Skip to main content

Encapsulating In Vitro Transcribed circRNA into Lipid Nanoparticles Via Microfluidic Mixing

  • Protocol
  • First Online:
Circular RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2765))

  • 432 Accesses

Abstract

This chapter serves as a guide for researchers embarking on circular RNA-based translational studies. It provides a foundation for the successful encapsulation of circular RNA into lipid nanoparticles (LNPs) and facilitates progress in this emerging field. Crucial scientific methods and techniques involved in the formulation process, particle characterization, and downstream processing of circ-LNPs are covered. The production of in vitro transcribed circular RNA-containing LNPs based on a commercially available lipid mix is provided, in addition to the fundamentals for successful encapsulation based on lipid mixes composed of single components. Furthermore, the transfection and validation protocols for the identification of a functional and potentially therapeutic circRNA candidate for initial in vitro verification, before subsequent LNP studies, are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ren S et al (2020) Circular RNAs: promising molecular biomarkers of human aging-related diseases via functioning as an miRNA sponge. Mol Ther Methods Clin Dev 18:215–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Beermann J, Piccoli MT, Viereck J, Thum T (2016) Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev 96:1297–1325

    Article  CAS  PubMed  Google Scholar 

  3. Kaczmarek JC, Kowalski PS, Anderson DG (2017) Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med 9:60

    Article  PubMed  PubMed Central  Google Scholar 

  4. Neufeldt D, Cushman S, Bär C, Thum T (2023) Circular RNAs at the intersection of cancer and heart disease: potential therapeutic targets in cardio-oncology. Cardiovasc Res cvad013. https://doi.org/10.1093/cvr/cvad013

  5. Santer L, Bar C, Thum T (2019) Circular RNAs: a novel class of functional RNA molecules with a therapeutic perspective. Mol Ther 27:1350–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bar C, Chatterjee S, Thum T (2016) Long noncoding RNAs in cardiovascular pathology, diagnosis, and therapy. Circulation 134:1484–1499

    Article  PubMed  Google Scholar 

  7. Chen L-L, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12:381–388

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yu C-Y, Kuo H-C (2019) The emerging roles and functions of circular RNAs and their generation. J Biomed Sci 26:29

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shan K et al (2017) Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation 136:1629–1642

    Article  CAS  PubMed  Google Scholar 

  11. Zhong Z, Lv M, Chen J (2016) Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep 6:30919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu C-Y et al (2017) The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nat Commun 8:1149

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tian F, Yu CT, Ye WD, Wang Q (2017) Cinnamaldehyde induces cell apoptosis mediated by a novel circular RNA hsa_circ_0043256 in non-small cell lung cancer. Biochem Biophys Res Commun 493:1260–1266

    Article  CAS  PubMed  Google Scholar 

  14. Holdt LM, Kohlmaier A, Teupser D (2018) Circular RNAs as therapeutic agents and targets. Front Physiol 9:1262

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen X, Lu Y (2021) Circular RNA: biosynthesis in vitro. Front Bioeng Biotechnol 9:787881

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huang C-K, Kafert-Kasting S, Thum T (2020) Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease. Circ Res 126:663–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hunkler HJ, Groß S, Thum T, Bär C (2022) Non-coding RNAs: key regulators of reprogramming, pluripotency, and cardiac cell specification with therapeutic perspective for heart regeneration. Cardiovasc Res 118:3071–3084

    Article  CAS  PubMed  Google Scholar 

  18. https://clinicaltrials.gov/

    Google Scholar 

  19. Qu L et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. https://doi.org/10.1101/2021.03.16.435594.

  20. Fischer JW, Leung AKL (2017) CircRNAs: a regulator of cellular stress. Crit Rev Biochem Mol Biol 52:220–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y et al (2021) Optimized RNA-targeting CRISPR/Cas13d technology outperforms shRNA in identifying functional circRNAs. Genome Biol 22:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xia P et al (2018) A circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS-mediated exhaustion. Immunity 48:688–701.e7

    Article  CAS  PubMed  Google Scholar 

  23. Circular RNAs: methods and protocols. vol. 1724. Springer, New York, 2018.

    Google Scholar 

  24. Lu D et al (2022) A circular RNA derived from the insulin receptor locus protects against doxorubicin-induced cardiotoxicity. Eur Heart J. https://doi.org/10.1093/eurheartj/ehac337

  25. Obi P, Chen YG (2021) The design and synthesis of circular RNAs. Methods 196:85–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wesselhoeft RA et al (2019) RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol Cell 74:508–520.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen YG et al (2019) N6-methyladenosine modification controls circular RNA immunity. Mol Cell 76:96–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen YG et al (2017) Sensing self and foreign circular RNAs by intron identity. Mol Cell 67:228–238.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng CJ, Tietjen GT, Saucier-Sawyer JK, Saltzman WM (2015) A holistic approach to targeting disease with polymeric nanoparticles. Nat Rev Drug Discov 14:239–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Evers MJW et al (2018) State-of-the-art design and rapid-mixing production techniques of lipid nanoparticles for nucleic acid delivery. Small Methods 2:1700375

    Article  Google Scholar 

  31. Khalil IA, Younis MA, Kimura S, Harashima H (2020) Lipid nanoparticles for cell-specific in vivo targeted delivery of nucleic acids. Biol Pharm Bull 43:584–595

    Article  CAS  PubMed  Google Scholar 

  32. Polack FP et al (2020) Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med 383:2603–2615

    Article  CAS  PubMed  Google Scholar 

  33. Schoenmaker L et al (2021) mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int J Pharm 601:120586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Anderson EJ et al (2020) Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med 383:2427–2438

    Article  CAS  PubMed  Google Scholar 

  35. Baden LR et al (2020) Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 384:403–416

    Article  PubMed  Google Scholar 

  36. Hou X, Zaks T, Langer R, Dong Y (2021) Lipid nanoparticles for mRNA delivery. Nat Rev Mater 6:1078–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paunovska K, Loughrey D, Dahlman JE (2022) Drug delivery systems for RNA therapeutics. Nat Rev Genet 23:265–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ickenstein LM, Garidel P (2019) Lipid-based nanoparticle formulations for small molecules and RNA drugs. Expert Opin Drug Deliv 16:1205–1226

    Article  CAS  PubMed  Google Scholar 

  39. Hald Albertsen C et al (2022) The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev 188:114416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hassett KJ et al (2019) Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol Ther - Nucleic Acids 15:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stern ST, McNeil SE (2008) Nanotechnology safety concerns revisited. Toxicol Sci 101:4–21

    Article  CAS  PubMed  Google Scholar 

  42. Carrasco MJ et al (2021) Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration. Commun Biol 4:956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kularatne RN, Crist RM, Stern ST (2022) The future of tissue-targeted lipid nanoparticle-mediated nucleic acid delivery. Pharmaceuticals 15:897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moderna Clinical Study Protocol (2020), Aug 20. https://covid19crc.org/wp-content/uploads/2020/09/mRNA-1273-P301-Protocol-2020.

  45. Rurik JG et al (2022) CAR T cells produced in vivo to treat cardiac injury. Science 375:91–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tombácz I et al (2021) Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA-LNPs. Mol Ther 29:3293–3304

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ramishetti S et al (2015) Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles. ACS Nano 9:6706–6716

    Article  CAS  PubMed  Google Scholar 

  48. Nakamura T et al (2020) The effect of size and charge of lipid nanoparticles prepared by microfluidic mixing on their lymph node transitivity and distribution. Mol Pharm 17:944–953

    Article  CAS  PubMed  Google Scholar 

  49. Cheng Q et al (2020) Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat Nanotechnol 15:313–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang X et al (2023) Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat Protoc 18:265–291

    Article  CAS  PubMed  Google Scholar 

  51. Johnson LT et al (2022) Lipid nanoparticle (LNP) chemistry can endow unique in vivo RNA delivery fates within the liver that alter therapeutic outcomes in a cancer model. Mol Pharm 19:3973–3986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Genvoy User Manual. https://www.precisionnanosystems.com/docs/default-source/pni-files/user-guides/genvoy-user-guide-2020-final-emailsize.pdf.

  53. Walsh C et al (2014) In: Jain KK (ed) Microfluidic-based manufacture of siRNA-lipid nanoparticles for therapeutic applications BT - drug delivery system. Springer, New York, pp 109–120. https://doi.org/10.1007/978-1-4939-0363-4_6

    Chapter  Google Scholar 

  54. Miltenyi- Neonatal Heart Dissociation Kit, mouse and rat. https://www.miltenyibiotec.com/DE-en/products/neonatal-heart-dissociation-kit-mouse-and-rat.html#gref.

  55. Thermofischer- Lipofectamine 2000. https://www.thermofisher.com/de/de/home/references/protocols/cell-culture/transfection-protocol/lipofectamine-2000.html.

  56. Qiagen- RNeasy Mini Kit. https://www.qiagen.com/us/resources/resourcedetail?id=14e7cf6e-521a-4cf7-8cbc-bf9f6fa33e24&lang=en.

  57. Biorad- iScript. https://www.bio-rad.com/sites/default/files/webroot/web/pdf/lsr/literature/10001023.pdf.

  58. QIAquick® Gel Extraction Kit. https://www.qiagen.com/us/resources/resourcedetail?id=1426dbb4-da09-487c-ae01-c587c2be14c3&lang=en.

  59. Ni H et al (2022) Piperazine-derived lipid nanoparticles deliver mRNA to immune cells in vivo. Nat Commun 13:4766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lorenzer C, Dirin M, Winkler A-M, Baumann V, Winkler J (2015) Going beyond the liver: progress and challenges of targeted delivery of siRNA therapeutics. J Control Release 203:1–15

    Article  CAS  PubMed  Google Scholar 

  61. Sago CD et al (2018) High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc Natl Acad Sci 115:E9944–E9952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Roces CB et al (2020) Manufacturing considerations for the development of lipid nanoparticles using microfluidics. Pharmaceutics 12:1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the German Research Foundation, DFG (SFB/Transregio TRR267, to C.B. and T.T.) and the European Research Council, ERC (ERC Advanced Grant REVERSE, to T.T.).

Disclosure

TT is a founder and shareholder of Cardior Pharmaceuticals GmbH (outside of this book chapter). D.L., C.B., and T.T. have filed and partly licensed patents for non-coding RNAs including for Circ-INSR.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Bär or Thomas Thum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Juchem, M., Cushman, S., Lu, D., Chatterjee, S., Bär, C., Thum, T. (2024). Encapsulating In Vitro Transcribed circRNA into Lipid Nanoparticles Via Microfluidic Mixing. In: Dieterich, C., Baudet, ML. (eds) Circular RNAs. Methods in Molecular Biology, vol 2765. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3678-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3678-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3677-0

  • Online ISBN: 978-1-0716-3678-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics