Skip to main content

Analysis of Resting-State Functional Magnetic Resonance Imaging in Alzheimer’s Disease

  • Protocol
  • First Online:
Biomarkers for Alzheimer’s Disease Drug Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2785))

Abstract

Alzheimer’s disease (AD) has been characterized by widespread network disconnection among brain regions, widely overlapping with the hallmarks of the disease. Functional connectivity has been studied with an upward trend in the last two decades, predominantly in AD among other neuropsychiatric disorders, and presents a potential biomarker with various features that might provide unique contributions to foster our understanding of neural mechanisms of AD. The resting-state functional MRI (rs-fMRI) is usually used to measure the blood-oxygen-level-dependent signals that reflect the brain’s functional connectivity. Nevertheless, the rs-fMRI is still underutilized, which might be due to the fairly complex acquisition and analytic methodology. In this chapter, we presented the common methods that have been applied in rs-fMRI literature, focusing on the studies on individuals in the continuum of AD. The key methodological aspects will be addressed that comprise acquiring, processing, and interpreting rs-fMRI data. More, we discussed the current and potential implications of rs-fMRI in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim S-G, Bandettini PA (2006) Principles of functional MRI. In: Functional MRI. Springer, New York, pp 3–23

    Google Scholar 

  2. Mesulam M-M (2000) Principles of behavioral and cognitive neurology. Oxford University Press

    Google Scholar 

  3. Hampel H, Gao P, Cummings J et al (2023) The foundation and architecture of precision medicine in neurology and psychiatry. Trends Neurosci 46:176–198

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cummings J (2019) The role of biomarkers in Alzheimer’s disease drug development. Adv Exp Med Biol 1118:29–61

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Yu M, Sporns O, Saykin AJ (2021) The human connectome in Alzheimer disease — relationship to biomarkers and genetics. Nat Rev Neurol 17:545–563

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fox MD, Greicius M (2010) Clinical applications of resting state functional connectivity. Front Syst Neurosci 4:19

    PubMed  PubMed Central  Google Scholar 

  7. Filippi M, Spinelli EG, Cividini C et al (2023) The human functional connectome in neurodegenerative diseases: relationship to pathology and clinical progression. Expert Rev Neurother 23:59–73

    CAS  PubMed  Google Scholar 

  8. Jones DT, Knopman DS, Gunter JL et al (2016) Cascading network failure across the Alzheimer’s disease spectrum. Brain 139:547–562

    PubMed  Google Scholar 

  9. Dennis EL, Thompson PM (2014) Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol Rev 24:49–62

    PubMed  PubMed Central  Google Scholar 

  10. Perovnik M, Rus T, Schindlbeck KA, Eidelberg D (2023) Functional brain networks in the evaluation of patients with neurodegenerative disorders. Nat Rev Neurol 19:73–90

    PubMed  Google Scholar 

  11. Ingala S, Tomassen J, Collij LE et al (2021) Amyloid-driven disruption of default mode network connectivity in cognitively healthy individuals. Brain Commun 3:fcab201

    PubMed  PubMed Central  Google Scholar 

  12. Franzmeier N, Neitzel J, Rubinski A et al (2020) Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s disease. Nat Commun 11:347

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Raichle ME (2010) Two views of brain function. Trends Cogn Sci 14:180–190

    PubMed  Google Scholar 

  14. Lecrux C, Hamel E (2011) The neurovascular unit in brain function and disease. Acta Physiol 203:47–59

    CAS  Google Scholar 

  15. Park H-J, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342:1238411

    PubMed  Google Scholar 

  16. Sharma R (2012) Functional magnetic resonance imaging - advanced neuroimaging applications. INTECH

    Google Scholar 

  17. Buxton RB (2009) Interpreting the BOLD response. In: Introduction to functional magnetic resonance imaging. Cambridge University Press, pp 400–424

    Google Scholar 

  18. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711

    CAS  PubMed  Google Scholar 

  19. Vemuri P, Jones DT, Jack CR Jr (2012) Resting state functional MRI in Alzheimer’s disease. Alzheimers Res Ther 4:2

    PubMed  PubMed Central  Google Scholar 

  20. Ogawa S, Menon RS, Kim SG, Ugurbil K (1998) On the characteristics of functional magnetic resonance imaging of the brain. Annu Rev Biophys Biomol Struct 27:447–474

    CAS  PubMed  Google Scholar 

  21. Gorgolewski KJ, Auer T, Calhoun VD et al (2016) The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data 3:160044

    PubMed  PubMed Central  Google Scholar 

  22. Poline JB, Ciuciu P, Roche A, Thirion B (2016) Intra and inter subject analyses of brain functional magnetic resonance images (fMRI). In: Paragios N, Ayache N, Duncan J (eds) Handbook of biomedical imaging. Springer, New York

    Google Scholar 

  23. Buxton RB (2009) Introduction to functional magnetic resonance imaging, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  24. Holiga S, Abdulkadir A, Klöppel S, Dukart J (2018) Functional magnetic resonance imaging in Alzheimer’ disease drug development. Methods Mol Biol 1750:159–163

    CAS  PubMed  Google Scholar 

  25. Botvinik-Nezer R, Holzmeister F, Camerer CF et al (2020) Variability in the analysis of a single neuroimaging dataset by many teams. Nature 582:84–88

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Poldrack RA, Nichols T, Mumford J (2011) Preprocessing fMRI data. In: Handbook of functional MRI data analysis. Cambridge University Press, Cambridge, pp 34–52

    Google Scholar 

  27. Poldrack RA, Mumford JA, Nichols TE (2011) Handbook of functional MRI data analysis. Cambridge University Press, Cambridge

    Google Scholar 

  28. Morfini F, Whitfield-Gabrieli S, Nieto-Castañón A (2023) Functional connectivity MRI quality control procedures in CONN. Front Neurosci 17. https://doi.org/10.3389/fnins.2023.1092125

  29. Hallquist MN, Hwang K, Luna B (2013) The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. NeuroImage 82:208–225

    PubMed  Google Scholar 

  30. Caballero-Gaudes C, Reynolds RC (2017) Methods for cleaning the BOLD fMRI signal. NeuroImage 154:128–149

    PubMed  Google Scholar 

  31. Friston KJ, Williams S, Howard R et al (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35:346–355

    CAS  PubMed  Google Scholar 

  32. Power JD, Mitra A, Laumann TO et al (2014) Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 84:320–341

    PubMed  Google Scholar 

  33. Poldrack RA, Nichols T, Mumford J (2011) A review of the general linear model. In: Handbook of functional MRI data analysis. Cambridge University Press, Cambridge, pp 191–200

    Google Scholar 

  34. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300

    Google Scholar 

  35. Worsley KJ, Cao J, Paus T et al (1998) Applications of random field theory to functional connectivity. Hum Brain Mapp 6:364–367

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bullmore ET, Suckling J, Overmeyer S et al (1999) Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans Med Imaging 18:32–42

    CAS  PubMed  Google Scholar 

  37. Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44:83–98

    PubMed  Google Scholar 

  38. Frackowiak RSJ, Friston KJ, Frith CD et al (2004) Chapter 13 – the Chronoarchitecture of the human brain: functional anatomy based on natural brain dynamics and the principle of functional Independence. In: Human brain function (second edition). Academic Press, Burlington, pp 201–229

    Google Scholar 

  39. Yeo BTT, Thomas Yeo BT, Krienen FM et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165

    PubMed  Google Scholar 

  40. Schultz AP, Chhatwal JP, Huijbers W et al (2014) Template based rotation: a method for functional connectivity analysis with a priori templates. NeuroImage 102(Pt 2):620–636

    PubMed  Google Scholar 

  41. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100:253–258

    CAS  PubMed  Google Scholar 

  42. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    PubMed  Google Scholar 

  43. Kim H, Daselaar SM, Cabeza R (2010) Overlapping brain activity between episodic memory encoding and retrieval: roles of the task-positive and task-negative networks. NeuroImage 49:1045–1054

    PubMed  Google Scholar 

  44. Seeley WW, Menon V, Schatzberg AF et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fox MD, Corbetta M, Snyder AZ et al (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U S A 103:10046–10051

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673–9678

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Erhardt EB, Rachakonda S, Bedrick EJ et al (2011) Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp 32:2075–2095

    PubMed  Google Scholar 

  48. Berron D, van Westen D, Ossenkoppele R et al (2020) Medial temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease. Brain 143:1233–1248

    PubMed  PubMed Central  Google Scholar 

  49. Brier MR, Thomas JB, Snyder AZ et al (2012) Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression. J Neurosci 32:8890–8899

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rauchmann B-S, Ersoezlue E, Stoecklein S et al (2021) Resting-state network alterations differ between Alzheimer’s disease atrophy subtypes. Cereb Cortex 31:4901–4915

    PubMed  PubMed Central  Google Scholar 

  51. Ersoezlue E, Rauchmann B-S, Schneider-Axmann T et al (2023) Lifelong experiences as a proxy of cognitive reserve moderate the association between connectivity and cognition in Alzheimer’s disease. Neurobiol Aging 122:33–44

    PubMed  Google Scholar 

  52. Wang P, Zhou B, Yao H et al (2015) Aberrant intra- and inter-network connectivity architectures in Alzheimer’s disease and mild cognitive impairment. Sci Rep 5:14824

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chhatwal JP, Schultz AP, Johnson KA et al (2018) Preferential degradation of cognitive networks differentiates Alzheimer’s disease from ageing. Brain 141:1486–1500

    PubMed  PubMed Central  Google Scholar 

  54. Schultz AP, Buckley RF, Hampton OL et al (2020) Longitudinal degradation of the default/salience network axis in symptomatic individuals with elevated amyloid burden. Neuroimage Clin 26:102052

    PubMed  Google Scholar 

  55. Uddin LQ, Kelly AM, Biswal BB et al (2009) Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum Brain Mapp 30:625–637

    PubMed  Google Scholar 

  56. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    CAS  PubMed  Google Scholar 

  57. Tzourio C, Benslamia L, Guillon B et al (2002) Migraine and the risk of cervical artery dissection: a case-control study. Neurology 59:435–437

    CAS  PubMed  Google Scholar 

  58. Fan L, Li H, Zhuo J et al (2016) The human Brainnetome atlas: a new brain atlas based on connectional architecture. Cereb Cortex 26:3508–3526

    PubMed  PubMed Central  Google Scholar 

  59. Schaefer A, Kong R, Gordon EM et al (2018) Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb Cortex 28:3095–3114

    PubMed  Google Scholar 

  60. Pievani M, de Haan W, Wu T et al (2011) Functional network disruption in the degenerative dementias. Lancet Neurol 10:829–843

    PubMed  PubMed Central  Google Scholar 

  61. van den Heuvel MP, de Lange SC, Zalesky A et al (2017) Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: issues and recommendations. NeuroImage 152:437–449

    PubMed  Google Scholar 

  62. Fornito A, Zalesky A, Bullmore ET (2010) Network scaling effects in graph analytic studies of human resting-state FMRI data. Front Syst Neurosci 4:22

    PubMed  PubMed Central  Google Scholar 

  63. Hallquist MN, Hillary FG (2019) Graph theory approaches to functional network organization in brain disorders: a critique for a brave new small-world. Netw Neurosci 3:1–26

    PubMed  Google Scholar 

  64. Lancichinetti A, Fortunato S (2012) Consensus clustering in complex networks. Sci Rep 2:336

    PubMed  PubMed Central  Google Scholar 

  65. Murphy K, Fox MD (2017) Towards a consensus regarding global signal regression for resting state functional connectivity MRI. NeuroImage 154:169–173

    PubMed  Google Scholar 

  66. Farahani FV, Karwowski W, Lighthall NR (2019) Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review. Front Neurosci 13:585

    PubMed  PubMed Central  Google Scholar 

  67. Sporns O, Betzel RF (2016) Modular brain networks. Annu Rev Psychol 67:613–640

    PubMed  Google Scholar 

  68. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52:1059–1069

    PubMed  Google Scholar 

  69. Zang Y, Jiang T, Lu Y et al (2004) Regional homogeneity approach to fMRI data analysis. NeuroImage 22:394–400

    PubMed  Google Scholar 

  70. Zou Q-H, Zhu C-Z, Yang Y et al (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172:137–141

    PubMed  PubMed Central  Google Scholar 

  71. Lyu D, Li T, Lyu X (2021) Resting-state functional reorganisation in Alzheimer’s disease and amnestic mild cognitive impairment: protocol for a systematic review and meta-analysis. BMJ Open 11:e049798

    PubMed  PubMed Central  Google Scholar 

  72. Riedl V (2012) Intrinsic functional brain networks in health and disease. Graduate School of Systemic Neurosciences Ludwig-Maximilians Universität

    Google Scholar 

  73. Hutchison RM, Womelsdorf T, Allen EA et al (2013) Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage 80:360–378

    PubMed  Google Scholar 

  74. Filippi M, Spinelli EG, Cividini C, Agosta F (2019) Resting state dynamic functional connectivity in neurodegenerative conditions: a review of magnetic resonance imaging findings. Front Neurosci 13:657

    PubMed  PubMed Central  Google Scholar 

  75. Zhang D, Raichle ME (2010) Disease and the brain’s dark energy. Nat Rev Neurol 6:15–28

    PubMed  Google Scholar 

  76. Anticevic A, Cole MW, Murray JD et al (2012) The role of default network deactivation in cognition and disease. Trends Cogn Sci 16:584–592

    PubMed  PubMed Central  Google Scholar 

  77. Smith SM, Fox PT, Miller KL et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A 106:13040–13045

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Palop JJ, Mucke L (2016) Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci 17:777–792

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Palmqvist S, Schöll M, Strandberg O et al (2017) Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat Commun 8:1214

    PubMed  PubMed Central  Google Scholar 

  80. Hoenig MC, Bischof GN, Seemiller J et al (2018) Networks of tau distribution in Alzheimer’s disease. Brain 141:568–581

    PubMed  Google Scholar 

  81. Sheline YI, Raichle ME, Snyder AZ et al (2010) Amyloid plaques disrupt resting state default mode network connectivity in cognitively Normal elderly. Biol Psychiatry 67:584–587

    CAS  PubMed  Google Scholar 

  82. Schultz AP, Chhatwal JP, Hedden T et al (2017) Phases of hyperconnectivity and hypoconnectivity in the default mode and salience networks track with amyloid and tau in clinically Normal individuals. J Neurosci 37:4323–4331

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Binnewijzend MAA, Schoonheim MM, Sanz-Arigita E et al (2012) Resting-state fMRI changes in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 33:2018–2028

    PubMed  Google Scholar 

  84. Elman JA, Madison CM, Baker SL et al (2016) Effects of beta-amyloid on resting state functional connectivity within and between networks reflect known patterns of regional vulnerability. Cereb Cortex 26:695–707

    PubMed  Google Scholar 

  85. Zhou J, Greicius MD, Gennatas ED et al (2010) Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain 133:1352–1367

    PubMed  PubMed Central  Google Scholar 

  86. Buckley RF, Schultz AP, Hedden T et al (2017) Functional network integrity presages cognitive decline in preclinical Alzheimer disease. Neurology 89:29–37

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Chiesa PA, Cavedo E, Lista S et al (2017) Revolution of resting-state functional neuroimaging genetics in Alzheimer’s disease. Trends Neurosci 40:469–480

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang L, Roe CM, Snyder AZ et al (2012) Alzheimer disease family history impacts resting state functional connectivity. Ann Neurol 72:571–577

    PubMed  PubMed Central  Google Scholar 

  89. Seeley WW, Crawford RK, Zhou J et al (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Tuovinen T, Rytty R, Moilanen V et al (2016) The effect of gray matter ICA and coefficient of variation mapping of BOLD data on the detection of functional connectivity changes in Alzheimer’s disease and bvFTD. Front Hum Neurosci 10:680

    PubMed  Google Scholar 

  91. Zhou J, Gennatas ED, Kramer JH et al (2012) Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73:1216–1227

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Amaefule CO, Dyrba M, Wolfsgruber S et al (2021) Association between composite scores of domain-specific cognitive functions and regional patterns of atrophy and functional connectivity in the Alzheimer’s disease spectrum. NeuroImage Clin 29:102533

    PubMed  Google Scholar 

  93. Filippi M, van den Heuvel MP, Fornito A et al (2013) Assessment of system dysfunction in the brain through MRI-based connectomics. Lancet Neurol 12:1189–1199

    PubMed  Google Scholar 

  94. Chan MY, Park DC, Savalia NK et al (2014) Decreased segregation of brain systems across the healthy adult lifespan. Proc Natl Acad Sci U S A 111:E4997–E5006

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Geerligs L, Renken RJ, Saliasi E et al (2015) A brain-wide study of age-related changes in functional connectivity. Cereb Cortex 25:1987–1999

    PubMed  Google Scholar 

  96. Chan MY, Han L, Carreno CA et al (2021) Long-term prognosis and educational determinants of brain network decline in older adult individuals. Nat Aging 1:1053–1067

    PubMed  PubMed Central  Google Scholar 

  97. Mitchell DJ, Mousley ALS, Shafto MA et al (2023) Neural contributions to reduced fluid intelligence across the adult lifespan. J Neurosci 43:293–307

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bozzali M, Dowling C, Serra L et al (2015) The impact of cognitive reserve on brain functional connectivity in Alzheimer’s disease. J Alzheimers Dis 44:243–250

    PubMed  Google Scholar 

  99. Franzmeier N, Buerger K, Teipel S et al (2017) Cognitive reserve moderates the association between functional network anti-correlations and memory in MCI. Neurobiol Aging 50:152–162

    PubMed  Google Scholar 

  100. Rodríguez-Gómez O, Rodrigo A, Iradier F et al (2019) The MOPEAD project: advancing patient engagement for the detection of “hidden” undiagnosed cases of Alzheimer’s disease in the community. Alzheimers Dement 15:828–839

    PubMed  Google Scholar 

  101. Blautzik J, Keeser D, Paolini M et al (2016) Functional connectivity increase in the default-mode network of patients with Alzheimer’s disease after long-term treatment with Galantamine. Eur Neuropsychopharmacol 26:602–613

    CAS  PubMed  Google Scholar 

  102. Lv T, You S, Qin R et al (2023) Distinct reserve capacity impacts on default-mode network in response to left angular gyrus-navigated repetitive transcranial magnetic stimulation in the prodromal Alzheimer disease. Behav Brain Res 439:114226

    CAS  PubMed  Google Scholar 

  103. Cummings J, Zhong K, Cordes D et al (2017) Drug development in Alzheimer’s disease—the role of default mode network assessment in phase II. US Neurol 13:67

    Google Scholar 

  104. Vogel JW, Iturria-Medina Y, Strandberg OT et al (2020) Spread of pathological tau proteins through communicating neurons in human Alzheimer’s disease. Nat Commun 11:2612

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Rauchmann B-S, Brendel M, Franzmeier N et al (2022) Microglial activation and connectivity in Alzheimer disease and aging. Ann Neurol 92:768–781

    CAS  PubMed  Google Scholar 

  106. Clayton D, Coimbra A, Faraji F et al (2021) Resting-state functional magnetic resonance imaging in a randomized clinical trial for Alzheimer’s disease. Neuroimage Rep 1:100055

    Google Scholar 

  107. Becker K, Brenner K, Gauß J, et al (2022) Pipeline for prediction and explanation of Alzheimer based on connectivity matrices with ML/DL methods. https://github.com/JanaGauss/Connectome. Accessed 1 Apr 2023

  108. Chandra A, Dervenoulas G, Politis M, Alzheimer’s Disease Neuroimaging Initiative (2019) Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment. J Neurol 266:1293–1302

    Google Scholar 

  109. Friston K (2007) A short history of SPM. In: Statistical parametric mapping. Elsevier, pp 3–9

    Google Scholar 

  110. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173

    CAS  PubMed  Google Scholar 

  111. Jenkinson M, Beckmann CF, Behrens TEJ et al (2012) FSL. Neuroimage 62:782–790

    PubMed  Google Scholar 

  112. Nieto-Castanon A, Whitfield-Gabrieli S (2022) CONN functional connectivity toolbox: RRID SCR_009550, release 22. Hilbert Press

    Google Scholar 

  113. Esteban O, Markiewicz CJ, Blair RW et al (2019) fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat Methods 16:111–116

    CAS  PubMed  Google Scholar 

  114. Kruschwitz JD, List D, Waller L et al (2015) GraphVar: a user-friendly toolbox for comprehensive graph analyses of functional brain connectivity. J Neurosci Methods 245:107–115

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ersözlü, E., Rauchmann, BS. (2024). Analysis of Resting-State Functional Magnetic Resonance Imaging in Alzheimer’s Disease. In: Perneczky, R. (eds) Biomarkers for Alzheimer’s Disease Drug Development. Methods in Molecular Biology, vol 2785. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3774-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3774-6_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3773-9

  • Online ISBN: 978-1-0716-3774-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics