Skip to main content

Bacteriophage–Host Interactions and Coevolution

  • Protocol
  • First Online:
Bacteriophages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2738))

Abstract

Bacteriophages are the most abundant entity on the planet and play very relevant roles in the diversity and abundance of their bacterial hosts. These interactions are subject to several factors, such as the first encounter of the phage with its host bacterium, in which molecular interactions are fundamental. Along with this, these interactions depend on the environment and other communities present. This chapter focuses on these phage–bacteria interactions, reviewing the knowledge of the early stage (receptor-binding proteins), host responses (resistance and counter-resistance), and ecological and evolutionary models described to date. In general, knowledge has focused on a few phage–bacteria models and has been deepened by sequencing and metagenomics. The study of phage–bacteria interactions is an essential step for the development of therapies and other applications of phages in the clinical and productive environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kropinski AMBM, Carver TJ, Cerde AM, Darling A, Lomsadze A, Mahadevan P, Stothard P, Seto D, Domselaar G, Van W, Carver TJ, Cerde AM, Darling A, Lomsadze A, Mahadevan P, Stothard P, Seto D, Van Domselaar GWD (2009) In silico Identification of genes in bacteriophage DNA. In: Bacteriophages, vol 2. Humana Press. https://doi.org/10.1007/978-1-60327-565-1

    Chapter  Google Scholar 

  2. Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6(1):1–11. https://doi.org/10.1046/j.1462-2920.2003.00539.x

    Article  PubMed  Google Scholar 

  3. Strathdee SA, Hatfull GF, Mutalik VK, Schooley RT (2023) Phage therapy: from biological mechanisms to future directions. Cell 186(1):17–31. https://doi.org/10.1016/j.cell.2022.11.017

    Article  CAS  PubMed  Google Scholar 

  4. Suttle CA (2007) Marine viruses – major players in the global ecosystem. Nat Rev Microbiol 5(10):801–812. https://doi.org/10.1038/nrmicro1750

    Article  CAS  PubMed  Google Scholar 

  5. Switt AIMSA, Wiedmann M, Kropinski AM, Wishart DS, Poppe C, Liang YY (2015) Salmonella phages and prophages- genomics, taxonomy, and applied aspects. In: Methods molecular biology, vol 1225. Humana Press, Hatfield, pp 237–287. https://doi.org/10.1007/978-1-4939-1625-2_15

    Chapter  Google Scholar 

  6. Brown TL, Charity OJ, Adriaenssens EM (2022) Ecological and functional roles of bacteriophages in contrasting environments: marine, terrestrial and human gut. Curr Opin Microbiol 70:102229. https://doi.org/10.1016/j.mib.2022.102229

    Article  CAS  PubMed  Google Scholar 

  7. Casjens S (2003) Prophages and bacterial genomics: what have we learned so far? Mol Microbiol 49(2):277–300. https://doi.org/10.1046/j.1365-2958.2003.03580.x

    Article  CAS  PubMed  Google Scholar 

  8. Mirzaei MK, Maurice CF (2017) Menage a trois in the human gut: interactions between host, bacteria and phages. Nat Rev Microbiol 15(7):397–408. https://doi.org/10.1038/nrmicro.2017.30

    Article  CAS  PubMed  Google Scholar 

  9. Silveira CB, Rohwer FL (2016) Piggyback-the-winner in host-associated microbial communities. NPJ Biofilms Microbiomes 2:16010. https://doi.org/10.1038/npjbiofilms.2016.10

    Article  PubMed  PubMed Central  Google Scholar 

  10. Scanlan PD (2017) Bacteria-bacteriophage coevolution in the human gut: implications for microbial diversity and functionality. Trends Microbiol 25(8):614–623. https://doi.org/10.1016/j.tim.2017.02.012

    Article  CAS  PubMed  Google Scholar 

  11. Leprince A, Mahillon J (2023) Phage adsorption to Gram-positive bacteria. Viruses 15(1). https://doi.org/10.3390/v15010196

  12. Leiman PGSM (2012) Contractile tail machines of bacteriophages. In: Advances in experimental medicine and biology, vol 726. Springer, pp 93–114. https://doi.org/10.1007/978-1-4614-0980-9

    Chapter  Google Scholar 

  13. Bertozzi Silva J, Storms Z, Sauvageau D (2016) Host receptors for bacteriophage adsorption. FEMS Microbiol Lett 363(4). https://doi.org/10.1093/femsle/fnw002

  14. Taslem Mourosi J, Awe A, Guo W, Batra H, Ganesh H, Wu X, Zhu J (2022) Understanding bacteriophage tail fiber interaction with host surface receptor: the key “blueprint” for reprogramming phage host range. Int J Mol Sci 23(20). https://doi.org/10.3390/ijms232012146

  15. Shin H, Lee JH, Kim H, Choi Y, Heu S, Ryu S (2012) Receptor diversity and host interaction of bacteriophages infecting Salmonella enterica serovar Typhimurium. PLoS One 7(8):e43392. https://doi.org/10.1371/journal.pone.0043392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hyman P, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248. https://doi.org/10.1016/S0065-2164(10)70007-1

    Article  CAS  PubMed  Google Scholar 

  17. Chaturongakul S, Ounjai P (2014) Phage-host interplay: examples from tailed phages and Gram-negative bacterial pathogens. Front Microbiol 5:442. https://doi.org/10.3389/fmicb.2014.00442

    Article  PubMed  PubMed Central  Google Scholar 

  18. Balogh B, Jones JB, Iriarte FB, Momol MT (2010) Phage therapy for plant disease control. Curr Pharm Biotechnol 11:48–57

    Article  CAS  PubMed  Google Scholar 

  19. Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8(5):317–327. https://doi.org/10.1038/nrmicro2315

    Article  CAS  PubMed  Google Scholar 

  20. Denes T, den Bakker HC, Tokman JI, Guldimann C, Wiedmann M (2015) Selection and characterization of phage-resistant mutant strains of listeria monocytogenes reveal host genes linked to phage adsorption. Appl Environ Microbiol 81(13):4295–4305. https://doi.org/10.1128/AEM.00087-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barron-Montenegro R, Rivera D, Serrano MJ, Garcia R, Alvarez DM, Benavides J, Arredondo F, Alvarez FP, Bastias R, Ruiz S, Hamilton-West C, Castro-Nallar E, Moreno-Switt AI (2022) Long-term interactions of Salmonella enteritidis with a lytic phage for 21 days in high nutrients media. Front Cell Infect Microbiol 12:897171. https://doi.org/10.3389/fcimb.2022.897171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Buckling A, Rainey PB (2002) Antagonistic coevolution between a bacterium and a bacteriophage. Proc Biol Sci 269(1494):931–936. https://doi.org/10.1098/rspb.2001.1945

    Article  PubMed  PubMed Central  Google Scholar 

  23. Blower TR, Chai R, Przybilski R, Chindhy S, Fang X, Kidman SE, Tan H, Luisi BF, Fineran PC, Salmond GPC (2017) Evolution of Pectobacterium bacteriophage PhiM1 to escape two bifunctional type III toxin-antitoxin and abortive infection systems through mutations in a single viral gene. Appl Environ Microbiol 83(8). https://doi.org/10.1128/AEM.03229-16

  24. Rauch BJ, Silvis MR, Hultquist JF, Waters CS, McGregor MJ, Krogan NJ, Bondy-Denomy J (2017) Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell 168(1–2):150–158 e110. https://doi.org/10.1016/j.cell.2016.12.009

    Article  CAS  PubMed  Google Scholar 

  25. Miller CR, Nagel AC, Scott L, Settles M, Joyce P, Wichman HA (2016) Love the one you’re with: replicate viral adaptations converge on the same phenotypic change. PeerJ 4:e2227. https://doi.org/10.7717/peerj.2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Scheiner SM (1993) Genetics and evolution of phenotypic plasticity. Annu Rev Ecol Syst 24:35–68

    Article  Google Scholar 

  27. Dunne M, Denyes JM, Arndt H, Loessner MJ, Leiman PG, Klumpp J (2018) Salmonella phage S16 tail fiber adhesin features a rare polyglycine rich domain for host recognition. Structure 26(12):1573–1582. e1574. https://doi.org/10.1016/j.str.2018.07.017

    Article  CAS  PubMed  Google Scholar 

  28. Tétart FDC, Krisch HM (1998) Genome plasticity in the distal tail fiber locus of the T even bacteriophage recombination between conserved motifs swaps adhesin specificity. J Mol Biol 282:543–556

    Article  PubMed  Google Scholar 

  29. Marti R, Zurfluh K, Hagens S, Pianezzi J, Klumpp J, Loessner MJ (2013) Long tail fibres of the novel broad-host-range T-even bacteriophage S16 specifically recognize salmonella OmpC. Mol Microbiol 87(4):818–834. https://doi.org/10.1111/mmi.12134

    Article  CAS  PubMed  Google Scholar 

  30. Mizoguchi K, Morita M, Fischer CR, Yoichi M, Tanji Y, Unno H (2003) Coevolution of bacteriophage PP01 and Escherichia coli O157:H7 in continuous culture. Appl Environ Microbiol 69(1):170–176. https://doi.org/10.1128/AEM.69.1.170-176.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de Jonge PA, Nobrega FL, Brouns SJJ, Dutilh BE (2019) Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol 27(1):51–63. https://doi.org/10.1016/j.tim.2018.08.006

    Article  CAS  PubMed  Google Scholar 

  32. Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45(6):1320–1328. https://doi.org/10.4319/lo.2000.45.6.1320

    Article  Google Scholar 

  33. Korytowski DA, Smith H (2017) Permanence and stability of a kill the winner model in marine ecology. Bull Math Biol 79(5):995–1004. https://doi.org/10.1007/s11538-017-0265-6

    Article  PubMed  Google Scholar 

  34. Marantos A, Mitarai N, Sneppen K (2022) From kill the winner to eliminate the winner in open phage-bacteria systems. PLoS Comput Biol 18(8):e1010400. https://doi.org/10.1371/journal.pcbi.1010400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen X, Weinbauer MG, Jiao N, Zhang R (2021) Revisiting marine lytic and lysogenic virus-host interactions: kill-the-winner and piggyback-the-winner. Sci Bull (Beijing) 66(9):871–874. https://doi.org/10.1016/j.scib.2020.12.014

    Article  CAS  PubMed  Google Scholar 

  36. Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA, Cobian-Guemes AG, Coutinho FH, Dinsdale EA, Felts B, Furby KA, George EE, Green KT, Gregoracci GB, Haas AF, Haggerty JM, Hester ER, Hisakawa N, Kelly LW, Lim YW, Little M, Luque A, McDole-Somera T, McNair K, de Oliveira LS, Quistad SD, Robinett NL, Sala E, Salamon P, Sanchez SE, Sandin S, Silva GG, Smith J, Sullivan C, Thompson C, Vermeij MJ, Youle M, Young C, Zgliczynski B, Brainard R, Edwards RA, Nulton J, Thompson F, Rohwer F (2016) Lytic to temperate switching of viral communities. Nature 531(7595):466–470. https://doi.org/10.1038/nature17193

    Article  CAS  PubMed  Google Scholar 

  37. Silveira CB, Luque A, Rohwer F (2021) The landscape of lysogeny across microbial community density, diversity and energetics. Environ Microbiol 23(8):4098–4111. https://doi.org/10.1111/1462-2920.15640

    Article  CAS  PubMed  Google Scholar 

  38. Jancheva M, Bottcher T (2021) A metabolite of pseudomonas triggers prophage-selective lysogenic to lytic conversion in Staphylococcus aureus. J Am Chem Soc 143(22):8344–8351. https://doi.org/10.1021/jacs.1c01275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gaba S, Ebert D (2009) Time-shift experiments as a tool to study antagonistic coevolution. Trends Ecol Evol 24(4):226–232. https://doi.org/10.1016/j.tree.2008.11.005

    Article  PubMed  Google Scholar 

  40. Koskella B, Brockhurst MA (2014) Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev 38(5):916–931. https://doi.org/10.1111/1574-6976.12072

    Article  CAS  PubMed  Google Scholar 

  41. Stern A, Sorek R (2011) The phage-host arms race: shaping the evolution of microbes. BioEssays 33(1):43–51. https://doi.org/10.1002/bies.201000071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gomez P, Buckling A (2011) Bacteria-phage antagonistic coevolution in soil. Science 332(6025):106–109. https://doi.org/10.1126/science.1198767

    Article  CAS  PubMed  Google Scholar 

  43. Faruque SMNB, Islam MJ, Faruque ASG, Ghosh AN, Balakrish Nair G, Sack D, Mekalanos J (2005) Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc Natl Acad Sci U S A 102(5):1702–1707. https://doi.org/10.1073/pnas.0408992102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Faruque SM (2014) Role of phages in the epidemiology of cholera. Curr Top Microbiol Inmunol 379:165–180. https://doi.org/10.1007/978-3-642-55404-9

    Article  Google Scholar 

  45. Faruque SIM, Ahmad Q, Faruque ASG, Sack D, Nair G, Mekalanos J (2005) Self limiting nature of seasonal cholera epidemics role of host-mediated amplification of phage. Proc Natl Acad Sci U S A 102(17):6119–6124. https://doi.org/10.1073/pnas.0502069102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dewald-Wang EA, Parr N, Tiley K, Lee A, Koskella B (2022) Multiyear time-shift study of bacteria and phage dynamics in the phyllosphere. Am Nat 199(1):126–140. https://doi.org/10.1086/717181

    Article  PubMed  Google Scholar 

  47. Koskella B (2013) Phage-mediated selection on microbiota of a long-lived host. Curr Biol 23(13):1256–1260. https://doi.org/10.1016/j.cub.2013.05.038

    Article  CAS  PubMed  Google Scholar 

  48. Laanto E, Hoikkala V, Ravantti J, Sundberg LR (2017) Long-term genomic coevolution of host-parasite interaction in the natural environment. Nat Commun 8(1):111. https://doi.org/10.1038/s41467-017-00158-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rong C, Zhou K, Li S, Xiao K, Xu Y, Zhang R, Yang Y, Zhang Y (2022) Isolation and characterization of a novel Cyanophage encoding multiple auxiliary metabolic genes. Viruses 14(5). https://doi.org/10.3390/v14050887

  50. Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904. https://doi.org/10.1152/physrev.00045.2009

    Article  CAS  PubMed  Google Scholar 

  51. De Sordi L, Lourenco M, Debarbieux L (2019) “I will survive”: a tale of bacteriophage-bacteria coevolution in the gut. Gut Microbes 10(1):92–99. https://doi.org/10.1080/19490976.2018.1474322

    Article  CAS  PubMed  Google Scholar 

  52. Townsend EM, Kelly L, Muscatt G, Box JD, Hargraves N, Lilley D, Jameson E (2021) The human gut phageome: origins and roles in the human gut microbiome. Front Cell Infect Microbiol 11:643214. https://doi.org/10.3389/fcimb.2021.643214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carding SR, Davis N, Hoyles L (2017) Review article: the human intestinal virome in health and disease. Aliment Pharmacol Ther 46(9):800–815. https://doi.org/10.1111/apt.14280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Clooney AG, Sutton TDS, Shkoporov AN, Holohan RK, Daly KM, O’Regan O, Ryan FJ, Draper LA, Plevy SE, Ross RP, Hill C (2019) Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 26(6):764–778 e765. https://doi.org/10.1016/j.chom.2019.10.009

    Article  CAS  PubMed  Google Scholar 

  55. Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD, Bushman FD (2013) Rapid evolution of the human gut virome. Proc Natl Acad Sci U S A 110(30):12450–12455. https://doi.org/10.1073/pnas.1300833110

    Article  PubMed  PubMed Central  Google Scholar 

  56. Minot S, Grunberg S, Wu GD, Lewis JD, Bushman FD (2012) Hypervariable loci in the human gut virome. Proc Natl Acad Sci U S A 109(10):3962–3966. https://doi.org/10.1073/pnas.1119061109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tiamani K, Luo S, Schulz S, Xue J, Costa R, Khan Mirzaei M, Deng L (2022) The role of virome in the gastrointestinal tract and beyond. FEMS Microbiol Rev 46(6). https://doi.org/10.1093/femsre/fuac027

  58. Shamash M, Maurice CF (2022) Phages in the infant gut: a framework for virome development during early life. ISME J 16(2):323–330. https://doi.org/10.1038/s41396-021-01090-x

    Article  PubMed  Google Scholar 

  59. Beller L, Deboutte W, Vieira-Silva S, Falony G, Tito RY, Rymenans L, Yinda CK, Vanmechelen B, Van Espen L, Jansen D, Shi C, Zeller M, Maes P, Faust K, Van Ranst M, Raes J, Matthijnssens J (2022) The virota and its transkingdom interactions in the healthy infant gut. Proc Natl Acad Sci U S A 119(13):e2114619119. https://doi.org/10.1073/pnas.2114619119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guerin E, Shkoporov A, Stockdale SR, Clooney AG, Ryan FJ, Sutton TDS, Draper LA, Gonzalez-Tortuero E, Ross RP, Hill C (2018) Biology and taxonomy of crAss-like bacteriophages, the most abundant virus in the human gut. Cell Host Microbe 24(5):653–664 e656. https://doi.org/10.1016/j.chom.2018.10.002

    Article  CAS  PubMed  Google Scholar 

  61. Liang G, Zhao C, Zhang H, Mattei L, Sherrill-Mix S, Bittinger K, Kessler LR, Wu GD, Baldassano RN, DeRusso P, Ford E, Elovitz MA, Kelly MS, Patel MZ, Mazhani T, Gerber JS, Kelly A, Zemel BS, Bushman FD (2020) The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature 581(7809):470–474. https://doi.org/10.1038/s41586-020-2192-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shkoporov AN, Clooney AG, Sutton TDS, Ryan FJ, Daly KM, Nolan JA, McDonnell SA, Khokhlova EV, Draper LA, Forde A, Guerin E, Velayudhan V, Ross RP, Hill C (2019) The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26(4):527–541 e525. https://doi.org/10.1016/j.chom.2019.09.009

    Article  CAS  PubMed  Google Scholar 

  63. Shkoporov AN, Hill C (2019) Bacteriophages of the human gut: the “known unknown” of the microbiome. Cell Host Microbe 25(2):195–209. https://doi.org/10.1016/j.chom.2019.01.017

    Article  CAS  PubMed  Google Scholar 

  64. Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB (2020) The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28(5):724–740 e728. https://doi.org/10.1016/j.chom.2020.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fitzgerald CB, Shkoporov AN, Upadrasta A, Khokhlova EV, Ross RP, Hill C (2021) Probing the “dark matter” of the human gut phageome: culture assisted metagenomics enables rapid discovery and host-linking for novel bacteriophages. Front Cell Infect Microbiol 11:616918. https://doi.org/10.3389/fcimb.2021.616918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Agencia Nacional de Investigación y Desarrollo ANID” Chile grants: FONDECYT 1181167 and 1231082 supported AIMS, FONDECYT 3210317 supported DAE, and ANID FONDEF VIU22P0058 supported DR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea I. Moreno-Switt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Álvarez-Espejo, D.M., Rivera, D., Moreno-Switt, A.I. (2024). Bacteriophage–Host Interactions and Coevolution. In: Tumban, E. (eds) Bacteriophages. Methods in Molecular Biology, vol 2738. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3549-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3549-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3548-3

  • Online ISBN: 978-1-0716-3549-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics