Skip to main content

A Guide to Quantify Arabidopsis Seedling Thermomorphogenesis at Single Timepoints and by Interval Monitoring

  • Protocol
  • First Online:
Thermomorphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2795))

  • 258 Accesses

Abstract

Temperature-induced elongation of hypocotyls, petioles, and roots, together with hyponastic leaf responses, constitute key model phenotypes that can be used to assess a plant’s capacity for thermomorphogenesis. Phenotypic responses are often quantified at a single time point during seedling development at different temperatures. However, to capture growth dynamics, several time points need to be assessed, and ideally continuous measurements are taken. Here we describe a general experimental setup and technical solutions for recording and measuring seedling phenotypes at single and multiple time points. Furthermore, we present an R-package called “rootdetectR,” which allows easy processing of hypocotyl, root or petiole length, and growth rate data and provides different options of data presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quint M, Delker C, Franklin KA et al (2016) Molecular and genetic control of plant thermomorphogenesis. Nat Plant 2:15190. https://doi.org/10.1038/nplants.2015.190

    Article  CAS  Google Scholar 

  2. Delker C, Quint M, Wigge PA (2022) Recent advances in understanding thermomorphogenesis signaling. Curr Opin Plant Biol 68:102231. https://doi.org/10.1016/j.pbi.2022.102231

    Article  CAS  PubMed  Google Scholar 

  3. Erwin JE, Heins RD, Karlsson MG (1989) Thermomorphogenesis in Lilium longiflorum. Am J Bot 76:47–52. https://doi.org/10.2307/2444772

    Article  Google Scholar 

  4. Delker C, Sonntag L, James GV et al (2014) The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis. Cell Rep 9:1983–1989. https://doi.org/10.1016/j.celrep.2014.11.043

    Article  CAS  PubMed  Google Scholar 

  5. Crawford AJ, McLachlan DH, Hetherington AM, Franklin KA (2012) High temperature exposure increases plant cooling capacity. Curr Biol 22:R396–R397. https://doi.org/10.1016/j.cub.2012.03.044

    Article  CAS  PubMed  Google Scholar 

  6. Park Y-J, Lee H-J, Gil K-E et al (2019) Developmental programming of thermonastic leaf movement. Plant Physiol 180:00139. https://doi.org/10.1104/pp.19.00139

    Article  Google Scholar 

  7. Ibañez C, Poeschl Y, Peterson T et al (2017) Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana. BMC Plant Biol 17:114. https://doi.org/10.1186/s12870-017-1068-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Box MS, Huang BE, Domijan M et al (2015) ELF3 controls thermoresponsive growth in Arabidopsis. Curr Biol 25:194–199. https://doi.org/10.1016/j.cub.2014.10.076

    Article  CAS  PubMed  Google Scholar 

  9. van der Woude L, Piotrowski M, Klaasse G et al (2021) The chemical compound ‘Heatin’ stimulates hypocotyl elongation and interferes with the Arabidopsis NIT1-subfamily of nitrilases. Plant J 106:1523–1540. https://doi.org/10.1111/tpj.15250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van der Woude LC, Perrella G, Snoek BL et al (2019) Histone Deacetylase 9 stimulates auxin-dependent thermomorphogenesis in Arabidopsis thaliana by mediating H2A.Z depletion. Proc Natl Acad Sci USA 116:25343–25354. https://doi.org/10.1073/pnas.1911694116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu Z, Quint M, Anwer MU (2022) Arabidopsis Early Flowering 3 controls temperature responsiveness of the circadian clock independently of the evening complex. J Exp Bot 73:1049–1061. https://doi.org/10.1093/jxb/erab473

    Article  CAS  PubMed  Google Scholar 

  12. Ai H, Bellstaedt J, Bartusch KS et al (2023) Auxin-dependent regulation of cell division rates governs root thermomorphogenesis. EMBO J 42:e111926. https://doi.org/10.15252/embj.2022111926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nijland W, de Jong R, de Jong SM et al (2014) Monitoring plant condition and phenology using infrared sensitive consumer grade digital cameras. Agric For Meteorol 184:98–106. https://doi.org/10.1016/j.agrformet.2013.09.007

    Article  Google Scholar 

  14. Anwer MU, Davis A, Davis SJ, Quint M (2020) Photoperiod sensing of the circadian clock is controlled by Early Flowering 3 and Gigantea. Plant J 101:1397–1410. https://doi.org/10.1111/tpj.14604

    Article  CAS  PubMed  Google Scholar 

  15. Lincoln C, Britton J, Estelle M (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2:1071–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Z, Zhang Y, Liu R et al (2011) Phytochrome interacting factors (PIFs) are essential regulators for sucrose-induced hypocotyl elongation in Arabidopsis. J Plant Physiol 168:1771–1779. https://doi.org/10.1016/j.jplph.2011.04.009

    Article  CAS  PubMed  Google Scholar 

  17. Stewart JJ, Demmig-Adams B, Cohu CM et al (2016) Growth temperature impact on leaf form and function in Arabidopsis thaliana ecotypes from northern and southern Europe. Plant Cell Environ 39:1549–1558. https://doi.org/10.1111/pce.12720

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Z, Zhu J-Y, Roh J et al (2016) TOR signaling promotes accumulation of BZR1 to balance growth with carbon availability in Arabidopsis. Curr Biol 26:1854–1860. https://doi.org/10.1016/j.cub.2016.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolin Delker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Janitza, P., Zhu, Z., Anwer, M.U., van Zanten, M., Delker, C. (2024). A Guide to Quantify Arabidopsis Seedling Thermomorphogenesis at Single Timepoints and by Interval Monitoring. In: Chen, M. (eds) Thermomorphogenesis. Methods in Molecular Biology, vol 2795. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3814-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3814-9_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3813-2

  • Online ISBN: 978-1-0716-3814-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics