Skip to main content

Adult Stem Cells Freezing Processes and Cryopreservation Protocols

  • Protocol
  • First Online:
Adipose-Derived Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2783))

  • 207 Accesses

Abstract

The development of simple but effective storage protocols for adult stem cells will greatly enhance their use and utility in tissue-engineering applications. Cryopreservation has shown the most promise but is a fairly complex process, necessitating the use of chemicals called cryoprotective agents (CPAs), freezing equipment, and obviously, storage in liquid nitrogen. The purpose of this chapter is to present a general overview of cryopreservation storage techniques and the optimal protocols/results obtained in our laboratory for long-term storage of adult stem cells using freezing storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Ugarte DA, Morizono K, Elbarbary A et al (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109

    Article  PubMed  Google Scholar 

  2. Kang SK, Putnam L, Dufour J et al (2004) Expression of telomerase extends the lifespan and enhances osteogenic differentiation of adipose tissue-derived stromal cells. Stem Cells 22:1356–1372

    Article  CAS  PubMed  Google Scholar 

  3. Mitchell JB, McIntosh K, Zvonic S et al (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24:376–385

    Article  PubMed  Google Scholar 

  4. Rubio D, Garcia-Castro J, Martin MC et al (2005) Spontaneous human adult stem cell transformation. Cancer Res 65:3035–3039

    Article  CAS  PubMed  Google Scholar 

  5. Wall ME, Bernacki SH, Loboa EG (2007) Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells. Tissue Eng 13:1291–1298

    Article  CAS  PubMed  Google Scholar 

  6. Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100:1249–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang FB, Li L, Fang B et al (2005) Passage-restricted differentiation potential of mesenchymal stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun 336:784–792

    Article  CAS  PubMed  Google Scholar 

  8. Tsutsumi S, Shimazu A, Miyazaki K et al (2001) Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun 288:413–419

    Article  CAS  PubMed  Google Scholar 

  9. Zeng X, Rao MS (2007) Human embryonic stem cells: long term stability, absence of senescence and a potential cell source for neural replacement. Neuroscience 145:1348–1358

    Article  CAS  PubMed  Google Scholar 

  10. Zimmermann S, Martens UM (2008) Telomeres, senescence, and hematopoietic stem cells. Cell Tissue Res 331:79–90

    Article  PubMed  Google Scholar 

  11. Piacibello W, Gammaitoni L, Pignochino Y (2005) Proliferative senescence in hematopoietic stem cells during ex-vivo expansion. Folia Histochem Cytobiol 43:197–202

    CAS  PubMed  Google Scholar 

  12. Pegg DE (1987) Mechanisms of freezing damage. Symp Soc Exp Biol 41:363–378

    CAS  PubMed  Google Scholar 

  13. Day JG (2007) Cryopreservation of microalgae and cyanobacteria. Methods Mol Biol 368:141–151

    Article  CAS  PubMed  Google Scholar 

  14. Pegg DE (2007) Principles of cryopreservation. Methods Mol Biol 368:39–57

    Article  CAS  PubMed  Google Scholar 

  15. Bischof JC, Rubinsky B (1993) Large ice crystals in the nucleus of rapidly frozen liver cells. Cryobiology 30:597–603

    Article  CAS  PubMed  Google Scholar 

  16. Toner M, Cravalho EG, Stachecki J et al (1993) Nonequilibrium freezing of one-cell mouse embryos. Membrane integrity and developmental potential. Biophys J 64:1908–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Venkatasubramanian RT, Grassl ED, Barocas VH et al (2006) Effects of freezing and cryopreservation on the mechanical properties of arteries. Ann Biomed Eng 34:823–832

    Article  PubMed  Google Scholar 

  18. Schill RO, Mali B, Dandekar T et al (2009) Molecular mechanisms of tolerance in tardigrades: new perspectives for preservation and stabilization of biological material. Biotechnol Adv 27:348–352

    Article  CAS  PubMed  Google Scholar 

  19. Franca MB, Panek AD, Eleutherio EC (2007) Oxidative stress and its effects during dehydration. Comp Biochem Physiol A Mol Integr Physiol 146:621–631

    Article  CAS  PubMed  Google Scholar 

  20. Liang Y, Sun WQ (2002) Rate of dehydration and cumulative desiccation stress interacted to modulate desiccation tolerance of recalcitrant cocoa and ginkgo embryonic tissues. Plant Physiol 128:1323–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  CAS  PubMed  Google Scholar 

  22. Allison SD, Randolph TW, Manning MC et al (1998) Effects of drying methods and additives on structure and function of actin: mechanisms of dehydration-induced damage and its inhibition. Arch Biochem Biophys 358:171–181

    Article  CAS  PubMed  Google Scholar 

  23. Setlow P (1995) Mechanisms for the prevention of damage to DNA in spores of bacillus species. Annu Rev Microbiol 49:29–54

    Article  CAS  PubMed  Google Scholar 

  24. Crowe LM, Crowe JH (1992) Anhydrobiosis: a strategy for survival. Adv Space Res 12:239–247

    Article  CAS  PubMed  Google Scholar 

  25. Clegg JS, Seitz P, Seitz W, Hazlewood CF (1982) Cellular responses to extreme water loss: the water-replacement hypothesis. Cryobiology 19:306–316

    Article  CAS  PubMed  Google Scholar 

  26. Yu J, Anchordoquy TJ (2009) Synergistic effects of surfactants and sugars on lipoplex stability during freeze-drying and rehydration. J Pharm Sci 98:3319–3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang W, Schwendeman SP (2008) Stabilization of tetanus toxoid encapsulated in PLGA microspheres. Mol Pharm 5:808–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Santivarangkna C, Kulozik U, Foerst P (2008) Inactivation mechanisms of lactic acid starter cultures preserved by drying processes. J Appl Microbiol 105:1–13

    Article  CAS  PubMed  Google Scholar 

  29. Stoner GD, Chen T, Kresty LA et al (2006) Protection against esophageal cancer in rodents with lyophilized berries: potential mechanisms. Nutr Cancer 54:33–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hansen RK, Zhai S, Skepper JN et al (2005) Mechanisms of inactivation of HSV-2 during storage in frozen and lyophilized forms. Biotechnol Prog 21:911–917

    Article  CAS  PubMed  Google Scholar 

  31. Arakawa T, Prestrelski SJ, Kenney WC et al (2001) Factors affecting short-term and long-term stabilities of proteins. Adv Drug Deliv Rev 46:307–326

    Article  CAS  PubMed  Google Scholar 

  32. Milano MT, Bernhard WA (1999) The influence of packing on free radical yields in solid-state DNA: film compared to lyophilized frozen solution. Radiat Res 152:196–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kreilgaard L, Frokjaer S, Flink JM et al (1998) Effects of additives on the stability of recombinant human factor XIII during freeze-drying and storage in the dried solid. Arch Biochem Biophys 360:121–134

    Article  CAS  PubMed  Google Scholar 

  34. Fuller R, Devireddy RV (2008) The effect of two different freezing methods on the immediate post-thaw membrane integrity of adipose tissue derived stem. Int J Heat Mass Transf 51:5650–5654

    Article  CAS  Google Scholar 

  35. Goh BC, Thirumala S, Kilroy G et al (2007) Cryopreservation characteristics of adipose-derived stem cells: maintenance of differentiation potential and viability. J Tissue Eng Regen Med 1:322–324

    Article  CAS  PubMed  Google Scholar 

  36. Thirumala S, Gimble J, Devireddy RV (2009) Evaluation of methylcellulose and dimethylsulfoxide as the cryoprotectants in a serum free freezing media for cryopreservation of adipose derived adult stem cells. Stem Cells Dev 19:513

    Article  Google Scholar 

  37. Thirumala S, Gimble J, Devireddy RV (2009) Cryopreservation of stromal vascular fraction of adipose tissue in a serum free freezing media. J Tissue Eng Regen Med 4:224

    Article  Google Scholar 

  38. Thirumala S, Wu X, Gimble J et al (2009) Evaluation of polyvinylpyrollidone (PVP) as a cryoprotectant for adipose derived adult stem cells (ASCs). Tissue Eng 16:783

    Article  Google Scholar 

  39. Devireddy RV, Thirumala S, Gimble JM (2005) Cellular response of adipose derived passage-4 adult stem cells to freezing stress. J Biomech Eng 127:1081–1086

    Article  PubMed  Google Scholar 

  40. Thirumala S, Gimble JM, Devireddy RV (2005) Transport phenomena during freezing of adipose tissue derived adult stem cells. Biotechnol Bioeng 92:372–383

    Article  CAS  PubMed  Google Scholar 

  41. Thirumala S, Zvonic S, Floyd E et al (2005) Effect of various freezing parameters on the immediate post-thaw membrane integrity of adipose tissue derived adult stem cells. Biotechnol Prog 21:1511–1524

    Article  CAS  PubMed  Google Scholar 

  42. Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Phys 247:C125–C142

    CAS  Google Scholar 

  43. Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666

    Article  CAS  PubMed  Google Scholar 

  44. McGrath JJ (1997) Quantitative measurement of cell membrane transport: technology and applications. Cryobiology 34:315–334

    Article  CAS  PubMed  Google Scholar 

  45. Anchordoguy TJ, Cecchini CA, Crowe JH et al (1991) Insights into the cryoprotective mechanism of dimethyl sulfoxide for phospholipid bilayers. Cryobiology 28:467–473

    Article  CAS  PubMed  Google Scholar 

  46. Anchordoguy T, Carpenter JF, Loomis SH et al (1988) Mechanisms of interaction of amino acids with phospholipid bilayers during freezing. Biochim Biophys Acta 946:299–306

    Article  CAS  PubMed  Google Scholar 

  47. Yu ZW, Quinn PJ (1994) Dimethyl sulphoxide: a review of its applications in cell biology. Biosci Rep 14:259–281

    Article  CAS  PubMed  Google Scholar 

  48. Fahy GM, Lilley TH, Linsdell H et al (1990) Cryoprotectant toxicity and cryoprotectant toxicity reduction: in search of molecular mechanisms. Cryobiology 27:247–268

    Article  CAS  PubMed  Google Scholar 

  49. Fahy GM (2009) Cryoprotectant toxicity neutralization. Cryobiology 60:S45

    Article  PubMed  Google Scholar 

  50. Fahy GM, Wowk B, Wu J et al (2004) Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48:22–35

    Article  CAS  PubMed  Google Scholar 

  51. Fahy GM (1986) The relevance of cryoprotectant “toxicity” to cryobiology. Cryobiology 23:1–13

    Article  CAS  PubMed  Google Scholar 

  52. Farrant J (1969) Is there a common mechanism of protection of living cells by polyvinylpyrrolidone and glycerol ding freezing? Nature 222:1175–1176

    Article  CAS  PubMed  Google Scholar 

  53. Hey JM, MacFarlane DR (1998) Crystallization of ice in aqueous solutions of glycerol and dimethyl sulfoxide 2: ice crystal growth kinetics. Cryobiology 37:119–130

    Article  CAS  PubMed  Google Scholar 

  54. Shaw JM, Kuleshova LL, MacFarlane DR et al (1997) Vitrification properties of solutions of ethylene glycol in saline containing PVP, Ficoll, or dextran. Cryobiology 35:219–229

    Article  CAS  PubMed  Google Scholar 

  55. Alapati R, Stout M, Saenz J et al (2009) Comparison of the permeability properties and post-thaw motility of ejaculated and epididymal bovine spermatozoa. Cryobiology 59:164

    Article  CAS  PubMed  Google Scholar 

  56. Hagiwara M, Choi JH, Devireddy RV et al (2009) Cellular biophysics during freezing of rat and mouse sperm predicts postthaw motility. Biol Reprod 81:700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Alapati R, Goff K, Kubisch HM et al (2008) Water transport in epididymal and ejaculated rhesus monkey (Macaca mulatta) sperm during freezing. Cryobiology 57:182–185

    Article  CAS  PubMed  Google Scholar 

  58. Kardak A, Leibo SP, Devireddy R (2007) Membrane transport properties of equine and macaque ovarian tissues frozen in mixtures of dimethylsulfoxide and ethylene glycol. J Biomech Eng 129:688–694

    Article  CAS  PubMed  Google Scholar 

  59. Li G, Saenz J, Godke RA, Devireddy RV (2006) Effect of glycerol and cholesterol-loaded cyclodextrin on freezing-induced water loss in bovine spermatozoa. Reproduction 131:875–886

    Article  CAS  PubMed  Google Scholar 

  60. Pinisetty D, Huang C, Dong Q et al (2005) Subzero water permeability parameters and optimal freezing rates for sperm cells of the southern platyfish, Xiphophorus maculatus. Cryobiology 50:250–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thirumala S, Huang C, Dong Q et al (2005) A theoretically estimated optimal cooling rate for the cryopreservation of sperm cells from a live-bearing fish, the green swordtail Xiphophorus helleri. Theriogenology 63:2395–2415

    Article  PubMed  PubMed Central  Google Scholar 

  62. Meryman HT (1974) Freezing injury and its prevention in living cells. Annu Rev Biophys Bioeng 3:341–363

    Article  CAS  PubMed  Google Scholar 

  63. Meryman HT (1956) Mechanics of freezing in living cells and tissues. Science 124:515–521

    Article  CAS  PubMed  Google Scholar 

  64. Meryman HT (2007) Cryopreservation of living cells: principles and practice. Transfusion 47:935–945

    Article  CAS  PubMed  Google Scholar 

  65. Connor W, Ashwood-Smith MJ (1973) Cryoprotection of mammalian cells in tissue culture with polymers; possible mechanisms. Cryobiology 10:488–496

    Article  CAS  PubMed  Google Scholar 

  66. Holt WV, North RD (1994) Effects of temperature and restoration of osmotic equilibrium during thawing on the induction of plasma membrane damage in cryopreserved ram spermatozoa. Biol Reprod 51:414–424

    Article  CAS  PubMed  Google Scholar 

  67. Barrios B, Perez-Pe R, Gallego M et al (2000) Seminal plasma proteins revert the cold-shock damage on ram sperm membrane. Biol Reprod 63:1531–1537

    Article  CAS  PubMed  Google Scholar 

  68. Rodgers FG, Davey MR (1982) Ultrastructure of the cell envelope layers and surface details of legionella pneumophila. J Gen Microbiol 128:1547–1557

    CAS  PubMed  Google Scholar 

  69. De Leeuw FE, De Leeuw AM, Den Daas JH et al (1993) Effects of various cryoprotective agents and membrane-stabilizing compounds on bull sperm membrane integrity after cooling and freezing. Cryobiology 30:32–44

    Article  PubMed  Google Scholar 

  70. Barnard T (1987) Rapid freezing techniques and cryoprotection of biomedical specimens. Scanning Microsc 1:1217–1224

    CAS  PubMed  Google Scholar 

  71. Hirsh AG, Williams RJ, Meryman HT (1985) A novel method of natural cryoprotection : intracellular glass formation in deeply frozen populus. Plant Physiol 79:41–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rall WF, Mazur P, McGrath JJ (1983) Depression of the ice-nucleation temperature of rapidly cooled mouse embryos by glycerol and dimethyl sulfoxide. Biophys J 41:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Elliott R, Szleifer I, Schick M (2007) A microscopic model calculation of the phase diagram of ternary mixtures of cholesterol and saturated and unsaturated phospholipids. Methods Mol Biol 398:303–317

    Article  CAS  PubMed  Google Scholar 

  74. Fahy GM (1980) Analysis of “solution effects” injury. Equations for calculating phase diagram information for the ternary systems NaCl-dimethylsulfoxide-water and NaCl-glycerol-water. Biophys J 32:837–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Guignon B, Aparicio C, Otero L et al (2009) Prediction of ice content in biological model solutions when frozen under high pressure. Biotechnol Prog 25:454–460

    Article  CAS  PubMed  Google Scholar 

  76. Kleinhans FW, Mazur P (2007) Comparison of actual vs. synthesized ternary phase diagrams for solutes of cryobiological interest. Cryobiology 54:212–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Morris GJ, Goodrich M, Acton E et al (2006) The high viscosity encountered during freezing in glycerol solutions: effects on cryopreservation. Cryobiology 52:323–334

    Article  CAS  PubMed  Google Scholar 

  78. Watson PF, Duncan AE (1988) Effect of salt concentration and unfrozen water fraction on the viability of slowly frozen ram spermatozoa. Cryobiology 25:131–142

    Article  CAS  PubMed  Google Scholar 

  79. Rall WF, Mazur P, Souzu H (1978) Physical-chemical basis of the protection of slowly frozen human erythrocytes by glycerol. Biophys J 23:101–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shepard ML, Goldston CS, Cocks FH (1976) The H2O-NaCl-glycerol phase diagram and its application in cryobiology. Cryobiology 13:9–23

    Article  CAS  PubMed  Google Scholar 

  81. Guilak F, Lott KE, Awad HA et al (2006) Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Physiol 206:229–237

    Article  CAS  PubMed  Google Scholar 

  82. DeLany JP, Floyd ZE, Zvonic S et al (2005) Proteomic analysis of primary cultures of human adipose-derived stem cells: modulation by Adipogenesis. Mol Cell Proteomics 4:731–740

    Article  CAS  PubMed  Google Scholar 

  83. Hicok KC, Du Laney TV, Zhou YS et al (2004) Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng 10:371–380

    Article  CAS  PubMed  Google Scholar 

  84. Safford KM, Safford SD, Gimble JM et al (2004) Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells. Exp Neurol 187:319–328

    Article  CAS  PubMed  Google Scholar 

  85. Aust L, Devlin B, Foster SJ et al (2004) Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6:7–14

    Article  CAS  PubMed  Google Scholar 

  86. Awad HA, Wickham MQ, Leddy HA et al (2004) Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25:3211–3222

    Article  CAS  PubMed  Google Scholar 

  87. Gimble JM, Guilak F (2003) Differentiation potential of adipose derived adult stem (ADAS) cells. Curr Top Dev Biol 58:137–160

    Article  PubMed  Google Scholar 

  88. Gimble J, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5:362–369

    Article  PubMed  Google Scholar 

  89. Safford KM, Hicok KC, Safford SD et al (2002) Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 294:371–379

    Article  CAS  PubMed  Google Scholar 

  90. Gronthos S, Franklin DM, Leddy HA et al (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189:54–63

    Article  CAS  PubMed  Google Scholar 

  91. Thirumala S, Forman JM, Monroe WT et al (2007) Freezing and post-thaw apoptotic behaviour of cells in the presence of palmitoyl nanogold particles. Nanotech 18:195104

    Article  Google Scholar 

  92. Rubinsky B, Ikeda M (1985) A cryomicroscope using directional solidification for the controlled freezing of biological mat. Cryobiology 22:55–68

    Article  Google Scholar 

  93. Garner DL, Johnson LA (1995) Viability assessment of mammalian sperm using SYBR-14 and propidium iodide. Biol Reprod 53:276–284

    Article  CAS  PubMed  Google Scholar 

  94. Takamatsu H, Rubinsky B (1999) Viability of deformed cells. Cryobiology 39:243–251

    Article  CAS  PubMed  Google Scholar 

  95. Takamatsu H, Takeya R, Naito S, Sumimoto H (2005) On the mechanism of cell lysis by deformation. J Biomech 38:117–124

    Article  PubMed  Google Scholar 

  96. Wolfe J, Bryant G (1999) Freezing, drying, and/or vitrification of membrane- solute-water systems. Cryobiology 39:103–129

    Article  CAS  PubMed  Google Scholar 

  97. Rubinsky B (2000) Cryosurgery. Annu Rev Biomed Eng 2:157–187

    Article  CAS  PubMed  Google Scholar 

  98. Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  CAS  PubMed  Google Scholar 

  99. Young JC, Agashe VR, Siegers K et al (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781–791

    Article  CAS  PubMed  Google Scholar 

  100. Kalmar B, Greensmith L (2009) Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev 61:310–318

    Article  CAS  PubMed  Google Scholar 

  101. Beere HM, Wolf BB, Cain K et al (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475

    Article  CAS  PubMed  Google Scholar 

  102. Saleh A, Srinivasula SM, Balkir L et al (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2:476–483

    Article  CAS  PubMed  Google Scholar 

  103. Li CY, Lee JS, Ko YG et al (2000) Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J Biol Chem 275:25665–25671

    Article  CAS  PubMed  Google Scholar 

  104. Pandey P, Saleh A, Nakazawa A et al (2000) Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 19:4310–4322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gorman AM, Szegezdi E, Quigney DJ et al (2005) Hsp27 inhibits 6-hydroxydopamine-induced cytochrome c release and apoptosis in PC12 cells. Biochem Biophys Res Commun 327:801–810

    Article  CAS  PubMed  Google Scholar 

  106. Schepers H, Geugien M, van der Toorn M et al (2005) HSP27 protects AML cells against VP-16-induced apoptosis through modulation of p38 and c-Jun. Exp Hematol 33:660–670

    Article  CAS  PubMed  Google Scholar 

  107. Wang P, Shu Z, He L et al (2005) The pertinence of expression of heat shock proteins (HSPs) to the efficacy of cryopreservation in HELAs. Cryo Letters 26:7–16

    PubMed  Google Scholar 

  108. Park SJ, Choi HR, Nam KM et al (2013) Immediate induction of heat shock proteins is not protective against cryopreservation in normal human fibroblasts. Cryo Letters 34:239–247

    CAS  PubMed  Google Scholar 

  109. Devireddy RV, Raha D, Bischof JC (1998) Measurement of water transport during freezing in cell suspensions using a differential scanning calorimeter. Cryobiology 36:124–155

    Article  CAS  PubMed  Google Scholar 

  110. Devireddy RV, Bischof JC (1999) Measurement of water transport during freezing in mammalian liver Tissye—part II: the use of differential scanning calorimetry. ASME J Biomech Eng 120:559–569

    Article  Google Scholar 

  111. Devireddy RV, Smith DJ, Bischof JC (1999) Mass transfer during freezig in rat prostate tumor tissue. AICHE J 45:639–654

    Article  Google Scholar 

  112. Devireddy RV, Barratt PR, Bischof JC (1999) Liver freezing response of the freeze tolerant wood frog, Rana sylvatica, in the presence and absence of glucose. I. Experimental measurements. Cryobiology 38:310–326

    Article  CAS  PubMed  Google Scholar 

  113. Kedem O, Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 27:229–246

    Article  CAS  PubMed  Google Scholar 

  114. Devireddy RV, Amorim CA, Leibo SP (2006) Permeability characteristics of ovine primordial follicles calculated with two parameter Kedem-Katchalsky formulation. Cell Preserv Technol 4:188–198

    Article  CAS  Google Scholar 

  115. Thirumala S, Devireddy RV (2005) A simplified procedure to determine the optimal rate of freezing biological systems. ASME J Biomech Eng 127:295–300

    Article  Google Scholar 

  116. Toner M (1993) Nucleation of ice crystals in biological cells. In: Steponkus PL (ed) Advances in low-temperature biology, vol 2. JAI Press, London, pp 1–52

    Google Scholar 

  117. Toner M, Cravalho EG, Karel M (1990) Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells. J Appl Phys 67:1582–1593

    Article  Google Scholar 

  118. Karlsson JO, Cravalho EG, Borel RI et al (1993) Nucleation and growth of ice crystals inside cultured hepatocytes during freezing in the presence of dimethylsulfoxide. Biophys J 65:2524–2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Karlsson JO, Cravalho EG, Toner M (1994) A model of diffusion-limited ice growth inside biological cells during freezing. J Appl Phys 75:4442–4455

    Article  Google Scholar 

  120. Franks F, Mathias SF, Galfre P et al (1983) Ice nucleation and freezing in undercooled cells. Cryobilogy 20:298–309

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Elizabeth Clubb and Dr. James Wade at the Pennington Biomedical Research Center (PBRC) for supplying the liposuction aspirates and their many patients for consenting to participate in this protocol; Marilyn Dietrick of the LSU School of Veterinary Medicine Flow Cytometry Core Facility; Prof. Jeffrey Gimble, Gang Yu, Xiying Wu, of the Stem Cell Biology Laboratory at the Pennington Biomedical Research Center (PBRC), and the clinical nutrition research unit (CNRU) Molecular Mechanism Core at PBRC for their technical assistance. Acknowledgments are also due to Dr. Gimble, a longtime colleague and without his help this work would never have been initiated. In addition, acknowledgments are also due to Dr. S. Thirumala (freezing experiments), R. Fuller (comparing the freezing devices, CRF and DSS), Dr. S. Shaik (HSP experiments) results reported in this chapter. This work was supported in part by funding from the Louisiana Board of Regents, the Department of Mechanical Engineering at the Louisiana State University, the institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (NIH) under award number R21DK91852 and by the institute of General Medical Sciences of the NIH under award number R15GM141653.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram V. Devireddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dey, M.K., Devireddy, R.V. (2024). Adult Stem Cells Freezing Processes and Cryopreservation Protocols. In: Gimble, J., Bunnell, B., Frazier, T., Sanchez, C. (eds) Adipose-Derived Stem Cells. Methods in Molecular Biology, vol 2783. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3762-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3762-3_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3761-6

  • Online ISBN: 978-1-0716-3762-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics