulnerabilities. A common characteristic of many of these
vulnerabilities is pointer taintedness. A pointer is tainted if a user input can
directly or indirectly be used as a pointer value. Pointer taintedness that leads
to vulnerabilities usually occurs as a consequence of low-level memory
writes, typically hidden from the high-level code. Hence, a memory model is
necessary for reasoning about pointer taintedness. In [23] the memory model
is formally defined and applied to reasoning about pointer taintedness in
commonly used library functions.

Reasoning about pointer taintedness makes it possible to extract security
preconditions, which either correspond to already known vulnerability
scenarios (e.g., format string vulnerability and heap corruption) or indicate
the possibility of function invocation scenarios that may expose new
vulnerabilities. This work will progress through (1) an investigation of
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approaches that reduce the amount of human intervention in the theorem-
proving tasks using pointer-analysis techniques and heuristics, and (2) the
exploration of the possibility of incorporating this technique into compiler-
based static checking tools.

8.3 Protection mechanisms against security attacks

FSM-based analysis of vulnerabilities also indicates that security
problems, such as buffer overflow, format string, integer overflow, and
double-freeing of a heap buffer lead to Unauthorized Control Information
Tampering (UCIT) in a target program. An additional survey (other than
Bugtraq) of the 109 CERT security advisories issued over the past four years
shows that UCIT vulnerabilities account for nearly 60% of all the CERT
advisories. Transparent Runtime Randomization (TRR), proposed by Xu,
Kalbarczyk, and Iyer, is a generalized approach to protect systems against a
wide range of security attacks that exploit UCIT vulnerabilities [160]. The
TRR technique dynamically and randomly relocates a program’s stack, heap,
shared libraries, and parts of its runtime control data structures inside the
application memory address space. If a program’s memory layout is different
each time it runs, it foils the attacker’s assumptions about the memory layout
of the vulnerable program and makes the determination of critical address
values difficult if not impossible. An incorrect address value for a critical
memory element causes the target application to crash. Although a crash
may not be desirable from reliability and availability perspectives, in the
security domain, a crash is an acceptable option for the program being
hijacked. TRR is implemented by changing the Linux dynamic program
loader; hence, it is transparent to applications. TRR incurs less than 9%
program startup overhead and no runtime overhead.

8.4 DPASA: Designing protection and adaptation into a
survivability architecture

The AQuA and ITUA work, together with other work in intrusion-
tolerant systems (e.g., [47],[49]) has suggested that it may be possible to
build large-scale, networked intrusion-tolerant systems that can continue to
provide specified services even when under sustained partially successful
cyber attack. To test this hypothesis, the University of Illinois, together with
partners at BBN, SRI, Draper Labs, Adventium Labs, and the University of
Maryland, embarked upon a 2-year project called DPASA (Designing
Protection and Adaptation into a Survivability Architecture) to design,
implement, and validate a large-scale, intrusion-tolerant publish and
subscribe system [142]. Team members from Illinois included A. Agbaria,
T. Courtney, M. Ihde, J. Meyer (a consultant), W. Sanders, M. Seri, S.
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Singh, and F. Stevens. The designed system was considered to be
prototypical of many critical communication systems, and a good test of
recently developed intrusion-tolerance techniques.

8.5 DPASA architecture

The publish and subscribe system developed consisted of multiple clients
communicating with each other through a central core. Redundancy and
diversity were used in the core, and the core consisted of four quadrants.
Each quadrant was divided into three zones: the crumple zone, the opera-
tions zone, and the executive zone. The client-hosted components of the
publish-subscribe middleware included a survivability delegate that inter-
cepted the mission application’s requests and managed communication with
the core, including cryptographic manipulations, through DJM stubs. The
crumple zone accommodated client-core communication via multiple access
proxies which served as the first barrier between the core and clients after
the isolation switch. The operational zone provided the PS&Q functionality
and intrusion/fault detection mechanisms, such as the guardians. It contained
several components, each with specific tasks. The PSQ component was
responsible for performing publish, subscribe, and query operations
requested by clients. The guardian and the correlator were responsible for
performing intrusion detection in the core and IOs inside it. The downstream
controller (DC) and the policy server (PS) components were responsible for
specifying policies and forwarding control information to the autonomic
distributed firewalls (ADF NICs) [107] installed on the hosts. Finally, the
system manager (SM) of the Executive zone managed the core’s actions.

The system also included intrusion detection system (IDS) [69]
components for improving its survivability. The main components
participating in the alert/response data flow were the IDS components:
sensors, actuators, and local controllers (LC). IDS components were
associated with many of the processing and communication components of
the system. Sensors are dedicated to intrusion detection, actuators are
mechanisms that carry out actions when commanded, and an LC is a control
agent responsible for local survivability management functions.

8.6 DPASA architecture validation

A methodology for validating, in a quantitative manner, the survivability
of the DPASA design was also developed. Efforts for quantitative validation
of security have usually been based on formal methods [81], or have been
informal, using “red teams” to try to compromise a system [84].

Probabilistic modeling has been receiving increasing attention as a
mechanism to validate security [83], [124]. For example, work at Illinois by
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Singh et al. [137] used probabilistic modeling to validate the ITUA
intrusion-tolerant architecture, emphasizing the effects of intrusions on the
system behavior and the ability of the intrusion-tolerant mechanisms to
handle those effects, while using very simple assumptions about the
discovery and exploitation of vulnerabilities by the attackers to achieve those
intrusions. Shortly thereafter, Gupta et al. [56], in a paper resulting from two
class projects in Sanders’s graduate class, used a similar approach to
evaluate the security and performance of several intrusion-tolerant server
architectures. Probabilistic modeling is especially suited to intrusion-tolerant
systems, since by definition, intrusion tolerance is a quantitative and
probabilistic property of a system.

In the DPASA project, a probabilistic model was used to validate the
system design, as documented in F. Stevens’s Master’s thesis [142]. The
probabilistic model made use of an innovative attacker model. The attacker
model had a sophisticated and detailed representation of various kinds of
effects of intrusions on the behavior of system components (such as a variety
of failure modes). It included a representation of the process of discovery of
vulnerabilities (both in the operating system(s) and in the specific applications
being used by the system) and their subsequent exploitation, and considered an
aggressive spread of attacks through the system by taking into account the
connectivity of the components of the system at both the infrastructure and the
logical levels. Probabilistic modeling was used to compare different design
configurations, allowing the designers of the system to make choices that
maximized the intrusion tolerance provided by the system before they actually
implemented the system. Lastly, the model was used to show that the system
would meet a set of quantitative survivability requirements.

9. CONCLUDING REMARKS

The last 50 years have witnessed the introduction of multiple new ideas in
dependable and secure computing and their development at the University of
Illinois. With a strong commitment to this area of research by a large staff of
researchers, we expect to see many more exciting results in the future. New
research in application-aware error detection and recovery, fault tolerance
middleware, benchmarking of system dependability, dependability modeling,
and secure system design and validation continue to maintain Illinois’s status
as a leading center in fault-tolerant and secure computing research.
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