Skip to main content

Production of Influenza Virus Glycoproteins Using Insect Cells

  • Protocol
  • First Online:
Recombinant Glycoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2762))

Abstract

The baculovirus/insect cell expression system is a very useful tool for reagent and antigen generation in vaccinology, virology, and immunology. It allows for the production of recombinant glycoproteins, which are used as antigens in vaccination studies and as reagents in immunological assays. Here, we describe the process of recombinant glycoprotein production using the baculovirus/insect cell expression system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krammer F, Smith GJD, Fouchier RAM et al (2018) Influenza. Nat Rev Dis Primers 4:3. https://doi.org/10.1038/s41572-018-0002-y

    Article  PubMed  PubMed Central  Google Scholar 

  2. Khurana S, Verma S, Verma N et al (2011) Bacterial HA1 vaccine against pandemic H5N1 influenza virus: evidence of oligomerization, hemagglutination, and cross-protective immunity in ferrets. J Virol 85:1246–1256. JVI.02107-10 [pii]. https://doi.org/10.1128/JVI.02107-10

    Article  CAS  PubMed  Google Scholar 

  3. Aguilar-Yáñez JM, Portillo-Lara R, Mendoza-Ochoa GI et al (2010) An influenza a/H1N1/2009 hemagglutinin vaccine produced in Escherichia coli. PLoS One 5:e11694. https://doi.org/10.1371/journal.pone.0011694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saelens X, Vanlandschoot P, Martinet W et al (1999) Protection of mice against a lethal influenza virus challenge after immunization with yeast-derived secreted influenza virus hemagglutinin. Eur J Biochem 260:166–175

    Article  CAS  PubMed  Google Scholar 

  5. Krammer F, Margine I, Tan GS et al (2012) A carboxy-terminal trimerization domain stabilizes conformational epitopes on the stalk domain of soluble recombinant hemagglutinin substrates. PLoS One 7:e43603. PONE-D-12-16229 [pii]. https://doi.org/10.1371/journal.pone.0043603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McLellan JS, Chen M, Joyce MG et al (2013) Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 342:592–598. https://doi.org/10.1126/science.1243283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hsieh CL, Goldsmith JA, Schaub JM et al (2020) Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369:1501. https://doi.org/10.1126/science.abd0826

    Article  CAS  PubMed  Google Scholar 

  8. Mishra V (2020) A comprehensive guide to the commercial baculovirus expression vector systems for recombinant protein production. Protein Pept Lett 27:529–537. https://doi.org/10.2174/0929866526666191112152646

    Article  CAS  PubMed  Google Scholar 

  9. Krammer F, Grabherr R (2010) Alternative influenza vaccines made by insect cells. Trends Mol Med 16:313–320. S1471-4914(10)00071-7 [pii]. https://doi.org/10.1016/j.molmed.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  10. Cox MM, Hollister JR (2009) FluBlok, a next generation influenza vaccine manufactured in insect cells. Biologicals 37:182–189. https://doi.org/10.1016/j.biologicals.2009.02.014

    Article  CAS  PubMed  Google Scholar 

  11. Margine I, Palese P, Krammer F (2013) Expression of functional recombinant hemagglutinin and neuraminidase proteins from the novel H7N9 influenza virus using the baculovirus expression system. J Vis Exp. https://doi.org/10.3791/51112

  12. Stevens J, Corper AL, Basler CF et al (2004) Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 303:1866–1870. 1093373 [pii]. https://doi.org/10.1126/science.1093373

    Article  CAS  PubMed  Google Scholar 

  13. Weldon WC, Wang BZ, Martin MP et al (2010) Enhanced immunogenicity of stabilized trimeric soluble influenza hemagglutinin. PLoS One 5:e12466. https://doi.org/10.1371/journal.pone.0012466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu X, Zhu X, Dwek RA et al (2008) Structural characterization of the 1918 influenza virus H1N1 neuraminidase. J Virol 82:10493–10501. JVI.00959-08 [pii]. https://doi.org/10.1128/JVI.00959-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmidt PM, Attwood RM, Mohr PG et al (2011) A generic system for the expression and purification of soluble and stable influenza neuraminidase. PLoS One 6:e16284. https://doi.org/10.1371/journal.pone.0016284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Strohmeier S, Amanat F, Zhu X et al (2021) A novel recombinant influenza virus neuraminidase vaccine candidate stabilized by a measles virus phosphoprotein tetramerization domain provides robust protection from virus challenge in the mouse model. mBio 12:e0224121. https://doi.org/10.1128/mBio.02241-21

    Article  PubMed  Google Scholar 

  17. McMahon M, Strohmeier S, Rajendran M et al (2020) Correctly folded – but not necessarily functional - influenza virus neuraminidase is required to induce protective antibody responses in mice. Vaccine 38:7129–7137. https://doi.org/10.1016/j.vaccine.2020.08.067

    Article  CAS  PubMed  Google Scholar 

  18. Krammer F, Fouchier RAM, Eichelberger MC et al (2018) NAction! How can neuraminidase-based immunity contribute to better influenza virus vaccines? MBio 9:1. https://doi.org/10.1128/mBio.02332-17

    Article  Google Scholar 

  19. Dalakouras T, Smith B, Platis D et al (2006) Development of recombinant protein-based influenza vaccine. Expression and affinity purification of H1N1 influenza virus neuraminidase. J Chromatogr A 1136:48–56. S0021-9673(06)01808-5 [pii]. https://doi.org/10.1016/j.chroma.2006.09.067

    Article  CAS  PubMed  Google Scholar 

  20. Buckland B, Boulanger R, Fino M et al (2014) Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process. Vaccine 32:5496–5502. https://doi.org/10.1016/j.vaccine.2014.07.074

    Article  CAS  PubMed  Google Scholar 

  21. Krammer F, Nakowitsch S, Messner P et al (2010) Swine-origin pandemic H1N1 influenza virus-like particles produced in insect cells induce hemagglutination inhibiting antibodies in BALB/c mice. Biotechnol J 5:17–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Margine I, Martinez-Gil L, Chou YY, Krammer F (2012) Residual baculovirus in insect cell-derived influenza virus-like particle preparations enhances immunogenicity. PLoS One 7:e51559. https://doi.org/10.1371/journal.pone.0051559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abe T, Hemmi H, Miyamoto H et al (2005) Involvement of the Toll-like receptor 9 signaling pathway in the induction of innate immunity by baculovirus. J Virol 79:2847–2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abe T, Takahashi H, Hamazaki H et al (2003) Baculovirus induces an innate immune response and confers protection from lethal influenza virus infection in mice. J Immunol 171:1133–1139

    Article  CAS  PubMed  Google Scholar 

  25. Abe T, Kaname Y, Wen X et al (2009) Baculovirus induces type I interferon production through toll-like receptor-dependent and -independent pathways in a cell-type-specific manner. J Virol 83:7629–7640. JVI.00679-09 [pii]. https://doi.org/10.1128/JVI.00679-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krammer F, Schinko T, Palmberger D et al (2010) Trichoplusia ni cells (High Five) are highly efficient for the production of influenza A virus-like particles: a comparison of two insect cell lines as production platforms for influenza vaccines. Mol Biotechnol 45:226–234. https://doi.org/10.1007/s12033-010-9268-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The Krammer laboratory receives support for work in the immunology, virology, therapeutics, and vaccine space from the NIAID Centers of Excellence for Influenza Research and Response (CEIRR, 75N93021C00014) and Collaborative Influenza Vaccine Innovation Centers (CIVICs, 75N93019C00051) contracts as well as NIAID grants and contracts R01 AI146101, U19 AI168631, R01 AI154470, U19 AI162130, R01 AI137146, U01 AI144616, HHSN272201800048C and U19 AI118610. Additional support comes from FluLab and the Bill and Melinda Gates Foundation. The laboratory is also supported in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under U54 CA260560 and under Contract number 75N91021F00001 via 21X092F1 Mod 01. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Krammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Loganathan, M., Francis, B., Krammer, F. (2024). Production of Influenza Virus Glycoproteins Using Insect Cells. In: Bradfute, S.B. (eds) Recombinant Glycoproteins. Methods in Molecular Biology, vol 2762. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3666-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3666-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3665-7

  • Online ISBN: 978-1-0716-3666-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics