Skip to main content

Systems Biology Approaches to Understanding COVID-19 Spread in the Population

  • Protocol
  • First Online:
Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2745))

Abstract

In essence, the COVID-19 pandemic can be regarded as a systems biology problem, with the entire world as the system, and the human population as the element transitioning from one state to another with certain transition rates. While capturing all the relevant features of such a complex system is hardly possible, compartmental epidemiological models can be used as an appropriate simplification to model the system’s dynamics and infer its important characteristics, such as basic and effective reproductive numbers of the virus. These measures can later be used as response variables in feature selection methods to uncover the main factors contributing to disease transmissibility. We here demonstrate that a combination of dynamic modeling and machine learning approaches can represent a powerful tool in understanding the spread, not only of COVID-19, but of any infectious disease of epidemiological proportions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bassingthwaighte JB, Butterworth E, Jardine B, Raymond GM (2012) Compartmental modeling in the analysis of biological systems. Methods Mol Biol Clifton NJ 929:391–438. https://doi.org/10.1007/978-1-62703-050-2_17

    Article  CAS  Google Scholar 

  2. Djordjevic M, Rodic A, Salom I et al (2021) A systems biology approach to COVID-19 progression in population. Adv Protein Chem Struct Biol 127:291–314. https://doi.org/10.1016/bs.apcsb.2021.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proc R Soc Lond Ser Contain Pap Math Phys Char 115:700–721. https://doi.org/10.1098/rspa.1927.0118

    Article  Google Scholar 

  4. Aron JL, Schwartz IB (1984) Seasonality and period-doubling bifurcations in an epidemic model. J Theor Biol 110:665–679. https://doi.org/10.1016/S0022-5193(84)80150-2

    Article  CAS  PubMed  Google Scholar 

  5. Salom I, Rodic A, Milicevic O et al (2021) Effects of demographic and weather parameters on COVID-19 basic reproduction number. Front Ecol Evol 8:617841. https://doi.org/10.3389/fevo.2020.617841

    Article  Google Scholar 

  6. Ilic B, Salom I, Djordjevic M, Djordjevic M (2022) An analytical framework for understanding infection progression under social mitigation measures. [Preprint] available at Research Square. https://doi.org/10.21203/rs.3.rs-1331002/v1

  7. Djordjevic M, Djordjevic M, Ilic B et al (2021) Understanding infection progression under strong control measures through universal COVID-19 growth signatures. Glob Chall 5:2000101. https://doi.org/10.1002/gch2.202000101

    Article  PubMed  PubMed Central  Google Scholar 

  8. Klumpp S, Hwa T (2014) Bacterial growth: global effects on gene expression, growth feedback and proteome partition. Curr Opin Biotechnol 28:96–102. https://doi.org/10.1016/j.copbio.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  9. Rodic A, Blagojevic B, Djordjevic M (2018) Systems biology of bacterial immune systems: regulation of restriction-modification and CRISPR-Cas systems. In: Rajewsky N, Jurga S, Barciszewski J (eds) Systems biology. Springer International Publishing, Cham, pp 37–58

    Chapter  Google Scholar 

  10. Voit EO, Martens HA, Omholt SW (2015) 150 years of the Mass Action Law. PLoS Comput Biol 11:e1004012. https://doi.org/10.1371/journal.pcbi.1004012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karin O, Bar-On YM, Milo T, et al (2020) Cyclic exit strategies to suppress COVID-19 and allow economic activity. [Preprint] available at medRxiv. 2020.04.04.20053579. https://doi.org/10.1101/2020.04.04.20053579

  12. Eilersen A, Sneppen K (2020) Cost–benefit of limited isolation and testing in COVID-19 mitigation. Sci Rep 10:18543. https://doi.org/10.1038/s41598-020-75640-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wong GN, Weiner ZJ, Tkachenko AV et al (2020) Modeling COVID-19 dynamics in Illinois under nonpharmaceutical interventions. Phys Rev X 10:041033. https://doi.org/10.1103/PhysRevX.10.041033

    Article  CAS  Google Scholar 

  14. Bar-On YM, Flamholz A, Phillips R, Milo R (2020) SARS-CoV-2 (COVID-19) by the numbers. elife 9:e57309. https://doi.org/10.7554/eLife.57309

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rossman H, Shilo S, Meir T et al (2021) COVID-19 dynamics after a national immunization program in Israel. Nat Med 27:1055–1061. https://doi.org/10.1038/s41591-021-01337-2

    Article  CAS  PubMed  Google Scholar 

  16. Xue L, Jing S, Miller JC et al (2020) A data-driven network model for the emerging COVID-19 epidemics in Wuhan, Toronto and Italy. Math Biosci 326:108391. https://doi.org/10.1016/j.mbs.2020.108391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li R, Li L, Xu Y, Yang J (2022) Machine learning meets omics: applications and perspectives. Brief Bioinform 23:bbab460. https://doi.org/10.1093/bib/bbab460

    Article  CAS  PubMed  Google Scholar 

  18. Tang B, Pan Z, Yin K, Khateeb A (2019) Recent advances of deep learning in bioinformatics and computational biology. Front Genet 10. https://doi.org/10.3389/fgene.2019.00214

  19. Iuchi H, Kawasaki J, Kubo K et al (2023) Bioinformatics approaches for unveiling virus-host interactions. Comput Struct Biotechnol J 21:1774–1784. https://doi.org/10.1016/j.csbj.2023.02.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang S, Fan K, Luo N et al (2019) Massive computational acceleration by using neural networks to emulate mechanism-based biological models. Nat Commun 10:4354. https://doi.org/10.1038/s41467-019-12342-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gilpin W, Huang Y, Forger DB (2020) Learning dynamics from large biological data sets: machine learning meets systems biology. Curr Opin Syst Biol 22:1–7. https://doi.org/10.1016/j.coisb.2020.07.009

    Article  Google Scholar 

  22. Torregrosa G, Garcia-Ojalvo J (2021) Mechanistic models of cell-fate transitions from single-cell data. Curr Opin Syst Biol 26:79–86. https://doi.org/10.1016/j.coisb.2021.04.004

    Article  CAS  Google Scholar 

  23. Worldometer (2022) COVID live - Coronavirus statistics - Worldometer. In: Worldometer. https://www.worldometers.info/coronavirus/?msclkid=7812e8b9bf0011ecae993ad5fa9b7f49. Accessed 18 Apr 2022

  24. Arroyo-Marioli F, Bullano F, Kucinskas S, Rondón-Moreno C (2021) Tracking R of COVID-19: a new real-time estimation using the Kalman filter. PLoS One 16:e0244474. https://doi.org/10.1371/journal.pone.0244474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York, NY

    Google Scholar 

  26. Djordjevic M, Salom I, Markovic S et al (2021) Inferring the main drivers of SARS-CoV-2 global transmissibility by feature selection methods. GeoHealth 5:e2021GH000432. https://doi.org/10.1029/2021GH000432

    Article  PubMed  PubMed Central  Google Scholar 

  27. Milicevic O, Salom I, Rodic A et al (2021) PM2.5 as a major predictor of COVID-19 basic reproduction number in the USA. Environ Res 201:111526. https://doi.org/10.1016/j.envres.2021.111526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barshan E, Ghodsi A, Azimifar Z, Zolghadri Jahromi M (2011) Supervised principal component analysis: visualization, classification and regression on subspaces and submanifolds. Pattern Recogn 44:1357–1371. https://doi.org/10.1016/j.patcog.2010.12.015

    Article  Google Scholar 

  29. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning data mining, inference, and prediction, 2nd edn. Springer, New York

    Google Scholar 

  30. Markovic S, Salom I, Rodic A, Djordjevic M (2022) Analyzing the GHSI puzzle of whether highly developed countries fared worse in COVID-19. Sci Rep 12:17711. https://doi.org/10.1038/s41598-022-22578-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinforma Comput Biol 03:185–205. https://doi.org/10.1142/S0219720005001004

    Article  CAS  Google Scholar 

  32. Zhao Z, Anand R, Wang M (2019) Maximum relevance and minimum redundancy feature selection methods for a marketing machine learning platform. In: 2019 IEEE international conference on data science and advanced analytics (DSAA), pp 442–452

    Chapter  Google Scholar 

  33. Tumbas M, Markovic S, Salom I, Djordjevic M (2023) A large-scale machine learning study of socio-demographic factors contributing to COVID-19 severity. Front Big Data 6:1038283

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tibshirani R (1996) Regression Shrinkage and selection via the Lasso. J R Stat Soc Ser B Methodol 58:267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

    Article  Google Scholar 

  35. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B Stat Methodol 67:301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x

    Article  Google Scholar 

  36. Hoerl AE, Kennard RW (1970) Ridge regression: applications to nonorthogonal problems. Technometrics 12:69–82. https://doi.org/10.1080/00401706.1970.10488635

    Article  Google Scholar 

  37. Markovic S, Rodic A, Salom I et al (2021) COVID-19 severity determinants inferred through ecological and epidemiological modeling. One Health 13:100355. https://doi.org/10.1016/j.onehlt.2021.100355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pope PT, Webster JT (1972) The use of an F-statistic in stepwise regression procedures. Technometrics 14:327–340. https://doi.org/10.1080/00401706.1972.10488919

    Article  Google Scholar 

  39. Whittingham MJ, Stephens PA, Bradbury RB, Freckleton RP (2006) Why do we still use stepwise modelling in ecology and behaviour? J Anim Ecol 75:1182–1189. https://doi.org/10.1111/j.1365-2656.2006.01141.x

    Article  PubMed  Google Scholar 

  40. Meinshausen N (2007) Relaxed Lasso. Comput Stat Data Anal 52:374–393. https://doi.org/10.1016/j.csda.2006.12.019

    Article  Google Scholar 

  41. Djordjevic M, Markovic S, Salom I, Djordjevic M (2023) Understanding risk factors of a new variant outburst through global analysis of Omicron transmissibility. Environ Res 216:114446. https://doi.org/10.1016/j.envres.2022.114446

    Article  CAS  PubMed  Google Scholar 

  42. Song Y, Lu Y (2015) Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatry 27:130–135. https://doi.org/10.11919/j.issn.1002-0829.215044

    Article  PubMed  PubMed Central  Google Scholar 

  43. James G, Witten D, Hastie T, Tibshirani R (2021) Tree-based methods. In: James G, Witten D, Hastie T, Tibshirani R (eds) An introduction to statistical learning: with applications in R. Springer US, New York, NY, pp 327–365

    Chapter  Google Scholar 

  44. Breiman L (2001) Random Forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  45. Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38:367–378. https://doi.org/10.1016/S0167-9473(01)00065-2

    Article  Google Scholar 

  46. Breiman L (1996) Bagging predictors. Mach Learn 24:123–140. https://doi.org/10.1007/BF00058655

    Article  Google Scholar 

  47. Freund Y, Schapire RE (1995) A desicion-theoretic generalization of on-line learning and an application to boosting. In: Vitányi P (ed) Computational learning theory. Springer, Berlin, Heidelberg, pp 23–37

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Djordjevic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marković, S., Salom, I., Djordjevic, M. (2024). Systems Biology Approaches to Understanding COVID-19 Spread in the Population. In: Bizzarri, M. (eds) Systems Biology. Methods in Molecular Biology, vol 2745. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3577-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3577-3_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3576-6

  • Online ISBN: 978-1-0716-3577-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics