Skip to main content

Induction of Meiotic Initiation in Long-Term Mouse Spermatogonial Stem Cells Under Retinoid Acid and Nutrient Restriction Conditions

  • Protocol
  • First Online:
Germ Cell Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2770))

  • 384 Accesses

Abstract

Spermatogonial stem cells (SSCs) produce haploid sperm via mitosis and meiosis in vivo. Although the technique to culture mouse SSCs has been well established, induction of meiosis in vitro has remained a challenge. Retinoic acid (RA) is required for meiosis in vivo; however, RA alone is not sufficient to induce meiosis in vitro. Here, we describe a method in which nutrient restriction and RA synergistically induce meiotic initiation into meiotic prophase I in cultured mouse SSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kubota H, Brinster RL (2008) Culture of rodent spermatogonial stem cells, male germline stem cells of the postnatal animal. Methods Cell Biol 86:59–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hayashi K et al (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146(4):519–532

    Article  CAS  PubMed  Google Scholar 

  3. Nagano M et al (1998) Culture of mouse spermatogonial stem cells. Tissue Cell 30(4):389–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kanatsu-Shinohara M et al (2003) Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 69:612–616

    Article  CAS  PubMed  Google Scholar 

  5. Kanatsu-Shinohara M et al (2014) Improved serum- and feeder-free culture of mouse germline stem cells. Biol Reprod 91(4):88

    Article  PubMed  Google Scholar 

  6. Handel MA, Schimenti JC (2010) Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat Rev Genet 11:124–136

    Article  CAS  PubMed  Google Scholar 

  7. Handel MA, Eppig JJ, Schimenti JC (2014) Applying “gold standards” to in-vitro-derived germ cells. Cell 157(6):1257–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hogarth CA, Griswold MD (2010) The key role of vitamin A in spermatogenesis. J Clin Invest 120(4):956–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Amory JK et al (2011) Suppression of spermatogenesis by bisdichloroacetyldiamines is mediated by inhibition of testicular retinoic acid biosynthesis. J Androl 32(1):111–119

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Gunewardena S, Wang N (2021) Nutrient restriction synergizes with retinoic acid to induce mammalian meiotic initiation in vitro. Nat Commun 12(1):1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Velte EK et al (2019) Differential RA responsiveness directs formation of functionally distinct spermatogonial populations at the initiation of spermatogenesis in the mouse. Development 146(12)

    Google Scholar 

  12. Ferder IC et al (2019) Meiotic gatekeeper STRA8 suppresses autophagy by repressing Nr1d1 expression during spermatogenesis in mice. PLoS Genet 15(5):e1008084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nature Publishing Group, p 12

    Google Scholar 

  14. Efeyan A, Comb WC, Sabatini DM (2015) Nutrient-sensing mechanisms and pathways. Nature 517(7534):302–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192(1):73–105

    Article  PubMed  PubMed Central  Google Scholar 

  16. Harigaya Y, Yamamoto M (2007) Molecular mechanisms underlying the mitosis-meiosis decision. Chromosome Res 15(5):523–537

    Article  CAS  PubMed  Google Scholar 

  17. Dym M et al (1995) Expression of c-kit receptor and its autophosphorylation in immature rat type A spermatogonia. Biol Reprod 52(1):8–19

    Article  CAS  PubMed  Google Scholar 

  18. Hofmann MC, Braydich-Stolle L, Dym M (2005) Isolation of male germ-line stem cells; influence of GDNF. Dev Biol 279(1):114–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu X et al (2011) Spermatogonial stem cell self-renewal requires ETV5-mediated downstream activation of Brachyury in mice. Biol Reprod 85(6):1114–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ishii K et al (2012) FGF2 mediates mouse spermatogonial stem cell self-renewal via upregulation of Etv5 and Bcl6b through MAP2K1 activation. Development 139(10):1734–1743

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y et al (2012) Endogenously produced FGF2 is essential for the survival and proliferation of cultured mouse spermatogonial stem cells. Cell Res 22(4):773–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boekhout M et al (2019) REC114 Partner ANKRD31 controls number, timing, and location of meiotic DNA breaks. Mol Cell 74(5):1053–1068 e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health (NIH) grant R01-HD103888 to N.W. X.Z. is supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences (NIGMS) of the NIH under grant number P20 GM103418 and KUMC Research Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences, the National Institutes of Health, or KUMC Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, X., Wang, N. (2024). Induction of Meiotic Initiation in Long-Term Mouse Spermatogonial Stem Cells Under Retinoid Acid and Nutrient Restriction Conditions. In: Barchi, M., De Felici, M. (eds) Germ Cell Development. Methods in Molecular Biology, vol 2770. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3698-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3698-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3697-8

  • Online ISBN: 978-1-0716-3698-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics