Skip to main content

The Long-Lasting Potential of the DNPH Spectrophotometric Method for Protein-Derived Carbonyl Analysis in Meat and Meat Products

  • Chapter
  • First Online:
Functional Meat Products

Abstract

This book chapter explores protein carbonyl analysis in meat and meat products, focusing on the enduring power of the classic 2,4-dinitrophenylhydrazine (DNPH) spectrophotometric method. Understanding protein oxidation extent is crucial for product quality and safety. The chapter provides a thorough overview of the DNPH method, including its fundamental principles, advantages, and inherent limitations, along with details on experimental procedures and sample preparation. The DNPH method stands as a potent technique for measuring carbonyl compounds, playing a crucial role in upholding regulatory standards and satisfying consumer demands for minimally oxidized meat and meat products. Its versatility is showcased by its ability to evaluate different meat processing and preservation methods, supporting shelf life and sensory studies. By providing a comprehensive guide, this chapter empowers readers to unlock the mysteries of protein oxidation, ultimately enhancing product quality, reducing food loss, and increasing consumer satisfaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Domínguez R, Pateiro M, Munekata PES, Zhang W, Garcia-Oliveira P, Carpena M et al (2022) Protein oxidation in muscle foods: A comprehensive review. Antioxidants 11(1)

    Google Scholar 

  2. Lund MN, Heinonen M, Baron CP, Estévez M (2011) Protein oxidation in muscle foods: a review. Molecular Nutrit Food Res 55(1):83–95

    Article  CAS  Google Scholar 

  3. Stadtman E, Levine R (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218

    Article  CAS  PubMed  Google Scholar 

  4. Villaverde A, Estévez M (2013) Carbonylation of myofibrillar proteins through the Maillard pathway: effect of reducing sugars and reaction temperature. J Agric Food Chem 61(12):3140–3147

    Article  CAS  PubMed  Google Scholar 

  5. Hellwig M, Löbmann K, Orywol T (2015) Peptide backbone cleavage by α-amidation is enhanced at methionine residues. J Pept Sci 21(1):17–23

    Article  CAS  PubMed  Google Scholar 

  6. Garrison WM (1987) Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem Rev 87(2):381–398

    Article  CAS  Google Scholar 

  7. Uchida K, Kato Y, Kawakishi S (1990) A novel mechanism for oxidative cleavage of prolyl peptides induced by the hydroxyl radical. Biochem Biophys Res Commun 169(1):265–271

    Article  CAS  PubMed  Google Scholar 

  8. Uchida K, Kanematsu M, Sakai K, Matsuda T, Hattori N, Mizuno Y et al (1998) Protein-bound acrolein: potential markers for oxidative stress. Proc Natl Acad Sci 95(9):4882–4887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feeney RE, Blankenhorn G, Dixon HB (1975) Carbonyl-amine reactions in protein chemistry. Adv Protein Chem 29:135–203

    Article  CAS  PubMed  Google Scholar 

  10. Bao Y, Ertbjerg P (2019) Effects of protein oxidation on the texture and water-holding of meat: a review. Crit Rev Food Sci Nutr 59(22):3564–3578

    Article  CAS  PubMed  Google Scholar 

  11. Dai Y, Lu Y, Wu W, Lu X-M, Han Z-P, Liu Y et al (2014) Changes in oxidation, color and texture deteriorations during refrigerated storage of ohmically and water bath-cooked pork meat. Innovat Food Sci Emerging Technol 26:341–346

    Article  CAS  Google Scholar 

  12. Huang Q, Dong K, Wang Q, Huang X, Wang G, An F et al (2022) Changes in volatile flavor of yak meat during oxidation based on multi-omics. Food Chem 371:131103

    Article  CAS  PubMed  Google Scholar 

  13. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz A-G et al (1990) [49] Determination of carbonyl content in oxidatively modified proteins. In: Methods in enzymology, vol 186. Academic Press, pp 464–478

    Google Scholar 

  14. Tamarit J, de Hoogh A, Obis E, Alsina D, Cabiscol E, Ros J (2012) Analysis of oxidative stress-induced protein carbonylation using fluorescent hydrazides. J Proteome 75(12):3778–3788

    Article  CAS  Google Scholar 

  15. Levine RL, Williams JA, Stadtman EP, Shacter E (1994) [37] Carbonyl assays for determination of oxidatively modified proteins. In: Methods in enzymology, vol 233. Elsevier, pp 346–357

    Google Scholar 

  16. Flinders B, Morrell J, Marshall PS, Ranshaw LE, Clench MR (2015) The use of hydrazine-based derivatization reagents for improved sensitivity and detection of carbonyl containing compounds using MALDI-MSI. Anal Bioanal Chem 407:2085–2094

    Article  CAS  PubMed  Google Scholar 

  17. Uehara H, Rao VA (2015) Metal-mediated protein oxidation: applications of a modified ELISA-based carbonyl detection assay for complex proteins. Pharm Res 32:691–701

    Article  CAS  PubMed  Google Scholar 

  18. Ma W, Yang Q, Fan X, Yao X, Kuang J, Min C et al (2022) Modification of myofibrillar protein gelation under oxidative stress using combined inulin and glutathione. Food Chemistry: X 14:100318

    CAS  PubMed  Google Scholar 

  19. Goethals S, Van Hecke T, Vossen E, Vanhaecke L, Van Camp J, De Smet S (2020) Commercial luncheon meat products and their in vitro gastrointestinal digests contain more protein carbonyl compounds but less lipid oxidation products compared to fresh pork. Food Res Int 136:109585

    Article  CAS  PubMed  Google Scholar 

  20. Sobral MMC, Casal S, Faria MA, Cunha SC, Ferreira IM (2020) Influence of culinary practices on protein and lipid oxidation of chicken meat burgers during cooking and in vitro gastrointestinal digestion. Food Chem Toxicol 141:111401

    Article  CAS  PubMed  Google Scholar 

  21. Soglia F, Petracci M, Ertbjerg P (2016) Novel DNPH-based method for determination of protein carbonylation in muscle and meat. Food Chem 197:670–675

    Article  CAS  PubMed  Google Scholar 

  22. Oliver CN, Ahn B-W, Moerman EJ, Goldstein S, Stadtman ER (1987) Age-related changes in oxidized proteins. J Biol Chem 262(12):5488–5491

    Article  CAS  PubMed  Google Scholar 

  23. Mercier Y, Gatellier P, Vincent A, Renerre M (2001) Lipid and protein oxidation in microsomal fraction from turkeys: influence of dietary fat and vitamin E supplementation. Meat Sci 58(2):125–134

    Article  CAS  PubMed  Google Scholar 

  24. Guan X, Rubin E, Anni H (2012) An optimized method for the measurement of acetaldehyde by high-performance liquid chromatography. Alcohol Clin Exp Res 36(3):398–405

    Article  CAS  PubMed  Google Scholar 

  25. Armenteros M, Heinonen M, Ollilainen V, Toldrá F, Estevez M (2009) Analysis of protein carbonyls in meat products by using the DNPH-method, fluorescence spectroscopy and liquid chromatography–electrospray ionisation–mass spectrometry (LC–ESI–MS). Meat Sci 83(1):104–112

    Article  CAS  PubMed  Google Scholar 

  26. Li J, Wang M, Liu Q, Zhang Y, Peng Z (2018) Validation of UPLC method on the determination of formaldehyde in smoked meat products. Int J Food Prop 21(1):1246–1256

    Article  CAS  Google Scholar 

  27. Mendes R, Cardoso C, Pestana C (2009) Measurement of malondialdehyde in fish: a comparison study between HPLC methods and the traditional spectrophotometric test. Food Chem 112(4):1038–1045

    Article  CAS  Google Scholar 

  28. Estévez M, Ventanas S, Cava R (2005) Protein oxidation in frankfurters with increasing levels of added rosemary essential oil: effect on color and texture deterioration. J Food Sci 70(7):c427–cc32

    Article  Google Scholar 

  29. Ganhão R, Morcuende D, Estévez M (2010) Protein oxidation in emulsified cooked burger patties with added fruit extracts: influence on colour and texture deterioration during chill storage. Meat Sci 85(3):402–409

    Article  PubMed  Google Scholar 

  30. Santé-Lhoutellier V, Engel E, Aubry L, Gatellier P (2008) Effect of animal (lamb) diet and meat storage on myofibrillar protein oxidation and in vitro digestibility. Meat Sci 79(4):777–783

    Article  PubMed  Google Scholar 

  31. Roldan M, Antequera T, Armenteros M, Ruiz J (2014) Effect of different temperature–time combinations on lipid and protein oxidation of sous-vide cooked lamb loins. Food Chem 149:129–136

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study received financial support from the project UIDP/50006/2020, funded by FCT/MCTES using national funds. Rebeca Cruz acknowledges support from FCT through the FCT Researcher Program CEEC Individual 2022 (2022.00965.CEECIND).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebeca Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cruz, R., Sobral, M.M.C., Casal, S. (2024). The Long-Lasting Potential of the DNPH Spectrophotometric Method for Protein-Derived Carbonyl Analysis in Meat and Meat Products. In: Verruck, S., Teixeira Marsico, E. (eds) Functional Meat Products. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3573-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3573-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3572-8

  • Online ISBN: 978-1-0716-3573-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics