Skip to main content

Single-Nucleus ATAC-seq for Mapping Chromatin Accessibility in Individual Cells of Murine Hearts

  • Protocol
  • First Online:
Single Cell Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2752))

Abstract

During the last decade a wide range of single-cell and single-nucleus next-generation sequencing techniques have been developed, which revolutionized detection of rare cell populations, enabling creation of comprehensive cell atlases of complex organs and tissues. State-of-the-art methods do not only allow classical transcriptomics of individual cells but also comprise a number of epigenetic approaches, including assessment of chromatin accessibility by single-nucleus Assay for Transposase Accessible Chromatin ATAC-seq (snATAC-seq). The snATAC-seq assay detects “open chromatin,” a term for low nucleosome occupancy of genomic regions, which is a prerequisite for effective transcription factor binding. Information about open chromatin at the single-nucleus level helps to recognize epigenetic changes, sometimes before transcription of respective genes occurs. snATAC-seq detects cellular heterogeneity in otherwise still transcriptionally and/or morphologically homogeneous cell populations. Chromatin accessibility assays may be used to detect epigenetic changes in cardiac lineages during heart development, chromatin landscape changes during aging, and epigenetic alterations in heart diseases. Here, we provide an optimized protocol for snATAC-seq of murine hearts. We describe isolation of single nuclei from snap-frozen hearts, provide hints for preparation of libraries suitable for snATAC-seq next-generation sequencing (NGS) using the Chromium 10× platform, and give general recommendations for downstream analysis using conventional bioinformatic pipelines and packages. The protocol should serve as a beginner’s guide to generate high-quality snATAC-seq datasets and to perform chromatin accessibility analysis of individual heart-derived cell nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayran A, Drouin J (2018) Pioneer transcription factors shape the epigenetic landscape. J Biol Chem 293(36):13795–13804. https://doi.org/10.1074/jbc.R117.001232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Klemm SL, Shipony Z, Greenleaf WJ (2019) Chromatin accessibility and the regulatory epigenome. Nat Rev Genet 20(4):207–220. https://doi.org/10.1038/s41576-018-0089-8

    Article  CAS  PubMed  Google Scholar 

  3. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109:21.29.1–21.29.9. https://doi.org/10.1002/0471142727.mb2129s109

    Article  PubMed  Google Scholar 

  4. Jia G, Preussner J, Chen X, Guenther S, Yuan X, Yekelchyk M, Kuenne C, Looso M, Zhou Y, Teichmann S, Braun T (2018) Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement. Nat Commun 9(1):4877. https://doi.org/10.1038/s41467-018-07307-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen X, Miragaia RJ, Natarajan KN, Teichmann SA (2018) A rapid and robust method for single cell chromatin accessibility profiling. Nat Commun 9(1):5345. https://doi.org/10.1038/s41467-018-07771-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10(12):1213–1218. https://doi.org/10.1038/nmeth.2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Scott RW, Arostegui M, Schweitzer R, Rossi FMV, Underhill TM (2019) Hic1 defines quiescent mesenchymal progenitor subpopulations with distinct functions and fates in skeletal muscle regeneration. Cell Stem Cell 25(6):797–813 e799. https://doi.org/10.1016/j.stem.2019.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214. https://doi.org/10.1016/j.cell.2015.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gilsbach R, Schwaderer M, Preissl S, Gruning BA, Kranzhofer D, Schneider P, Nuhrenberg TG, Mulero-Navarro S, Weichenhan D, Braun C, Dressen M, Jacobs AR, Lahm H, Doenst T, Backofen R, Krane M, Gelb BD, Hein L (2018) Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo. Nat Commun 9(1):391. https://doi.org/10.1038/s41467-017-02762-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Satpathy AT, Granja JM, Yost KE, Qi Y, Meschi F, McDermott GP, Olsen BN, Mumbach MR, Pierce SE, Corces MR, Shah P, Bell JC, Jhutty D, Nemec CM, Wang J, Wang L, Yin Y, Giresi PG, Chang ALS, Zheng GXY, Greenleaf WJ, Chang HY (2019) Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat Biotechnol 37(8):925–936. https://doi.org/10.1038/s41587-019-0206-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 10xGenomics (2021) Chromium Single Cell ATAC. https://www.10xgenomics.com/products/single-cell-atac

  12. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36(5):411–420. https://doi.org/10.1038/nbt.4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen S, Lake BB, Zhang K (2019) High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat Biotechnol 37(12):1452–1457. https://doi.org/10.1038/s41587-019-0290-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, Hao Y, Stoeckius M, Smibert P, Satija R (2019) Comprehensive integration of single-cell data. Cell 177(7):1888–1902. e1821. https://doi.org/10.1016/j.cell.2019.05.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. lab S Analyzing PBMC scATAC-seq. https://satijalab.org/signac/articles/pbmc_vignette.html

  16. Tsuyuzaki K, Sato H, Sato K, Nikaido I (2020) Benchmarking principal component analysis for large-scale single-cell RNA-sequencing. Genome Biol 21(1):9. https://doi.org/10.1186/s13059-019-1900-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, Slichter CK, Miller HW, McElrath MJ, Prlic M, Linsley PS, Gottardo R (2015) MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16:278. https://doi.org/10.1186/s13059-015-0844-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Excellence Initiative “Cardiopulmonary Institute” (CPI), the DFG collaborative research center SFB1213, Transregional Collaborative Research Centre 267, the DFG Transregional Collaborative Research Centre 81, and the DFG Clinical Research Unit FKO 309.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yekelchyk, M., Li, X., Guenther, S., Braun, T. (2024). Single-Nucleus ATAC-seq for Mapping Chromatin Accessibility in Individual Cells of Murine Hearts. In: Gužvić, M. (eds) Single Cell Analysis. Methods in Molecular Biology, vol 2752. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3621-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3621-3_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3620-6

  • Online ISBN: 978-1-0716-3621-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics