Skip to main content

Synaptic Integration at Neuron-OPC Synapses

  • Protocol
  • First Online:
New Technologies for Glutamate Interaction

Part of the book series: Neuromethods ((NM,volume 207))

  • 210 Accesses

Abstract

The synapses between neurons and oligodendrocyte precursor cells (OPCs) in the central nervous system (CNS) have similar ultrastructures as neuron-neuron synapses and follow the quantal transmission rule. Since OPCs have highly ramified processes, each single OPC can receive up to 100 synaptic contacts with neighboring axons. Therefore, addressing how OPCs integrate synaptic inputs from different axons will significantly advance our understanding of the functional implication of these synapses. This chapter describes experimental and computational methodologies to investigate synaptic integration in OPCs. As neuronal activity-induced downstream signaling often occurs locally within the thin processes of OPCs, we will emphasize the methods to explore how OPCs integrate synaptic inputs within local compartments of the thin processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergles DE, Roberts JD, Somogyi P et al (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405(6783):187–191

    Article  CAS  PubMed  Google Scholar 

  2. Kukley M, Capetillo-Zarate E, Dietrich D (2007) Vesicular glutamate release from axons in white matter. Nat Neurosci 10(3):311–320

    Article  CAS  PubMed  Google Scholar 

  3. Ziskin JL, Nishiyama A, Rubio M et al (2007) Vesicular release of glutamate from unmyelinated axons in white matter. Nat Neurosci 10(3):321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chittajallu R, Aguirre A, Gallo V (2004) NG2-positive cells in the mouse white and grey matter display distinct physiological properties. J Physiol 561(Pt 1):109–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karadottir R, Hamilton NB, Bakiri Y et al (2008) Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat Neurosci 11(4):450–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Biase LM, Nishiyama A, Bergles DE (2010) Excitability and synaptic communication within the oligodendrocyte lineage. J Neurosci 30(10):3600–3611

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kukley M, Nishiyama A, Dietrich D (2010) The fate of synaptic input to NG2 glial cells: neurons specifically downregulate transmitter release onto differentiating oligodendroglial cells. J Neurosci 30(24):8320–8331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin SC, Huck JH, Roberts JD et al (2005) Climbing fiber innervation of NG2-expressing glia in the mammalian cerebellum. Neuron 46(5):773–785

    Article  CAS  PubMed  Google Scholar 

  9. Mangin JM, Kunze A, Chittajallu R et al (2008) Satellite NG2 progenitor cells share common glutamatergic inputs with associated interneurons in the mouse dentate gyrus. J Neurosci 28(30):7610–7623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tong XP, Li XY, Zhou B et al (2009) Ca(2+) signaling evoked by activation of Na(+) channels and Na(+)/Ca(2+) exchangers is required for GABA-induced NG2 cell migration. J Cell Biol 186(1):113–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun W, Matthews EA, Nicolas V et al (2016) NG2 glial cells integrate synaptic input in global and dendritic calcium signals. elife 5:e16262

    Article  PubMed  PubMed Central  Google Scholar 

  12. Branco T, Staras K (2009) The probability of neurotransmitter release: variability and feedback control at single synapses. Nat Rev Neurosci 10(5):373–383

    Article  CAS  PubMed  Google Scholar 

  13. Lin SC, Bergles DE (2004) Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nat Neurosci 7(1):24–32

    Article  CAS  PubMed  Google Scholar 

  14. Passlick S, Grauer M, Schafer C et al (2013) Expression of the gamma2-subunit distinguishes synaptic and extrasynaptic GABA(A) receptors in NG2 cells of the hippocampus. J Neurosci 33(29):12030–12040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wilders R (2006) Dynamic clamp: a powerful tool in cardiac electrophysiology. J Physiol 576(Pt 2):349–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang Y, Adowski T, Ramamurthy B et al (2015) High-speed dynamic-clamp interface. J Neurophysiol 113(7):2713–2720

    Article  PubMed  PubMed Central  Google Scholar 

  17. Matsuzaki M, Ellis-Davies GC, Nemoto T et al (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4(11):1086–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ellis-Davies GCR (2018) Two-photon uncaging of glutamate. Front Synaptic Neurosci 10:48

    Article  CAS  PubMed  Google Scholar 

  19. Matthews EA, Sun W, McMahon SM et al (2022) Optical analysis of glutamate spread in the neuropil. Cereb Cortex 32:3669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thome C, Kelly T, Yanez A et al (2014) Axon-carrying dendrites convey privileged synaptic input in hippocampal neurons. Neuron 83(6):1418–1430

    Article  CAS  PubMed  Google Scholar 

  21. Theer P, Denk W (2006) On the fundamental imaging-depth limit in two-photon microscopy. J Opt Soc Am A Opt Image Sci Vis 23(12):3139–3149

    Article  PubMed  Google Scholar 

  22. Haberlandt C, Derouiche A, Wyczynski A et al (2011) Gray matter NG2 cells display multiple Ca2+-signaling pathways and highly motile processes. PLoS One 6(3):e17575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wake H, Lee PR, Fields RD (2011) Control of local protein synthesis and initial events in myelination by action potentials. Science 333(6049):1647–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marisca R, Hoche T, Agirre E et al (2020) Functionally distinct subgroups of oligodendrocyte precursor cells integrate neural activity and execute myelin formation. Nat Neurosci 23(3):363–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paez PM, Lyons DA (2020) Calcium signaling in the oligodendrocyte lineage: regulators and consequences. Annu Rev Neurosci 43:163–186

    Article  CAS  PubMed  Google Scholar 

  26. Tian L, Hires SA, Mao T et al (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6(12):875–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rui Y, Pollitt SL, Myers KR et al (2020) Spontaneous local calcium transients regulate oligodendrocyte development in culture through store-operated Ca(2+) entry and release. eNeuro 7(4):ENEURO.0347

    Article  CAS  PubMed  Google Scholar 

  28. Chen TW, Wardill TJ, Sun Y et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9(6):1179–1209

    Article  CAS  PubMed  Google Scholar 

  30. Chan CF, Kuo TW, Weng JY et al (2013) Ba2+- and bupivacaine-sensitive background K+ conductances mediate rapid EPSP attenuation in oligodendrocyte precursor cells. J Physiol 591(19):4843–4858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun W, Dietrich D (2013) Synaptic integration by NG2 cells. Front Cell Neurosci 7:255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rall W (1962) Theory of physiological properties of dendrites. Ann N Y Acad Sci 96(4): 1071–1092

    Google Scholar 

  33. Rall W (1969) Distributions of potential in cylindrical coordinates and time constants for a membrane cylinder. Biophys J 9(12):1509–1541

    Google Scholar 

  34. Rall W (1960) Membrane potential transients and membrane time constant of motoneurons. Exp Neurol 2(5):503–532

    Google Scholar 

  35. Magee JC, Cook EP (2000) Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci 3(9):895–903

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjing Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sun, W. (2024). Synaptic Integration at Neuron-OPC Synapses. In: Kukley, M. (eds) New Technologies for Glutamate Interaction. Neuromethods, vol 207. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3742-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3742-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3741-8

  • Online ISBN: 978-1-0716-3742-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics