Skip to main content

New Perspectives on Crosstalks Between Bacterial Regulatory RNAs from Outer Membrane Vesicles and Eukaryotic Cells

  • Protocol
  • First Online:
Bacterial Regulatory RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2741))

Abstract

Regulatory small RNAs (sRNAs) help the bacteria to survive harsh environmental conditions by posttranscriptional regulation of genes involved in various biological pathways including stress responses, homeostasis, and virulence. These sRNAs can be found carried by different membrane-bound vesicles like extracellular vesicles (EVs), membrane vesicles (MVs), or outer membrane vesicles (OMVs). OMVs provide myriad functions in bacterial cells including carrying a cargo of proteins, lipids, and nucleic acids including sRNAs. A few interesting studies have shown that these sRNAs can be transported to the host cell by membrane vesicles and can regulate the host immune system. Although there is evidence that sRNAs can be exported to host cells and sometimes can even cross the blood–brain barrier, the exact mechanism is still unknown. In this review, we investigated the new techniques implemented in various studies, to elucidate the crosstalks between bacterial cells and human immune systems by membrane vesicles carrying bacterial regulatory sRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carrier M-C, Lalaouna D, Massé E (2018) Broadening the definition of bacterial small RNAs: characteristics and mechanisms of action. Annu Rev Microbiol 72:141–161

    Article  CAS  PubMed  Google Scholar 

  2. Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gottesman S, Storz G (2011) Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 3:a003798

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hoe C-H, Raabe CA, Rozhdestvensky TS, Tang T-H (2013) Bacterial sRNAs: regulation in stress. Int J Med Microbiol 303:217–229

    Article  CAS  PubMed  Google Scholar 

  5. Holmqvist E, Wagner EGH (2017) Impact of bacterial sRNAs in stress responses. Biochem Soc Trans 45:1203–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Djapgne L, Oglesby AG (2021) Impacts of small RNAs and their chaperones on bacterial pathogenicity. Frontiers in cellular and infection. Microbiology 11

    Google Scholar 

  7. Sy BM, Tree JJ (2021) Small RNA regulation of virulence in pathogenic Escherichia coli. Front Cell Infect Microbiol 10:622202

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang Y, Sun T, Jiang C (2018) Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm Sin B 8:34–50

    Article  PubMed  Google Scholar 

  9. Pizzagalli MD, Bensimon A, Superti-Furga G (2021) A guide to plasma membrane solute carrier proteins. FEBS J 288:2784–2835

    Article  CAS  PubMed  Google Scholar 

  10. Kurian TK, Banik S, Gopal D, Chakrabarti S, Mazumder N (2021) Elucidating methods for isolation and quantification of exosomes: A review. Mol Biotechnol 63:249–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Estébanez B, Jiménez-Pavón D, Huang C-J, Cuevas MJ, González-Gallego J (2021) Effects of exercise on exosome release and cargo in in vivo and ex vivo models: A systematic review. J Cell Physiol 236:3336–3353

    Article  PubMed  Google Scholar 

  12. Zheng D et al (2021) The role of exosomes and Exosomal MicroRNA in cardiovascular disease. Front Cell and Dev Biol 8

    Google Scholar 

  13. Li C, Zhou T, Chen J, Li R, Chen H, Luo S, Chen D, Cai C, Li W (2022) The role of Exosomal miRNAs in cancer. J Transl Med 20:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vickers KC, Michell DL (2021) HDL-small RNA export, transport, and functional delivery in atherosclerosis. Curr Atheroscler Rep 23:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sui G, Jia L, Song N, Min D, Chen S, Wu Y, Yang G (2021) Aberrant expression of HDL-bound microRNA induced by a high-fat diet in a pig model: implications in the pathogenesis of dyslipidaemia. BMC Cardiovasc Disord 21:280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang Y, Nieh M-P, Chen W, Lei Y (2022) Outer membrane vesicles (OMVs) enabled bio-applications: A critical review. Biotechnol Bioeng 119:34–47

    Article  CAS  PubMed  Google Scholar 

  17. Tran TM, Chng C-P, Pu X, Ma Z, Han X, Liu X, Yang L, Huang C, Miao Y (2022) Potentiation of plant defense by bacterial outer membrane vesicles is mediated by membrane nanodomains. Plant Cell 34:395–417

    Article  PubMed  Google Scholar 

  18. Zhao Z, Wang L, Miao J, Zhang Z, Ruan J, Xu L, Guo H, Zhang M, Qiao W (2022) Regulation of the formation and structure of biofilms by quorum sensing signal molecules packaged in outer membrane vesicles. Sci Total Environ 806:151403

    Article  CAS  PubMed  Google Scholar 

  19. Park A-M, Tsunoda I (2022) Helicobacter pylori infection in the stomach induces neuroinflammation: the potential roles of bacterial outer membrane vesicles in an animal model of Alzheimer’s disease. Inflamm Regener 42:39

    Article  CAS  Google Scholar 

  20. Brown L, Wolf JM, Prados-Rosales R, Casadevall A (2015) Through the wall: extracellular vesicles in gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol 13:620–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Y, Defourny KAY, Smid EJ, Abee T (2018) Gram-positive bacterial extracellular vesicles and their impact on health and disease. Front Microbiol 9

    Google Scholar 

  22. Wang X, Thompson CD, Weidenmaier C, Lee JC (2018) Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nat Commun 9:1379

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jeon J, Park SC, Her J, Lee JW, Han J-K, Kim Y-K, Kim KP, Ban C (2018) Comparative lipidomic profiling of the human commensal bacterium Propionibacterium acnes and its extracellular vesicles. RSC Adv 8:15241–15247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bose S, Aggarwal S, Singh DV, Acharya N (2020) Extracellular vesicles: an emerging platform in gram-positive bacteria. Microb Cell 7:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jan AT (2017) Outer membrane vesicles (OMVs) of gram-negative bacteria: A perspective update. Front Microbiol 8:1053

    Article  PubMed  PubMed Central  Google Scholar 

  26. Knox KW, Vesk M, Work E (1966) Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli. J Bacteriol 92:1206–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bishop DG, Work E (1965) An extracellular glycolipid produced by Escherichia coli grown under lysine-limiting conditions. Biochem J 96:567–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sartorio MG, Pardue EJ, Feldman MF, Haurat MF (2021) Bacterial outer membrane vesicles: from discovery to applications. Annu Rev Microbiol 75:609–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahmadi BS, Bruno SP, Moshiri A, Tarashi S, Siadat SD, Masotti A (2020) Small RNAs in outer membrane vesicles and their function in host-microbe interactions. Front Microbiol 11

    Google Scholar 

  30. Avila-Calderón ED, del Ruiz-Palma MS, Aguilera-Arreola MAG, Velázquez-Guadarrama N, Ruiz EA, Gomez-Lunar Z, Witonsky S, Contreras-Rodríguez A (2021) Outer membrane vesicles of gram-negative bacteria: an outlook on biogenesis. Front Microbiol 12:557902

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kuehn MJ, Kesty NC (2005) Bacterial outer membrane vesicles and the host–pathogen interaction. Genes Dev 19:2645–2655

    Article  CAS  PubMed  Google Scholar 

  32. Cecil JD, Sirisaengtaksin N, O’Brien-Simpson NM, Krachler AM (2019) Outer membrane vesicle-host cell interactions. Microbiol Spectr 7

    Google Scholar 

  33. Ionescu M, Zaini PA, Baccari C, Tran S, da Silva AM, Lindow SE (2014) Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to surfaces. Proc Natl Acad Sci U S A 111:E3910–E3918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McMillan HM, Zebell SG, Ristaino JB, Dong X, Kuehn MJ (2021) Protective plant immune responses are elicited by bacterial outer membrane vesicles. Cell Rep 34:108645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Blenkiron C et al (2016) Uropathogenic Escherichia coli releases extracellular vesicles that are associated with RNA. PLoS One 11:e0160440

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tsatsaronis JA, Franch-Arroyo S, Resch U, Charpentier E (2018) Extracellular vesicle RNA: A universal mediator of microbial communication? Trends Microbiol 26:401–410

    Article  CAS  PubMed  Google Scholar 

  37. Lécrivain A-L, Beckmann BM (2020, 1863) Bacterial RNA in extracellular vesicles: a new regulator of host-pathogen interactions? Acta (BBA) – Gene Regul Mech:194519

    Google Scholar 

  38. Ghosal A et al (2015) The extracellular RNA complement of Escherichia coli. Microbiology 4:252–266

    Article  CAS  Google Scholar 

  39. Malabirade A et al (2018) The RNA complement of outer membrane vesicles from Salmonella enterica Serovar Typhimurium under distinct culture conditions. Front Microbiol 9:2015

    Article  PubMed  PubMed Central  Google Scholar 

  40. Koeppen K et al (2016) A novel mechanism of host-pathogen interaction through sRNA in bacterial outer membrane vesicles. PLoS Pathog 12:e1005672

    Article  PubMed  PubMed Central  Google Scholar 

  41. Choi J-W, Kim S-C, Hong S-H, Lee H-J (2017) Secretable small RNAs via outer membrane vesicles in periodontal pathogens. J Dent Res 96:458–466

    Article  CAS  PubMed  Google Scholar 

  42. Zhang H, Zhang Y, Song Z, Li R, Ruan H, Liu Q, Huang X (2020) sncRNAs packaged by Helicobacter pylori outer membrane vesicles attenuate IL-8 secretion in human cells. Int J Med Microbiol 310:151356

    Article  CAS  PubMed  Google Scholar 

  43. Han E-C, Choi S-Y, Lee Y, Park J-W, Hong S-H, Lee H-J (2019) Extracellular Rnas in Periodontopathogenic outer membrane vesicles promote Tnf-Α production in human macrophages and cross the blood-brain barrier in mice. FASEB J 33:13412–13422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Diallo I, Ho J, Lambert M, Benmoussa A, Husseini Z, Lalaouna D, Massé E, Provost P (2022) A tRNA-derived fragment present in E. coli OMVs regulates host cell gene expression and proliferation. PLoS Pathog 18:e1010827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Langlete P, Krabberød AK, Winther-Larsen HC (2019) Vesicles from vibrio cholerae contain AT-rich DNA and shorter mRNAs that do not correlate with their protein products. Front Microbiol 10:2708

    Article  PubMed  PubMed Central  Google Scholar 

  46. Joshi B, Singh B, Nadeem A, Askarian F, Wai SN, Johannessen M, Hegstad K (2021) Transcriptome profiling of Staphylococcus aureus associated extracellular vesicles reveals presence of small RNA-cargo. Front Mol Biosci 7

    Google Scholar 

  47. Luz BSRD, Nicolas A, Chabelskaya S, de Rodovalho VR, Le Loir Y, de Azevedo VAC, Felden B, Guédon E (2021) Environmental plasticity of the RNA content of Staphylococcus aureus extracellular vesicles. Front Microbiol 12

    Google Scholar 

  48. Zhang L et al (2012) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22:107–126

    Article  CAS  PubMed  Google Scholar 

  49. Snow JW, Hale AE, Isaacs SK, Baggish AL, Chan SY (2013) Ineffective delivery of diet-derived microRNAs to recipient animal organisms. RNA Biol 10:1107–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Harfouche L, Haichar F, el Z., Achouak W. (2015) Small regulatory RNAs and the fine-tuning of plant–bacteria interactions. New Phytol 206:98–106

    Article  CAS  PubMed  Google Scholar 

  51. Ren B, Wang X, Duan J, Ma J (2019) Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science 365:919–922

    Article  CAS  PubMed  Google Scholar 

  52. Castiblanco LF, Sundin GW (2016) New insights on molecular regulation of biofilm formation in plant-associated bacteria. J Integr Plant Biol 58:362–372

    Article  CAS  PubMed  Google Scholar 

  53. Rudnicka M, Noszczyńska M, Malicka M, Kasperkiewicz K, Pawlik M, Piotrowska-Seget Z (2022) Outer membrane vesicles as mediators of plant–bacterial interactions. Front Microbiol 13

    Google Scholar 

  54. Knief C, Delmotte N, Vorholt JA (2011) Bacterial adaptation to life in association with plants – A proteomic perspective from culture to in situ conditions. Proteomics 11:3086–3105

    Article  CAS  PubMed  Google Scholar 

  55. Afroz A, Zahur M, Zeeshan N, Komatsu S (2013) Plant-bacterium interactions analyzed by proteomics. Front Plant Sci 4

    Google Scholar 

  56. Feitosa-Junior OR, Stefanello E, Zaini PA, Nascimento R, Pierry PM, Dandekar AM, Lindow SE, da Silva AM (2019) Proteomic and metabolomic analyses of Xylella fastidiosa OMV-enriched fractions reveal association with virulence factors and signaling molecules of the DSF family. Phytopathology 109:1344–1353

    Article  CAS  PubMed  Google Scholar 

  57. Weiberg A, Wang M, Lin F-M, Zhao H, Zhang Z, Kaloshian I, Huang H-D, Jin H (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang M, Weiberg A, Dellota E, Yamane D, Jin H (2017) Botrytis small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi. RNA Biol 14:421–428

    Article  PubMed  PubMed Central  Google Scholar 

  59. Qin S et al (2022) Molecular characterization reveals no functional evidence for naturally occurring cross-kingdom RNA interference in the early stages of Botrytis cinerea-tomato interaction. Mol Plant Pathol

    Google Scholar 

  60. Tu Y, Jia X, Yang R, Peng X, Zhou X, Xu X (2019) Genetic regulation of streptococci by small RNAs. Curr Issues Mol Biol 32:39–86

    Article  PubMed  Google Scholar 

  61. Wassarman KM (2018) 6S RNA, a global regulator of transcription. In: Regulating with RNA in bacteria and archaea. Wiley, pp 355–367

    Chapter  Google Scholar 

  62. Lin X, Poeta P, Peng B (2020) Editorial: the molecular mechanisms of antibiotic resistance in aquatic pathogens. Front Cell Infect Microbiol 10

    Google Scholar 

  63. Himeno H, Kurita D, Muto A (2014) tmRNA-mediated trans-translation as the major ribosome rescue system in a bacterial cell. Front Genet 5:66

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fris ME, Murphy ER (2016) Riboregulators: fine-tuning virulence in Shigella. Front Cell Infect Microbiol 6

    Google Scholar 

  65. Lalaouna D, Eyraud A, Devinck A, Prévost K, Massé E (2019) GcvB small RNA uses two distinct seed regions to regulate an extensive targetome. Mol Microbiol 111:473–486

    Article  CAS  PubMed  Google Scholar 

  66. Le Huyen KB, Gonzalez CD, Pascreau G, Bordeau V, Cattoir V, Liu W, Bouloc P, Felden B, Chabelskaya S (2021) A small regulatory RNA alters Staphylococcus aureus virulence by titrating RNAIII activity. Nucleic Acids Res 49:10644–10656

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lalaouna D et al (2019) RsaC sRNA modulates the oxidative stress response of Staphylococcus aureus during manganese starvation. Nucleic Acids Res 47:9871–9887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ren J, Sang Y, Qin R, Cui Z, Yao Y-F (2017) 6S RNA is involved in acid resistance and invasion of epithelial cells in Salmonella enterica serovar Typhimurium. Future Microbiol 12:1045–1057

    Article  CAS  PubMed  Google Scholar 

  69. Zhu C, Sun B, Nie A, Zhou Z (2020) The tRNA-associated dysregulation in immune responses and immune diseases. Acta Physiol (Oxf) 228:e13391

    Article  CAS  PubMed  Google Scholar 

  70. Middleton H, Yergeau É, Monard C, Combier J-P, El Amrani A (2021) Rhizospheric plant-microbe interactions: miRNAs as a key mediator. Trends Plant Sci 26:132–141

    Article  CAS  PubMed  Google Scholar 

  71. Keiler KC, Ramadoss NS (2011) Bifunctional transfer-messenger RNA. Biochimie 93:1993–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Massé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Roy Chowdhury, M., Massé, E. (2024). New Perspectives on Crosstalks Between Bacterial Regulatory RNAs from Outer Membrane Vesicles and Eukaryotic Cells. In: Arluison, V., Valverde, C. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 2741. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3565-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3565-0_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3564-3

  • Online ISBN: 978-1-0716-3565-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics