Skip to main content

Host-Pathogen Interaction: Biology and Public Health

  • Protocol
  • First Online:
Host-Pathogen Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2751))

Abstract

Interactions between host and pathogenic microorganisms are common in nature and have a significant impact on host health, often leading to several types of infections. These interactions have evolved as a result of the ongoing battle between the host’s defense mechanisms and the pathogens’ invasion strategies. In this chapter, we will explore the evolution of host-pathogen interactions, explore their molecular mechanisms, examine the different stages of interaction, and discuss the development of pharmacological treatments. Understanding these interactions is crucial for improving public health, as it enables us to develop effective strategies to prevent and control infectious diseases. By gaining insights into the intricate dynamics between pathogens and their hosts, we can work towards reducing the burden of such diseases on society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Woolhouse MEJ, Webster JP, Domingo E et al (2002) Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet 32:569–577

    Article  CAS  PubMed  Google Scholar 

  2. Cohen SB, Gern BH, Delahaye JL et al (2018) Alveolar macrophages provide an early mycobacterium tuberculosis niche and initiate dissemination. Cell Host Microbe 24:439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh R, Dwivedi SP, Gaharwar US et al (2020) Recent updates on drug resistance in mycobacterium tuberculosis. J Appl Microbiol 128:1547–1567

    Article  CAS  PubMed  Google Scholar 

  4. Anstee DJ (2010) The relationship between blood groups and disease. Blood 115:4635–4643

    Article  CAS  PubMed  Google Scholar 

  5. Franchini M, Bonfanti C (2015) Evolutionary aspects of ABO blood group in humans. Clin Chim Acta 444:66–71

    Article  CAS  PubMed  Google Scholar 

  6. Rowe JA, Handel IG, Thera MA et al (2007) Blood group O protects against severe plasmodium falciparum malaria through the mechanism of reduced rosetting. Proc Natl Acad Sci U S A 104:17471–17476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Howes RE, Patil AP, Piel FB et al (2011) The global distribution of the Duffy blood group. Nat Commun 2:226

    Article  Google Scholar 

  8. Stucki D, Brites D, Jeljeli L et al (2016) Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet 48:1535–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Duarte R, Lönnroth K, Carvalho C et al (2018) Tuberculosis, social determinants and co-morbidities (including HIV). Pulmonology 24:115–119

    Article  CAS  PubMed  Google Scholar 

  10. Freschi L, Vargas R, Husain A et al (2021) Population structure, biogeography and transmissibility of mycobacterium tuberculosis. Nat Commun 12:1–11

    Article  Google Scholar 

  11. Sironi M, Cagliani R, Forni D, Clerici M (2015) Evolutionary insights into host-pathogen interactions from mammalian sequence data. Nat Rev Genet 16:224–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith AC, Morran LT, Hickman MA (2022) Host defense mechanisms induce genome instability leading to rapid evolution in an opportunistic fungal pathogen. Infect Immun 90:e0032821

    Article  PubMed  Google Scholar 

  13. Papkou A, Schalkowski R, Barg MC et al (2021) Population size impacts host-pathogen coevolution. Proc Biol Sci 288:20212269

    PubMed  PubMed Central  Google Scholar 

  14. Lin MJ, Rachleff VM, Xie H et al (2022) Host-pathogen dynamics in longitudinal clinical specimens from patients with COVID-19. Sci Rep 12:1–11

    Google Scholar 

  15. Gu H, Quadeer AA, Krishnan P et al (2023) Within-host genetic diversity of SARS-CoV-2 lineages in unvaccinated and vaccinated individuals. Nat Commun 14:1–14

    Google Scholar 

  16. Seid A, Berhane N, Abayneh T, Tesfaye S (2021) Impacts of pathogen-host-drug interaction in the evolution and spread of antimicrobial-resistant pathogens. Microbes Infect Dis 3:286–295

    Google Scholar 

  17. Rapisarda C, Tassinari M, Gubellini F, Fronzes R (2018) Using Cryo-EM to investigate bacterial secretion systems. Annu Rev Microbiol 72:231–254

    Article  CAS  PubMed  Google Scholar 

  18. Costa TRD, Felisberto-Rodrigues C, Meir A et al (2015) Secretion systems in gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13:343–359

    Article  CAS  PubMed  Google Scholar 

  19. Miletic S, Goessweiner-Mohr N, Marlovits TC (2020) The structure of the type III secretion system needle complex. Curr Top Microbiol Immunol 427:67–90

    CAS  PubMed  Google Scholar 

  20. Slater SL, Sågfors AM, Pollard DJ et al (2018) The type III secretion system of pathogenic Escherichia coli. In: Frankel G, Ron E (eds) Escherichia coli, a versatile pathogen, Current topics in microbiology and immunology, vol 416. Springer, Heidelberg, pp 51–72

    Chapter  Google Scholar 

  21. Plano GV, Schesser K (2013) The Yersinia pestis type III secretion system: expression, assembly and role in the evasion of host defenses. Immunol Res 57:237–245

    Article  CAS  PubMed  Google Scholar 

  22. Maginnis MS (2018) Virus-receptor interactions: the key to cellular invasion. J Mol Biol 430:2590–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grove J, Marsh M (2011) The cell biology of receptor-mediated virus entry. J Cell Biol 195:1071–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Handschuh J, Amore J, Müller AJ (2020) From the cradle to the grave of an infection: host-pathogen interaction visualized by intravital microscopy. Cytometry A 97:458–470

    Article  PubMed  Google Scholar 

  25. Chandra P, Grigsby SJ, Philips JA (2022) Immune evasion and provocation by mycobacterium tuberculosis. Nat Rev Microbiol 20:750–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thorne LG, Bouhaddou M, Reuschl AK et al (2022) Evolution of enhanced innate immune evasion by SARS-CoV-2. Nature 602:487–495

    Article  CAS  PubMed  Google Scholar 

  27. Santacroce L, Charitos IA, Carretta DM et al (2021) The human coronaviruses (HCoVs) and the molecular mechanisms of SARS-CoV-2 infection. J Mol Med 99:93–106

    Article  CAS  PubMed  Google Scholar 

  28. Bour S, Perrin C, Akari H, Strebel K (2001) The human immunodeficiency virus type 1 Vpu protein inhibits NF-κB activation by interfering with βTrCP-mediated degradation of IκB. J Biol Chem 276:15920–15928

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Chen Y, Li Y et al (2021) The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Ι. Proc Natl Acad Sci U S A 118:1–12

    Google Scholar 

  30. Piguet V, Trono D (2001) Living in oblivion: HIV immune evasion. Semin Immunol 13:51–57

    Article  CAS  PubMed  Google Scholar 

  31. Bernet J, Ahmad M, Mullick J et al (2011) Disabling complement regulatory activities of vaccinia virus complement control protein reduces vaccinia virus pathogenicity. Vaccine 29:7435–7443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liszewski MK, Leung MK, Hauhart R et al (2006) Structure and regulatory profile of the monkeypox inhibitor of complement: comparison to homologs in vaccinia and Variola and evidence for dimer formation. J Immunol 176:3725–3734

    Article  CAS  PubMed  Google Scholar 

  33. Saito F, Hirayasu K, Satoh T et al (2017) Immune evasion of plasmodium falciparum by RIFIN via inhibitory receptors. Nature 552:101–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou H, Xu M, Huang Q et al (2008) Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 4:495–504

    Article  CAS  PubMed  Google Scholar 

  35. Brass AL, Dykxhoorn DM, Benita Y et al (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science 319:921–926

    Article  CAS  PubMed  Google Scholar 

  36. Appelberg R, Moreira D, Barreira-Silva P et al (2015) The Warburg effect in mycobacterial granulomas is dependent on the recruitment and activation of macrophages by interferon-γ. Immunology 145:498–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singh V, Jamwal S, Jain R et al (2012) Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe 12:669–681

    Article  CAS  PubMed  Google Scholar 

  38. Boom HW, Schaible UE, Achkar JM (2021) The knowns and unknowns of latent mycobacterium tuberculosis infection. J Clin Invest 131:e136222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Glaziou P, Floyd K, Raviglione MC (2018) Global epidemiology of tuberculosis. Semin Respir Crit Care Med 39:271–285

    Article  PubMed  Google Scholar 

  40. Bagcchi S (2023) WHO’s global tuberculosis report 2022. Lancet Microbe 4:e20

    Article  PubMed  Google Scholar 

  41. Khan A, Singh VK, Hunter RL, Jagannath C (2019) Macrophage heterogeneity and plasticity in tuberculosis. J Leukoc Biol 106:275–282

    Article  CAS  PubMed  Google Scholar 

  42. Suárez I, Fünger SM, Rademacher J et al (2019) The diagnosis and treatment of tuberculosis. Dtsch Arztebl Int 116:729–735

    PubMed  Google Scholar 

  43. Dheda K, Gumbo T, Maartens G et al (2017) The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir Med 5:291–360

    Article  Google Scholar 

  44. Sia JK, Rengarajan J (2019) Immunology of mycobacterium tuberculosis infections. Microbiol Spectr 7:1–37

    Article  Google Scholar 

  45. Berns SA, Isakova JA, Pekhtereva PI (2022) Therapeutic potential of interferon-gamma in tuberculosis. ADMET DMPK 10:63–73

    PubMed  PubMed Central  Google Scholar 

  46. Alsultan A, Peloquin CA (2014) Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs 74:839–854

    Article  CAS  PubMed  Google Scholar 

  47. Zumla A, Chakaya J, Centis R et al (2015) Tuberculosis treatment and management-an update on treatment regimens, trials, new drugs, and adjunct therapies. Lancet Respir Med 3:220–234

    Article  PubMed  Google Scholar 

  48. Menzeis D, Pai M, Comstock G (2007) Meta-analysis: new tests for the diagnosis of latent tuberculosis infection: areas of uncertainty and recommendations for research. Ann Intern Med 146:340–354

    Article  Google Scholar 

  49. Bouzeyen R, Javid B (2022) Therapeutic vaccines for tuberculosis: an overview. Front Immunol 13:1–10

    Article  Google Scholar 

  50. UNAIDS. Fact Sheet (2022) World tuberculosis day. UNAIDS

    Google Scholar 

  51. Chou R, Evans C, Hoverman A et al (2019) Preexposure prophylaxis for the prevention of HIV infection: evidence report and systematic review for the US preventive services task force. J Am Med Assoc 321:2214–2230

    Article  Google Scholar 

  52. Thompson MA, Aberg JA, Hoy JF et al (2012) Antiretroviral treatment of adult HIV infection. J Am Med Assoc 308:387–402

    Article  CAS  Google Scholar 

  53. HHS panel on antiretroviral guidelines for adults and adolescents. Guidelines for the use of antiretroviral agents in adults and adolescents with HIV (2022) 1–604. Available from: https://clinicalinfo.hiv.gov/en/guidelines/adult-and-adolescent-arv

  54. Meek TD (1992) Inhibitors of HIV-1 protease. J Enzyme Inhib Med Chem 6:65–98

    CAS  Google Scholar 

  55. Keedy KS, Pharm AD, Margolis DM (2010) Therapy for persistent HI. Trends Pharmacol Sci 31:206–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Atta MG, De Seigneux S, Lucas GM (2019) Clinical pharmacology in HIV therapy. Clin J Am Soc Nephrol 14:435–444

    Article  CAS  PubMed  Google Scholar 

  57. Saag MS, Gandhi RT, Hoy JF et al (2020) Antiretroviral drugs for treatment and prevention of HIV infection in adults: recommendations of the international antiviral society-USA panel. J Am Med Assoc 324:1651–1669

    Article  CAS  Google Scholar 

  58. Olliaro P, Wells TNC (2009) The global portfolio of new antimalarial medicines under development. Clin Pharmacol Ther 85:584–595

    Article  CAS  PubMed  Google Scholar 

  59. Expanded Table: Drugs for Malaria Prophylaxis (online only) (2023) The Medical Letter Inc. [Internet]. Available from: https://secure.medicalletter.org/TML-article-1575e

  60. Wells TNC, Van Huijsduijnen RH, Van Voorhis WC (2015) Malaria medicines: a glass half full? Nat Rev Drug Discov 14:424–442

    Article  CAS  PubMed  Google Scholar 

  61. Palacpac NMQ, Horii T (2020) Malaria vaccines: facing unknowns. F1000Research 9:F1000

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang C, Horby PW, Hayden FG, Gao GF (2020) A novel coronavirus outbreak of global health concern. Lancet 395:470–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Drożdżal S, Rosik J, Lechowicz K et al (2021) An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist Updat 59:100794

    Article  PubMed  PubMed Central  Google Scholar 

  64. Binns C, Low WY (2015) What is public health? Asia-Pac J Public Heal 27:5–6

    Article  Google Scholar 

  65. Halaji M, Farahani A, Ranjbar R et al (2020) Emerging coronaviruses: first SARS, second MERS and third SARS-COV-2. Epidemiological updates of COVID-19. Infez Med 28:6–17

    CAS  PubMed  Google Scholar 

  66. Cai J, Deng X, Yang J et al (2022) Modeling transmission of SARS-CoV-2 omicron in China. Nat Med 28:1468–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Houben RMGJ, Dodd PJ (2016) The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med 13:1–13

    Article  Google Scholar 

  68. Rengganis Wardani DWS, Wahono EP (2017) Prediction model of tuberculosis transmission based on its risk factors and socioeconomic position in Indonesia. Indian J Commun Med 42:204208

    Google Scholar 

  69. Bastos SH, Taminato M, Fernandes H et al (2019) Sociodemographic and health profile of TB/HIV co-infection in Brazil: a systematic review. Rev Bras Enferm 72:1389–1396

    Article  PubMed  Google Scholar 

  70. Lange C, Chesov D, Heyckendorf J et al (2018) Drug-resistant tuberculosis: an update on disease burden, diagnosis and treatment. Respirology 23:656–673

    Article  PubMed  Google Scholar 

  71. World Health organization. Global Tuberculosis report (2022) license: c. 2022. 68 p

    Google Scholar 

  72. Zou Z, Liu G, Hay SI et al (2022) Time trends in tuberculosis mortality across the BRICS: an age-period-cohort analysis for the GBD 2019. eClinicalMedicine 53:101646

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gelaw Y, Getaneh Z, Melku M (2021) Anemia as a risk factor for tuberculosis: a systematic review and meta-analysis. Environ Health Prev Med 26:1–15

    Article  Google Scholar 

  74. Yen YF, Hu HY, Lee YL et al (2017) Obesity/overweight reduces the risk of active tuberculosis: a nationwide population-based cohort study in Taiwan. Int J Obes 41:971–975

    Article  Google Scholar 

  75. Polack FP, Thomas SJ, Kitchin N et al (2020) Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 383:2603–2015

    Article  CAS  PubMed  Google Scholar 

  76. Hooper AT, Somersan-Karakaya S, McCarthy SE et al (2022) Casirivimab and imdevimab treatment reduces viral load and improves clinical outcomes in seropositive hospitalized COVID-19 patients with non-neutralizing or borderline neutralizing antibodies. MBio1 3:1–13

    Google Scholar 

  77. Beigel JH, Tomashek KM, Dodd LE et al (2020) Remdesivir for the treatment of Covid-19 – final report. N Engl J Med 383:1813–1826

    Article  CAS  PubMed  Google Scholar 

  78. Cheng VCC, Lau SKP, Woo PCY, Kwok YY (2007) Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev 20:660–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu P, Jiang JZ, Wan XF et al (2020) Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? PLoS Pathog 16:1–13

    Article  Google Scholar 

  80. Tosta S, Moreno K, Schuab G et al (2023) Global SARS-CoV-2 genomic surveillance: what we have learned (so far). Infect genet Evol 108:105405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lu R, Zhao X, Li J et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. World Health Organization. HIV. THE GLOBAL HEALTH OBSERVATORY (2023). Available from: https://www.who.int/data/gho/data/themes/hiv-aids

  83. Sohail M, Levitan EB, Rana AI et al (2020) Estimating the first 90 of the UNAIDS 90-90-90 goal: a review. J Int Assoc Provid AIDS Care 19:2325958220919290

    Article  PubMed  PubMed Central  Google Scholar 

  84. HIV (2023). Available from: https://www.who.int/data/gho/data/themes/hiv-aids

  85. World Health Organization (2016) Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach. WHO, France

    Google Scholar 

  86. Murray CJL, Rosenfeld LC, Lim SS et al (2012) Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379:413–431

    Article  PubMed  Google Scholar 

  87. Barofsky J, Anekwe TD, Chase C (2020) Malaria eradication and economic outcomes in sub-Saharan Africa: evidence from Uganda. J Health Econ 44:118–136

    Article  Google Scholar 

  88. Shretta R, Avanceña ALV, Hatefi A (2016) The economics of malaria control and elimination: a systematic review. Malar J 15:1–14

    Article  Google Scholar 

  89. Snow RW, Guerra CA, Noor AM et al (2005) The global distribution of clinical episodes of plasmodium falciparum malaria. Nature 434:214–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Alonso PL, Brown G, Arevalo-Herrera M et al (2011) A research agenda to underpin malaria eradication. PLoS Med 8:e1000406

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Ponce-Cusi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ponce-Cusi, R., Bravo, L., Paez, K.J., Pinto, J.A., Pilco-Ferreto, N. (2024). Host-Pathogen Interaction: Biology and Public Health. In: Medina, C., López-Baena, F.J. (eds) Host-Pathogen Interactions. Methods in Molecular Biology, vol 2751. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3617-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3617-6_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3616-9

  • Online ISBN: 978-1-0716-3617-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics