Skip to main content

Generating Homogeneous Brain Organoids from Human iPSCs

  • Protocol
  • First Online:
Cerebral Cortex Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2794))

  • 222 Accesses

Abstract

There is a high demand for the development of in vitro models for human brain development and diseases due to the inaccessibility of human brain tissues. The human iPSC-derived brain organoids provide a promising in vitro model for studying human brain development and disorders. However, it is challenging to generate a large number of brain organoids with high consistency for modeling human neurological diseases. Here, we describe a method for generating high-yield brain organoids with high consistency by combining large-scale embryoid body (EB) generation and incorporating a quality control screening step during differentiation. The method described in this chapter provides a robust way to generate brain organoids for studying human brain development and modeling neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  2. Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  CAS  PubMed  Google Scholar 

  3. Shi Y (2009) Induced pluripotent stem cells, new tools for drug discovery and new Hope for stem cell therapies. Curr Mol Pharmacol 2(1):15–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shi Y et al (2020) Induced pluripotent stem cell technology: venturing into the second decade. In: Lanza R et al (eds) Principles of tissue engineering. Elsevier

    Google Scholar 

  5. Shi Y et al (2017) Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 16(2):115–130

    Article  CAS  PubMed  Google Scholar 

  6. Li L, Chao J, Shi Y (2018) Modeling neurological diseases using iPSC-derived neural cells: iPSC modeling of neurological diseases. Cell Tissue Res 371(1):143–151

    Article  CAS  PubMed  Google Scholar 

  7. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345(6194):1247125

    Article  PubMed  Google Scholar 

  8. Lancaster MA et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379

    Article  CAS  PubMed  Google Scholar 

  9. Qian X et al (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165(5):1238–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pasca AM et al (2015) Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods 12(7):671–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun G et al (2020) Modeling human cytomegalovirus-induced microcephaly in human iPSC-derived brain organoids. Cell Rep Med 1(1):100002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pasca SP (2018) The rise of three-dimensional human brain cultures. Nature 553(7689):437–445

    Article  CAS  PubMed  Google Scholar 

  13. Kelava I, Lancaster MA (2016) Stem cell models of human brain development. Cell Stem Cell 18(6):736–748

    Article  CAS  PubMed  Google Scholar 

  14. Gordon A et al (2021) Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat Neurosci 24(3):331–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Di Lullo E, Kriegstein AR (2017) The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci 18(10):573–584

    Google Scholar 

  16. Feng L et al (2023) Developing a human iPSC-derived three-dimensional myelin spheroid platform for modeling myelin diseases. iScience 26(11):108037

    Google Scholar 

  17. Cerneckis J, Shi Y (2023) Myelin organoids for the study of Alzheimer's disease. Front Neurosci 17:1283742

    Google Scholar 

  18. Chen X et al (2021) Modeling sporadic Alzheimer’s disease in human brain organoids under serum exposure. Adv Sci (Weinh):e2101462

    Google Scholar 

  19. Huang S et al (2022) Chimeric cerebral organoids reveal the essentials of neuronal and astrocytic APOE4 for Alzheimer’s tau pathology. Signal Transduct Target Ther 7(1):176

    Google Scholar 

  20. Lin YT et al (2018) APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98(6):1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao J et al (2020) APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer’s disease patient iPSC-derived cerebral organoids. Nat Commun 11(1):5540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cerneckis J, Bu G, Shi Y (2023) Pushing the boundaries of brain organoids to study Alzheimer’s disease. Trends Mol Med 29(8):659–672

    Google Scholar 

  23. Chen X et al (2021) Human induced pluripotent stem cell–based modeling of Alzheimer’s disease, a glial perspective. In: Birbrair A (ed) iPSCs for modeling central nervous system disorders. Elsevier, pp 21–35

    Chapter  Google Scholar 

  24. Qian X, Song H, Ming GL (2019) Brain organoids: advances, applications and challenges. Development 146(8)

    Google Scholar 

  25. Giandomenico SL et al (2019) Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci 22(4):669–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qian X et al (2020) Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell 26(5):766–781 e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu R et al (2021) Developing human pluripotent stem cell-based cerebral organoids with a controllable microglia ratio for modeling brain development and pathology. Stem Cell Rep 16(8):1923–1937

    Article  Google Scholar 

  28. Popova G et al (2021) Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell 28(12):2153–2166 e6

    Article  CAS  PubMed  Google Scholar 

  29. Cerneckis J, Shi Y (2023) Modeling brain macrophage biology using human iPSC-derived neuroimmune organoids. Front Cell Neurosci 17:1198715

    Google Scholar 

  30. Schafer ST et al (2023) An in vivo neuroimmune organoid model to study human microglia phenotypes. Cell 186(10):2111–2126 e20

    Article  CAS  PubMed  Google Scholar 

  31. Cerneckis J, Shi Y (2023) Context matters: hPSC-derived microglia thrive in a humanized brain environment in vivo. Cell Stem Cell 30(7):909-910

    Google Scholar 

  32. Cakir B et al (2019) Engineering of human brain organoids with a functional vascular-like system. Nat Methods 16(11):1169–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matsui TK et al (2021) Vascularization of human brain organoids. Stem Cells 39(8):1017–1024

    Article  PubMed  Google Scholar 

  34. Mansour AA et al (2018) An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol 36(5):432–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Louise and Herbert Horvitz, the Christopher Family, the Judy and Bernard Briskin Fund, and the Sidell Kagan Foundation for their generosity. This work was supported by the National Institute of Aging of the National Institutes of Health under Grant Nos. R01 AG056305, RF1 AG061794, R01 AG072291, and RF1 AG079307 to Y.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, X., Shi, Y. (2024). Generating Homogeneous Brain Organoids from Human iPSCs. In: Nagata, Ki. (eds) Cerebral Cortex Development. Methods in Molecular Biology, vol 2794. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3810-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3810-1_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3809-5

  • Online ISBN: 978-1-0716-3810-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics