Skip to main content

Directed Differentiation of Neurons from Human iPSCs for Modeling Neurological Disorders

  • Protocol
  • First Online:
Cerebral Cortex Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2794))

  • 212 Accesses

Abstract

Human-induced pluripotent stem cell (hiPSC) technology has enabled comprehensive human cell-based disease modeling in vitro. Due to limited accessibility of primary human neurons as well as species-specific divergence between human and rodent brain tissues, hiPSC-derived neurons have become a popular tool for studying neuronal biology in a dish. Here, we provide methods for transcription factor-driven directed differentiation of neurons from hiPSCs via a neural progenitor cell (NPC) intermediate. Doxycycline-inducible expression of neuron fate-determining transcription factors neurogenin 2 (NGN2) and achaete-scute homolog 1 (ASCL1) enables rapid and controllable differentiation of human neurons for disease modeling applications. The provided method is also designed to improve the reproducibility of human neuron differentiation by reducing the batch-to-batch variation of NPC differentiation and lentiviral transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  2. Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  CAS  PubMed  Google Scholar 

  3. Li L et al (2018) Modeling neurological diseases using iPSC-derived neural cells: iPSC modeling of neurological diseases. Cell Tissue Res 371(1):143–151

    Article  CAS  PubMed  Google Scholar 

  4. Rowe RG, Daley GQ (2019) Induced pluripotent stem cells in disease modelling and drug discovery. Nat Rev Genet 20(7):377–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shi Y et al (2017) Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 16(2):115–130

    Article  CAS  PubMed  Google Scholar 

  6. Vadodaria KC et al (2020) Modeling brain disorders using induced pluripotent stem cells. Cold Spring Harb Perspect Biol 12(6):a035659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cui Q et al (2022) Compound screen identifies the small molecule Q34 as an inhibitor of SARS-CoV-2 infection. iScience 25(1):103684

    Article  CAS  PubMed  Google Scholar 

  8. Giacomelli E et al (2022) Human stem cell models of neurodegeneration: from basic science of amyotrophic lateral sclerosis to clinical translation. Cell Stem Cell 29(1):11–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang C et al (2021) ApoE-isoform-dependent SARS-CoV-2 neurotropism and cellular response. Cell Stem Cell 28(2):331–342 e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang C et al (2018) Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med 24(5):647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fang R et al (2022) Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH. Science 377(6601):56–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hodge RD et al (2019) Conserved cell types with divergent features in human versus mouse cortex. Nature 573(7772):61–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Knopman DS et al (2021) Alzheimer disease. Nat Rev Dis Prim 7(1):33

    Article  PubMed  Google Scholar 

  14. Long JM, Holtzman DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179(2):312–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cerneckis J, et al (2023) Pushing the boundaries of brain organoids to study Alzheimer’s disease. Trends Mol Med 29(8):659–672

    Google Scholar 

  16. Cerneckis J, Shi Y (2023) Modeling brain macrophage biology using human iPSC-derived neuroimmune organoids. Front Cell Neurosci 17:1198715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cerneckis J, Shi Y (2023) Context matters: hPSC-derived microglia thrive in a humanized brain environment in vivo. Cell Stem Cell 30(7):909–910

    Google Scholar 

  18. Cerneckis J, Shi Y (2023) Myelin organoids for the study of Alzheimer's disease. Front Neurosci 17:1283742

    Google Scholar 

  19. Lin YT et al (2018) APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98(6):1141–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meyer K et al (2019) REST and neural gene network dysregulation in iPSC models of Alzheimer’s disease. Cell Rep 26(5):1112–1127 e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheng C et al (2021) High-content image-based analysis and proteomic profiling identifies tau phosphorylation inhibitors in a human iPSC-derived glutamatergic neuronal model of tauopathy. Sci Rep 11(1):17029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kondo T et al (2022) Dissection of the polygenic architecture of neuronal Aβ production using a large sample of individual iPSC lines derived from Alzheimer’s disease patients. Nature Aging 2(2):125–139

    Article  CAS  PubMed  Google Scholar 

  23. Pantazis CB et al (2022) A reference human induced pluripotent stem cell line for large-scale collaborative studies. Cell Stem Cell 29(12):1685–1702 e22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Workman MJ et al (2023) Large-scale differentiation of iPSC-derived motor neurons from ALS and control subjects. Neuron 111:1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Engle SJ et al (2018) Best practices for translational disease modeling using human iPSC-derived neurons. Neuron 100(4):783–797

    Article  CAS  PubMed  Google Scholar 

  26. Chambers SM et al (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Smith DK et al (2016) Small molecules modulate chromatin accessibility to promote NEUROG2-mediated fibroblast-to-neuron reprogramming. Stem Cell Rep 7(5):955–969

    Article  CAS  Google Scholar 

  28. Wapinski OL et al (2013) Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 155(3):621–635

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y et al (2013) Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78(5):785–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Louise and Herbert Horvitz, the Christopher Family, the Judy and Bernard Briskin Fund, and the Sidell Kagan Foundation for their generosity and forethought. This work was supported by the National Institute of Aging of the National Institutes of Health R01 AG056305, RF1 AG061794, R01 AG072291, and RF1 AG079307 to Y.S. J.C. is a predoctoral scholar in the Stem Cell Biology and Regenerative Medicine Research Training Program of the California Institute for Regenerative Medicine (CIRM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, C., Cerneckis, J., Shi, Y. (2024). Directed Differentiation of Neurons from Human iPSCs for Modeling Neurological Disorders. In: Nagata, Ki. (eds) Cerebral Cortex Development. Methods in Molecular Biology, vol 2794. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3810-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3810-1_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3809-5

  • Online ISBN: 978-1-0716-3810-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics