Skip to main content

In Vitro Phosphatase Assays for the Eya2 Tyrosine Phosphatase

  • Protocol
  • First Online:
Protein Tyrosine Phosphatases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2743))

  • 304 Accesses

Abstract

Protein tyrosine phosphatases (PTP), such as the Eyes Absent (Eya) family of proteins, play important roles in diverse biological processes. In vitro phosphatase assays are essential tools for characterizing the enzymatic activity as well as discovering inhibitors and regulators of these phosphatases. Two common types of in vitro phosphatase assays use either a small molecule substrate that produces a fluorescent or colored product, or a peptide substrate that produces a colorimetric product in a malachite green assay. In this chapter, we describe detailed protocols of a phosphatase assay using small molecule 3-O-methylfluorescein phosphate (OMFP) as a substrate and a malachite green assay using the pH2AX peptide as a substrate to evaluate the phosphatase activity of EYA2 and the effect of small molecule inhibitors of EYA2. These protocols can be easily adapted to study other protein tyrosine phosphatases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zimmerman JE, Bui QT, Liu H, Bonini NM (2000) Molecular genetic analysis of Drosophila eyes absent mutants reveals an eye enhancer element. Genetics 154(1):237–246. https://doi.org/10.1093/genetics/154.1.237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xu PX, Cheng J, Epstein JA, Maas RL (1997) Mouse Eya genes are expressed during limb tendon development and encode a transcriptional activation function. Proc Natl Acad Sci U S A 94(22):11974–11979. https://doi.org/10.1073/pnas.94.22.11974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xu PX, Zheng W, Laclef C, Maire P, Maas RL, Peters H, Xu X (2002) Eya1 is required for the morphogenesis of mammalian thymus, parathyroid and thyroid. Development 129(13):3033–3044. https://doi.org/10.1242/dev.129.13.3033

    Article  CAS  PubMed  Google Scholar 

  4. Zheng W, Huang L, Wei ZB, Silvius D, Tang B, Xu PX (2003) The role of Six1 in mammalian auditory system development. Development 130(17):3989–4000. https://doi.org/10.1242/dev.00628

    Article  CAS  PubMed  Google Scholar 

  5. Ikeda K, Ookawara S, Sato S, Ando Z, Kageyama R, Kawakami K (2007) Six1 is essential for early neurogenesis in the development of olfactory epithelium. Dev Biol 311(1):53–68. https://doi.org/10.1016/j.ydbio.2007.08.020

    Article  CAS  PubMed  Google Scholar 

  6. Grifone R, Demignon J, Houbron C, Souil E, Niro C, Seller MJ, Hamard G, Maire P (2005) Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo. Development 132(9):2235–2249. https://doi.org/10.1242/dev.01773

    Article  CAS  PubMed  Google Scholar 

  7. Li X, Oghi KA, Zhang J, Krones A, Bush KT, Glass CK, Nigam SK, Aggarwal AK, Maas R, Rose DW, Rosenfeld MG (2003) Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426(6964):247–254. https://doi.org/10.1038/nature02083

    Article  CAS  PubMed  Google Scholar 

  8. Ozaki H, Nakamura K, Funahashi J, Ikeda K, Yamada G, Tokano H, Okamura HO, Kitamura K, Muto S, Kotaki H, Sudo K, Horai R, Iwakura Y, Kawakami K (2004) Six1 controls patterning of the mouse otic vesicle. Development 131(3):551–562. https://doi.org/10.1242/dev.00943

    Article  CAS  PubMed  Google Scholar 

  9. Pignoni F, Hu B, Zavitz KH, Xiao J, Garrity PA, Zipursky SL (1997) The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development. Cell 91(7):881–891. https://doi.org/10.1016/s0092-8674(00)80480-8

    Article  CAS  PubMed  Google Scholar 

  10. Ford HL, Kabingu EN, Bump EA, Mutter GL, Pardee AB (1998) Abrogation of the G2 cell cycle checkpoint associated with overexpression of HSIX1: a possible mechanism of breast carcinogenesis. Proc Natl Acad Sci U S A 95(21):12608–12613. https://doi.org/10.1073/pnas.95.21.12608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reichenberger KJ, Coletta RD, Schulte AP, Varella-Garcia M, Ford HL (2005) Gene amplification is a mechanism of Six1 overexpression in breast cancer. Cancer Res 65(7):2668–2675. https://doi.org/10.1158/0008-5472.CAN-04-4286

    Article  CAS  PubMed  Google Scholar 

  12. Coletta RD, Christensen KL, Micalizzi DS, Jedlicka P, Varella-Garcia M, Ford HL (2008) Six1 overexpression in mammary cells induces genomic instability and is sufficient for malignant transformation. Cancer Res 68(7):2204–2213. https://doi.org/10.1158/0008-5472.CAN-07-3141

    Article  CAS  PubMed  Google Scholar 

  13. Micalizzi DS, Wang CA, Farabaugh SM, Schiemann WP, Ford HL (2010) Homeoprotein Six1 increases TGF-beta type I receptor and converts TGF-beta signaling from suppressive to supportive for tumor growth. Cancer Res 70(24):10371–10380. https://doi.org/10.1158/0008-5472.CAN-10-1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang CA, Jedlicka P, Patrick AN, Micalizzi DS, Lemmer KC, Deitsch E, Casas-Selves M, Harrell JC, Ford HL (2012) SIX1 induces lymphangiogenesis and metastasis via upregulation of VEGF-C in mouse models of breast cancer. J Clin Invest 122(5):1895–1906. https://doi.org/10.1172/JCI59858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tan J, Zhang C, Qian J (2011) Expression and significance of Six1 and Ezrin in cervical cancer tissue. Tumour Biol 32(6):1241–1247. https://doi.org/10.1007/s13277-011-0228-8

    Article  CAS  PubMed  Google Scholar 

  16. Wan F, Miao X, Quraishi I, Kennedy V, Creek KE, Pirisi L (2008) Gene expression changes during HPV-mediated carcinogenesis: a comparison between an in vitro cell model and cervical cancer. Int J Cancer 123(1):32–40. https://doi.org/10.1002/ijc.23463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Behbakht K, Qamar L, Aldridge CS, Coletta RD, Davidson SA, Thorburn A, Ford HL (2007) Six1 overexpression in ovarian carcinoma causes resistance to TRAIL-mediated apoptosis and is associated with poor survival. Cancer Res 67(7):3036–3042. https://doi.org/10.1158/0008-5472.CAN-06-3755

    Article  CAS  PubMed  Google Scholar 

  18. Ng KT, Lee TK, Cheng Q, Wo JY, Sun CK, Guo DY, Lim ZX, Lo CM, Poon RT, Fan ST, Man K (2010) Suppression of tumorigenesis and metastasis of hepatocellular carcinoma by shRNA interference targeting on homeoprotein Six1. Int J Cancer 127(4):859–872. https://doi.org/10.1002/ijc.25105

    Article  CAS  PubMed  Google Scholar 

  19. Ng KT, Man K, Sun CK, Lee TK, Poon RT, Lo CM, Fan ST (2006) Clinicopathological significance of homeoprotein Six1 in hepatocellular carcinoma. Br J Cancer 95(8):1050–1055. https://doi.org/10.1038/sj.bjc.6603399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu Y, Khan J, Khanna C, Helman L, Meltzer PS, Merlino G (2004) Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med 10(2):175–181. https://doi.org/10.1038/nm966

    Article  CAS  PubMed  Google Scholar 

  21. Sehic D, Karlsson J, Sandstedt B, Gisselsson D (2012) SIX1 protein expression selectively identifies blastemal elements in Wilms tumor. Pediatr Blood Cancer 59(1):62–68. https://doi.org/10.1002/pbc.24025

    Article  PubMed  Google Scholar 

  22. Ono H, Imoto I, Kozaki K, Tsuda H, Matsui T, Kurasawa Y, Muramatsu T, Sugihara K, Inazawa J (2012) SIX1 promotes epithelial-mesenchymal transition in colorectal cancer through ZEB1 activation. Oncogene 31(47):4923–4934. https://doi.org/10.1038/onc.2011.646

    Article  CAS  PubMed  Google Scholar 

  23. Robin TP, Smith A, McKinsey E, Reaves L, Jedlicka P, Ford HL (2012) EWS/FLI1 regulates EYA3 in Ewing sarcoma via modulation of miRNA-708, resulting in increased cell survival and chemoresistance. Mol Cancer Res 10(8):1098–1108. https://doi.org/10.1158/1541-7786.MCR-12-0086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pandey RN, Rani R, Yeo EJ, Spencer M, Hu S, Lang RA, Hegde RS (2010) The Eyes Absent phosphatase-transactivator proteins promote proliferation, transformation, migration, and invasion of tumor cells. Oncogene 29(25):3715–3722. https://doi.org/10.1038/onc.2010.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EM, Atkins D, Foekens JA (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679. https://doi.org/10.1016/S0140-6736(05)17947-1

    Article  CAS  PubMed  Google Scholar 

  26. Li CM, Guo M, Borczuk A, Powell CA, Wei M, Thaker HM, Friedman R, Klein U, Tycko B (2002) Gene expression in Wilms' tumor mimics the earliest committed stage in the metanephric mesenchymal-epithelial transition. Am J Pathol 160(6):2181–2190. https://doi.org/10.1016/S0002-9440(10)61166-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Farabaugh SM, Micalizzi DS, Jedlicka P, Zhao R, Ford HL (2012) Eya2 is required to mediate the pro-metastatic functions of Six1 via the induction of TGF-beta signaling, epithelial-mesenchymal transition, and cancer stem cell properties. Oncogene 31(5):552–562. https://doi.org/10.1038/onc.2011.259

    Article  CAS  PubMed  Google Scholar 

  28. Wang QF, Wu G, Mi S, He F, Wu J, Dong J, Luo RT, Mattison R, Kaberlein JJ, Prabhakar S, Ji H, Thirman MJ (2011) MLL fusion proteins preferentially regulate a subset of wild-type MLL target genes in the leukemic genome. Blood 117(25):6895–6905. https://doi.org/10.1182/blood-2010-12-324699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miller SJ, Lan ZD, Hardiman A, Wu J, Kordich JJ, Patmore DM, Hegde RS, Cripe TP, Cancelas JA, Collins MH, Ratner N (2010) Inhibition of Eyes Absent Homolog 4 expression induces malignant peripheral nerve sheath tumor necrosis. Oncogene 29(3):368–379. https://doi.org/10.1038/onc.2009.360

    Article  CAS  PubMed  Google Scholar 

  30. Auvergne RM, Sim FJ, Wang S, Chandler-Militello D, Burch J, Al Fanek Y, Davis D, Benraiss A, Walter K, Achanta P, Johnson M, Quinones-Hinojosa A, Natesan S, Ford HL, Goldman SA (2013) Transcriptional differences between normal and glioma-derived glial progenitor cells identify a core set of dysregulated genes. Cell Rep 3(6):2127–2141. https://doi.org/10.1016/j.celrep.2013.04.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Z, Qiu R, Qiu X, Tian T (2017) EYA2 promotes lung cancer cell proliferation by downregulating the expression of PTEN. Oncotarget 8(67):110837–110848. https://doi.org/10.18632/oncotarget.22860

    Article  PubMed  PubMed Central  Google Scholar 

  32. Anantharajan J, Zhou H, Zhang L, Hotz T, Vincent MY, Blevins MA, Jansson AE, Kuan JWL, Ng EY, Yeo YK, Baburajendran N, Lin G, Hung AW, Joy J, Patnaik S, Marugan J, Rudra P, Ghosh D, Hill J, Keller TH, Zhao R, Ford HL, Kang C (2019) Structural and functional analyses of an allosteric EYA2 phosphatase inhibitor that has on-target effects in human lung cancer cells. Mol Cancer Ther 18(9):1484–1496. https://doi.org/10.1158/1535-7163.MCT-18-1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rayapureddi JP, Kattamuri C, Steinmetz BD, Frankfort BJ, Ostrin EJ, Mardon G, Hegde RS (2003) Eyes absent represents a class of protein tyrosine phosphatases. Nature 426(6964):295–298. https://doi.org/10.1038/nature02093

    Article  CAS  PubMed  Google Scholar 

  34. Tootle TL, Silver SJ, Davies EL, Newman V, Latek RR, Mills IA, Selengut JD, Parlikar BE, Rebay I (2003) The transcription factor Eyes absent is a protein tyrosine phosphatase. Nature 426(6964):299–302. https://doi.org/10.1038/nature02097

    Article  CAS  PubMed  Google Scholar 

  35. Jung SK, Jeong DG, Chung SJ, Kim JH, Park BC, Tonks NK, Ryu SE, Kim SJ (2010) Crystal structure of ED-Eya2: insight into dual roles as a protein tyrosine phosphatase and a transcription factor. FASEB J 24(2):560–569. https://doi.org/10.1096/fj.09-143891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krishnan N, Jeong DG, Jung SK, Ryu SE, Xiao A, Allis CD, Kim SJ, Tonks NK (2009) Dephosphorylation of the C-terminal tyrosyl residue of the DNA damage-related histone H2A.X is mediated by the protein phosphatase eyes absent. J Biol Chem 284(24):16066–16070. https://doi.org/10.1074/jbc.C900032200

    Article  CAS  Google Scholar 

  37. Blevins MA, Towers CG, Patrick AN, Zhao R, Ford HL (2015) The SIX1-EYA transcriptional complex as a therapeutic target in cancer. Expert Opin Ther Targets 19(2):213–225. https://doi.org/10.1517/14728222.2014.978860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu K, Li Z, Cai S, Tian L, Chen K, Wang J, Hu J, Sun Y, Li X, Ertel A, Pestell RG (2013) EYA1 phosphatase function is essential to drive breast cancer cell proliferation through cyclin D1. Cancer Res 73(14):4488–4499. https://doi.org/10.1158/0008-5472.CAN-12-4078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tadjuidje E, Wang TS, Pandey RN, Sumanas S, Lang RA, Hegde RS (2012) The EYA tyrosine phosphatase activity is pro-angiogenic and is inhibited by benzbromarone. PLoS One 7(4):e34806. https://doi.org/10.1371/journal.pone.0034806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Krueger AB, Dehdashti SJ, Southall N, Marugan JJ, Ferrer M, Li X, Ford HL, Zheng W, Zhao R (2013) Identification of a selective small-molecule inhibitor series targeting the eyes absent 2 (Eya2) phosphatase activity. J Biomol Screen 18(1):85–96. https://doi.org/10.1177/1087057112453936

    Article  CAS  PubMed  Google Scholar 

  41. Cook PJ, Ju BG, Telese F, Wang X, Glass CK, Rosenfeld MG (2009) Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458(7238):591–596. https://doi.org/10.1038/nature07849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yuan B, Cheng L, Chiang HC, Xu X, Han Y, Su H, Wang L, Zhang B, Lin J, Li X, Xie X, Wang T, Tekmal RR, Curiel TJ, Yuan ZM, Elledge R, Hu Y, Ye Q, Li R (2014) A phosphotyrosine switch determines the antitumor activity of ERbeta. J Clin Invest 124(8):3378–3390. https://doi.org/10.1172/JCI74085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang G, Dong Z, Gimple RC, Wolin A, Wu Q, Qiu Z, Wood LM, Shen JZ, Jiang L, Zhao L, Lv D, Prager BC, Kim LJY, Wang X, Zhang L, Anderson RL, Moore JK, Bao S, Keller TH, Lin G, Kang C, Hamerlik P, Zhao R, Ford HL, Rich JN (2021) Targeting EYA2 tyrosine phosphatase activity in glioblastoma stem cells induces mitotic catastrophe. J Exp Med 218(11). https://doi.org/10.1084/jem.20202669

Download references

Acknowledgments

Research reported in this chapter was supported by the National Cancer Institute of the National Institute of Health under award number R03DA030559 (R.Z. and H.L.F.), R41CA180347 (H.L.F. and R.Z.), R01CA221282 (H.L.F. and R.Z.), R01CA224867 (H.L.F.), R01NS108396 (H.L.F.), Colorado Bioscience Discovery and Evaluation Grant (H.L.F. and R.Z.), and Cancer League of Colorado Grant (H.L.F. and R.Z.), as well as National Institute of General Medical Sciences of the National Institute of Health under award number R35GM145289 (R.Z.). C.A. is supported by the NIH NRSA T32CA174648 Training in Translational Research of Lung, Head and Neck Cancer. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alderman, C., Krueger, A., Rossi, J., Ford, H.L., Zhao, R. (2024). In Vitro Phosphatase Assays for the Eya2 Tyrosine Phosphatase. In: Thévenin, D., P. Müller, J. (eds) Protein Tyrosine Phosphatases. Methods in Molecular Biology, vol 2743. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3569-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3569-8_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3568-1

  • Online ISBN: 978-1-0716-3569-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics