CURRENT RESEARCH ACTIVITIES ON
DEPENDABLE COMPUTING AND OTHER
DEPENDABILITY ISSUES IN JAPAN

Yoshihiro Tohma' and Masao Mukaidono®
"Tokyo Denki University, tohma@sie.dendai.ac.jp; *Meiji University, masao@cs.meiji.ac.jp

Abstract: Current research activities on dependable computing and other related
dependability issues in Japan are reviewed. When considering the dependable
computing, an emphasis is put on architectural aspects of computing systems,
though the dependable computing is not limited to them, but ranges very
broadly. Not only technical issues but also some organizational activities are
also touched.

Key words: fault tolerance; mobile computing; COTS; Internet; grid computing; feature
interaction; fail-safe; organizational activities.

1. INTRODUCTION

Taking this opportunity of Topical Day for commemorating Prof. Al
Avizienis’s outstanding contributions to the advancement of fault tolerance
and dependable computing, it is our pleasure and honor to present a paper,
reviewing research activities on dependable computing and other
dependability issues currently conducted in Japan. However, this paper is not
intended to make a comprehensive survey, but to introduce some research
outcomes simply based on the authors’ view.

When looking at research activities, we first focused our attention to
architectural aspects of dependable computing systems with new features,
and further argued some extension of the application of dependability
concept to other technical worlds.

122 Yoshihiro Tohma and Masao Mukaidono

2. NEW PARADIGMS OF DEPENDABLE
COMPUTING

These days, every thing such as the configuration of computing systems,
the requirement to them, and the computing paradigm are changing rapidly.
Stand-alone computing systems make no longer any sense, but are almost
networked. The scale of a computing system and its clients is ever exploding
concurrently with its non-stop provision of services. It is required to provide
different services of not only scientific computation but also support or
assistance to the daily life of individuals. Mobile and/or ubiquitous
computing are new demands. The way of computation is changing.
Computing will be shared with servers distributed over a network(s) in a
form of, say, grids.

Facing these trends, dependable computing is becoming more significant
in different ways.

2.1 Fault tolerance in mobile computing

In mobile computing environment, computing unit in such equipments as
cellular phone, PDA, etc. must be light and small for portable purposes.
Therefore, LSI’s in such equipments are produced by sub-micron fabrication
technologies. This means that those computing units are becoming very
vulnerable to cosmic ray and/or artificially made radiation such as alpha
particle and prone to suffer transient errors. Since continuous and real-time
services are mandatory in mobile computing, it is required and becomes
more important to implement countermeasures against transient errors,
which can recover the computing units quickly.

T. Sato proposed to implement the fault detection and recovery
mechanism in superscalar processors (Sato 2003) with the at most 8-way
dynamic scheduling, focusing on transient errors in the logic and arithmetic
units in the processor. Other parts can be protected effectively by means of
ECC and/or parity check. The essence of error detection is simply the
duplicated execution of an instruction and the comparison between the both
results.

As shown in Fig. 1, instructions are first stored in the register update unit
(RUU), of which primary role is to carry out the dynamic scheduling, and
then dispatched to functional units. When an instruction in RUU is
committed (with the necessary control and data ready), it is again dispatched.
Its execution result is compared to that of the first execution of the
instruction.

Current Research Activities on Dependable Computing and Other 123
Dependability Issues in Japan

Y \

FP
FP RUU ¢
|F8tc |<-—| = | Rng’ister - Units
¥ e
- LdSt Data
Instruction Cache Units ™ s

INT
Register Reqister 19 INT
r
T l A

Figure 1. Error detection.

When the mismatch happens, the recovery by hardware (instead of
relying on OS) is activated transparently. Regarding the occurrence of an
error to be a misspeculation of data, the transparent hardware recovery here
uses the existing mechanism to reissue an instruction upon the
misspeculation of data.

What we are mostly concerned with is the performance degradation
caused by the introduction of fault tolerance. The percentage increase of
execution cycles in the error-free operation was measured for various
benchmarks of SPEC2000 and MediaBench suites. Thanks to the
superscalaring (Mendelson 2000), the overheads in SPEC200 and
MediaBench are 44.2% and 44.7%, respectively, in average, even though
every instruction is executed twice. The more detailed investigation to
reduce the overhead revealed that earlier speculative update of branch
prediction table at the stage of instruction decode together with the
elimination of redundant memory access is effective. Finally, the overhead
was reduced to about 30% in average by incorporating the above two
techniques. He notes that the limitation of hardware resources greatly
influences the performance degradation and therefore, it could be lessened
further, if microprocessors would have sufficient hardware resources.

2.2 Use of COTS for dependable Internet services

As Internet extends not only to computer professionals but also to
common people, various services which range from purely engineering
computations to daily supports for individuals such as multimedia delivery,
online entertainments, VoIP, e-commerce, e-government, and etc. are carried
outd on it. Thus, Internet has become an important social infrastructure, and
the importance of dependable computing on Internet is recognized even by
common people.

124 Yoshihiro Tohma and Masao Mukaidono

On the other hand, the cost to implement dependability measure for
Internet should not be much, because they should be incorporated widely
and commonly. Traditional dependable computing systems in critical
applications use proprietary hardware such as voting and fault isolation
circuitries with proprietary OS. They are main sources of the cost. Instead of
using such proprietary components, Mishima and Akaike proposed ways to
implement fault tolerance measure (Mishima and Akaike 2003), using COTS
components of commodity hardware (computers and networks) and software
(OS and applications), which are not modified, nor re-compiled, and nor
vendor-specific.

S-PC1 $-PC2 $-PC3

repeater hub

i)
C-PC1 C-PC2

— repeater hub

Figure 2. Fault tolerance measure for servers.

Although Internet services are carried out in the coordinated relationship
of servers and clients, the malfunction of servers is much more serious than
that of clients. Therefore, they simply considered ways to realize dependable
servers. Since many services on Internet are real-time operations, the fault
tolerance of servers based on the primary-backup is not applicable.
Therefore, the fundamental idea is to use the active replication of servers as
shown in Fig. 2, which needs less time to make the recovery than that of the
primary-backup. Three servers on different PC’s (denoted S-PC’s) are
employed to simply perform the TMR operation. However, the key issue
here is to make the fault tolerance measure as much transparent as possible,
because in the use of COTS components, the modifications of both hardware
and software components in servers and clients should be kept unnecessary.
To realize the transparency, a control function called Coordinator is inserted
between a client and triplicate servers. In addition to IP address of
Coordinator itself “CDR”, it has another IP address “IPVD” (IP address as
Virtual Server) by which the client views the Coordinator as a single virtual
server. The communication between the Coordinator and the clients are

Current Research Activities on Dependable Computing and Other 125
Dependability Issues in Japan

carried out by referring to the client’s IP address “C” and “IPVD”. Similarly,
the Coordinator communicates to each of the replicate servers, using “CDR”
and the server’s IP address “S” in addition to “C”, as shown in Fig. 3.

COR [data[c]s |

T P P
lAv§data] |avs lc] s [data]

Figure 3. Packet flow control.

When a client communicates to the servers, the Coordinator must
manage the loose synchronization among the replicated servers and make the
adjudication. To reduce the response time to the client, it responds quickly to
the client as soon as the first and the second responses from the replicated
servers agree.

In order to tolerate the malfunction of Coordinator itself, the primary-
backup and the active replication of Coordinators were considered. The
experiments of the performance evaluation show that the former is better
than the latter in terms of the round trip time. It is speculated that the active
replication of Coordinators causes more congestion of packets, resulting in
the performance degradation.

23 Fault tolerance in new computation paradigm

Today, computers exist ubiquitously, and are connected to each other
through a network(s). However, they do not necessarily run always.
Therefore, such an idea is a natural consequence that computing power
distributed over a network should be shared by different users. They should
not necessarily reside in a corporation but across enterprises. In a way,
computers make a form of virtual grid over a network and they perform
services in the coordination. This computation paradigm is called grid
computing.

A computer over a network may participate in different grids. Further, it
decides for itself whether it participates in a coordinated service or not. In
this sense, the grid computing is a paradigm of distributive and autonomous
computing.

Another incentive to such distributive and autonomous cbmputing is the
continuous expansion of a computing system over network(s). The number
of computing facilities on a network ever increases. Further, the territory of a
computing system over a network is becoming more and more boundary-less.

126 Yoshihiro Tohma and Masao Mukaidono

The configuration and scale of a computing system over network(s) changes
dynamically. In such circumstances, it is hard to manage whole computing
system by a single centralized mechanism. We should rely on the
autonomous computing distributed over the network.

A typical example of computational model of grid computing is as shown
in Fig. 4 (Foster 2002), where computers of two categories are included, the
registry and the (computing) servers. First, a user sends his/her inquiry to the
registry about what service(s) he/her requests. The registry responds to the
user’s request, retuning ID’S of server(s) which can perform the requested
service(s). Then, the user sends message(s) to such server(s), requesting the
service(s). The requested server(s) execute the necessary operation(s) and
return the result(s) to the user. If necessary, the requested server may sends
its own request to other servers.

Computing server Remote
Function
Miner
Database
T l Factory ;
3 / Service

Registry

i ———
y Miner Database 1

!

v Database Database
Factory Service
User 3 '\
Database 1
Database
Remote
Computing server Function

Figure 4. Operational model of the grid computing.

Issues concerned with the incorporation of fault tolerance into such
environments are argued (Tohma 2003). First, the registry plays a key role to
the fault tolerance in such a computational environment. It must tell the user
the fault-free servers which can satisfy the user’s request, excluding faulty
ones. Therefore, it must also maintain the information of which servers are
fault-free and which are faulty. The fault tolerance of the registry itself is
crucial.

There may be many servers of similar functionalities in such an
environment. Therefore, in contrast to the case of the registry, a faulty server
can easily be replaced by another fault-free one.

Servers execute their computation in the message-driven way. Therefore,
the most difficult problem is by what way the user or a requesting server can
recognize the occurrence of faults in the requested servers. Or reversely by

Current Research Activities on Dependable Computing and Other 127
Dependability Issues in Japan

what way can the requested servers notify it to the user or a requesting
server? The concept of neighborhood and its consensus is advantageous in
alleviating this difficulty. However, since the neighborhood consists of three
servers of similar functionalities and the user or a requesting server must
send a message to each of three servers in a neighborhood, the nine-fold of a
message are transmitted through the network in the worst case. Further, each
server in a neighborhood exchanges its computational result to each other.
Thus, the communication overhead is considerable.

1 S e ——

“"'| Server C1 k Server Al k Server B1 ’-
)

" Server C2 K Server A2 F d Server B2 |

~

/

3d Server

Figure 5. Duplicated operation in a pair.

Instead, it is proposed that the computation is normally duplicated in a
pair of servers as shown in Fig.5. When the operation of a server in a pair is
abnormal, a discrepancy between the paired computational results is found at
the input of servers in the succeeding pair. Then, the server in the succeeding
pair requests the re-computation by the third server which receives the
necessary inputs from the preceding pair and provides its result to the
succeeding pair. Since each server in the succeeding pair receives three-fold
inputs, it can restore the correct input.

Servers in a pair are not necessarily the same one, and may reside
remotely to each other on a network. The use of differently designed servers
in pairs may benefit by the design diversity against the intrusion.

However, the grid computing needs more detailed investigation about
how granularity or atomicity the functionality of grid computing needs, what
language should be developed to describe services requested by users, etc.

24 New frontier of dependable computing

One of the clearest characteristic to contemporary computing systems is
the continuous augmentation of their functionality. New functions and/or
capabilities are added rather independently even under the continuation of
services so far provided to users. Then, a new type of harassments arises,

128 Yoshihiro Tohma and Masao Mukaidono

that is, functions and/or capabilities added newly may conflict to other
functions which already reside in the system and make some of them not to
work properly. This is called the feature interaction.

Typical examples of feature interaction can be found in telephony
systems. Consider, for example, that function OCS (Originating Call
Screening) to make connection from subscribers A to C prohibited has been
installed. However, if new function CF (Call Forwarding) to have telephone
call from A to subscriber B automatically forwarded to C is added, and if A
calls B, A is connected to C by way of B. The intention of OCS not to
connect A to C is thus violated. In recent intelligent communication systems,
the feature interaction has become one of real problems against providing
dependable communication services.

The difficulty is how to find (detect) possible feature interaction, when
functions and/or capabilities are added to a communication system without
considering mutual interactions to each other.

Generally, a service is specified by the sets of subscribers, rules,
predicates, and events. Further, to describe rules in a general form, variables
are introduced and are instantiated, when rules are applied to actual
situations. Rules of such forms as r: pre — condition [event] post — condition
define post-conditions to which pre-conditions are reduced, when rules are
applied to preconditions and the events are activated. Pre-conditions are
represented by predicates and/or the negations of predicates, while post-
conditions by predicates only.

A state is defined to be a set of predicates with their variables instantiated.
For example, assume that subscribers are A and B, variables x and Yy,
respectively. Further, the predicates are {idle(x), dialtone(x), busytone(x),
calling(x,y), talk(x,y)}. Then, {dialtone(A), dialtone(B)} is a state. When A
dials B , pre-condition {dialtone(A),~idle(B)} invokes such a rule
dialtone(x),~idle(y)[dial(x, y)]busytone(x) and post-condition
busytone(A) results by the execution of event dial(A,B). Thus, state
{dialtone(A), dialtone(B)} transfers to a new state {busytone(A), dialtone(B)}
as shown in Fig.6.

:jA
B

dial(4, B)
(=Ev[r<x|4y[b>)

dialto
dialto

busylone(A
dialtone(B)

Figure 6. State transition.

Current Research Activities on Dependable Computing and Other 129
Dependability Issues in Japan

In this way, all state transitions are defined for the set of rules of a service.
The feature interaction can be detected by checking the existence of paths
from the initial state to states (reachability check) where the feature
interaction holds.

When analyzing real situations, the number of states becomes
prohibitively large in general. To cope with this state explosion, the state
space and the state transition relation as well as the condition of feature
interaction are represented symbolically by Boolean functions, which are
calculated by symbolic model checking tools. However, such Boolean
formula is lengthy so that its simplification is still one of challenging issues.

Yokogawa, et al proposed a new way of representation (encoding)
(Yokogawa 2003), noting that only a small fraction of state variables are
usually involved in each state transition. Since the size of formula can be
reduced, this new way benefits often in the possibility to explore larger state
space. The considered services are as follows:

- Call Waiting (CW) allows subscribers to receive the second incoming call
while they are already talking.

- Call Forwarding (CF) allows subscribers to have their incoming call
forwarded to another address.

- Originating Call Screening (OCS) allows subscribers to specify in the
screening list their outgoing calls to be either restricted or allowed.

- Terminating Call Screening (TCS) allows subscribers to specify in the
screening list their incoming calls to be either restricted or allowed.

- Denied Origination (DO) allows subscribers to disable any call originating
from the terminal. Only terminating calls are permitted.

- Denied Transmission (DT) allows subscribers to disable any call
terminating at the terminal. Only originating calls are permitted.

- Direct Connect (DC) is the so-called hot-line service. When x subscribes
to DC and it specifies y as the destination address, x is directly calling

y simply by offhooking.

As the feature interactions, the nondeterminism and the invariant
violation are considered. The nondeterminism is the situation such that two
or more functionalities of different services can be activated simultaneously
and therefore, which functionality should be actually performed is not
determined. The invariant is a property to be held at any time.

The experiment was conducted to detect the nondeterminism for 11
combinations of services with four subscribers. The performance
improvement is shown in Table 1. Times in column ‘Trad.scheme’ are
measured by using an implementation of Chaff (Moskewicz 2001) and
represented relative to those in column ‘time’, respectively: The latter are
obtained by using the new method. The invariant violation was also checked

very efficiently.

130 Yoshihiro Tohma and Masao Mukaidono

Table 1. Comparison of performance of detecting the nondeterminism.

Combination time Trad.scheme
CW+CF 1 1634
CW+DT 1 44.1
CW+OCS 1 113.8
CW+TCS 1 386.9
CF+DT 1 2676
CF+OCS 1 1966
CF+TCS 1 3255
DC+DO 1 435
DT+OCS 1 38.2
DT+TCS 1 93
OCS+TCS 1 101
3. EXTENDED APPLICATION OF DEPENDABILITY

CONCEPT TO OTHER WORLDS

Modern dependable computing has many application fields from business
information systems including financial, data communications, and etc. to
online real time control systems including chemical process, manufacture,
aerospace, etc. The concept of dependability has many aspects such as
reliability, maintainability, safety, evaluation, etc. and fundamentally it
covers many systems not only computing and structural systems but also
social and human systems such as organizations and inspections. That is, we
can extend the concept of dependability into many other worlds, and it has
potentially huge application fields in the real world.

In these applications the most critical one will be a system, which
affects a person’s life, that is, a safety system. Safety has a strong relation
with reliability but is fundamentally different concept from reliability.
“Reliability” targets to maintain the given functions, but “safety” targets to
avoid dangerous situations in which a sense of values of related person or
current society is concerned. For example, ifa bullet train is stopped from a
fault of safety devise, the safety is maintained (high) but the reliability is lost
(low).

In this section two activities on safety issues, which are currently
conducted in Japan, are explained. One is an activity on the attempt to
construct Map on Safety, which systematizes the safety concepts and safety
technologies applied commonly to many safety fields. The other is
harmonized activity on safety standard of machinery in Japan with
international safety standards.

Current Research Activities on Dependable Computing and Other 131
Dependability Issues in Japan

3.1 Map on Safety or Safety Mandala

This is an attempt toward establishing a new overall discipline on safety
(which we would like to call newly “safenology”) by unifying safety
engineering and safety science with social and humanity sciences. For the
first step of the purpose we list up many key words concerning or related to
safety and cluster them into categories, which consist of three hierarchal
levels and one appendix as shown in Fig. 7. We would like to call it the Map
on Safety (first we called it safety map, but we prefer now to call it safety
Mandala, which means, in Buddhism, a map illustrating the structure of

conceptual essences) (Mukaidono 2002).

#1.Conceptual Aspects _—_
6.Related fields

—_®Z.Technological Aspects of safety
#3.Humanity Aspects N
04.Sy§tems Aspects

\

/ #5.Safety in each field \

Figure 7. Map on safety.

The first level of the map on safety is (1) Conceptual Aspects, which
includes fundamental concepts on safety. The second level is made of three
categories (2) Technological Aspects, (3) Humanity Aspects, and
(4) Systems Aspects, which are commonly used in many fields of safety.
The third level of safety on map is (5) Safety in each field, which consists of
each domain specific safety such as machine safety, chemical safety, nuclear
power safety, etc. The appendix is (6) Related fields of safety.

The following are examples of key words clustered into each category.

(1) Conceptual Aspects
(1-1) What is safety
Definitions of safety, risk, tolerable risk, hazards, danger, safety target
(1-2) A sense of values in safety
Responsibility, safety versus cost/efficiency/ethics/convenience,
safety culture
(1-3) Humanity in safety
Mistakes, habit, human’s reliability
(1-4) Structure of safety
Defend what, from what, how, under what name ?

132 Yoshihiro Tohma and Masao Mukaidono

(2) Technological Aspects
Technologies on evaluation, prevention, maintenance, damage reduction,

prevention, inherent safety design, fault tolerance, fail safe, fail soft,
and fool proof

(3) Humanity Aspects
Human machine interface, miss uses, ergonomics, education, peace in
mind

(4) Systems Aspects
Management, assessment, standardization, regulation and norm,
certification

(5) Safety in each field
Machine safety, nuclear power safety, traffic safety, chemical safety,

product safety, material safety, food safety

(6) Related fields of safety
Crisis management, security, insurance, court systems, law

3.2 Recent activities in standardisation on safety
of machinery in Japan

Standards for safety of machinery started from Europe. EN292 (Safety of
Machinery--Basic concepts, general principle for design) was originated
from British and German safety standards came into effect on 1991, and
used as harmonized standards of EC Machine Directives, which are
mandatory. ISO/TC199 (Safety of Machinery) was established to discuss
ISO12100 (Safety of Machinery—Basic concepts, general principle for
design) based on EN292 and related many international standards of safety
of machinery. Japan has JIS (Japan Industrial Standard) systems but not
enough for machine safety. According to TBT (Technical Barriers to Trade)
agreement, Japan started in 1995 to harmonize JIS with international
standards, and the safety of machinery standards are introduced actively into
JIS based on ISO/TC199. We started the research for developing
international safety standards, for example, vision-based protective devices
and electronic safety control circuit module based on fail safe technology.
Furthermore, in the cooperation with Asia-Pacific countries, we are pushing
researches and making efforts to propose the international safety standards to
ISO and IEC.

The following is a short history of the safety machinery standards in
Japan and Europe.

* 1989 (Europe) EC Machine directives

* 1990 (International) ISO/IEC guide 51: Safety Aspects - Guidelines for
their inclusion in standards

* 1991 (Europe) EN292: Safety of Machinery - Basic concepts, general
principle for design

Current Research Activities on Dependable Computing and Other 133
Dependability Issues in Japan

* 1991 (International) ISO/TC199: Safety of Machinery

* 1992 (International) ISO/TR12100: Safety of Machinery - Basic concepts,
general principle for design

* 1995 (International) TBT (Technical Barriers to Trade) agreement

* 1995 (Japan) Declaration to harmonize JIS (Japan Industrial Standard)
with ISO, IEC within 5 years

* 1998 (Japan) TR B 0008, 0009 (corresponding to ISO/TR12100)

* 2001 (Japan) Guideline for comprehensive safety norm on Machinery
(corresponding to ISO/TR12100) into effect by Ministry of Labor, Health
and Welfare

* 2001 (Japan) Asia-Pacific Machinery Safety Seminar started every year
(China, Korea, Thailand, Singapore, India, Philippines)

¢ 2001 (Japan) Research for developing International Safety Standards
(1) Development of vision-based protective device
(2) Electronic control circuit module

* 2003 (International) ISO12100: Safety of Machinery - Basic concepts,
general principle for design

* 2004 (Japan) JS B 970 (corresponding to ISO12100)

4. CONCLUSION

As technological innovation emerges, we face always new challenges to
dependable computing. This paper has reviewed researches as well as
organizational activities currently conducted in Japan, noting their new
characteristic and nature.

REFERENCES

Foster, 1., Kessselman, S., Nick, J. M. and Tuecke, S., 2002, Grid Services for Distributed
System Integration, Computers, IEEE Computer, Vol. 35, No. 6, pp. 37-46, June 2002.

Mishia, T and Akaike, T., 2003, PREGMA: A New Fault Tolerant Cluster Using COTS
Components for Internet Services, Transactions on Information and Systems, The
Institute of Electronics, Information and Communication Engineers (IEICE), Vol. E86-D,
No. 12, pp. 2517-2526, December 2003.

Mendelson, A. and Suri, A., 2000, Designing high-performance & reliable superscalar
architecture - the out of order reliable superscalar (O3RS) approach; Proc. IEEE/IFIP
International Conference on Dependable Systems and Networks, pp. 447-481, 2000.

134 Yoshihiro Tohma and Masao Mukaidono

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L, and Malik, S, 2001, Chaff:
Engineering an efficient sat solver, Proc. 39" " Design Automation Conference, 2001.
Mukaidono, M., 2002, The Map on Safety - Toward to establish a new overall discipline on
safety, Proc. 3 International Forum on Safety Engineering and Science (IFSESIII),
2002. (See http://www.sys.cs.meiji.ac.jp/~masao/kouen/safetymandala.file/frame.htm.)

Sato, T., 2003, A Transparent and Transient Faults Tolerance Mechanism for Superscalar
Processors, Transactions on Information and Systems, IEICE, Vol. E86-D, No. 12, pp.
2508-2516, December 2003.

Tohma, Y., 2003, Consideration of Fault Tolerance in Autonomic Computing Environment,
ibid, 2503-2507.

Yokogawa, T., Tsuchiya, T., Nakamura, M,, and Kikuno, T. 2003, Feature Interaction
Detection by Bounded Model Checking, ibid, 2579-2587.

